1932

Abstract

Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP—biofilm formation and motility—are key determinants of host–bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host–bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041522-101729
2024-11-20
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041522-101729.html?itemId=/content/journals/10.1146/annurev-micro-041522-101729&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abel S, Bucher T, Nicollier M, Hug I, Kaever V, et al. 2013.. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the Caulobacter cell cycle. . PLOS Genet. 9:(9):e1003744
    [Crossref] [Google Scholar]
  2. 2.
    Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, et al. 2011.. Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. . Mol. Cell. 43:(4):55060
    [Crossref] [Google Scholar]
  3. 3.
    Ahmad I, Lamprokostopoulou A, Le Guyon S, Streck E, Barthel M, et al. 2011.. Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. . PLOS ONE 6:(12):e28351
    [Crossref] [Google Scholar]
  4. 4.
    Allombert J, Lazzaroni J-C, Baïlo N, Gilbert C, Charpentier X, et al. 2014.. Three antagonistic cyclic di-GMP-catabolizing enzymes promote differential Dot/Icm effector delivery and intracellular survival at the early steps of Legionella pneumophila infection. . Infect. Immun. 82:(3):122233
    [Crossref] [Google Scholar]
  5. 5.
    Amikam D, Benziman M. 1989.. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. . J. Bacteriol. 171:(12):664955
    [Crossref] [Google Scholar]
  6. 6.
    Aragon IM, Pérez-Mendoza D, Moscoso JA, Faure E, Guery B, et al. 2015.. Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. . Environ. Microbiol. 17:(11):433251
    [Crossref] [Google Scholar]
  7. 7.
    Ausmees N, Jonsson H, Höglund S, Ljunggren H, Lindberg M. 1999.. Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. . Microbiology 145:(5):125362
    [Crossref] [Google Scholar]
  8. 8.
    Ausmees N, Mayer R, Weinhouse H, Volman G, Amikam D, et al. 2001.. Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. . FEMS Microbiol. Lett. 204:(1):16367
    [Crossref] [Google Scholar]
  9. 9.
    Baker AE, Webster SS, Diepold A, Kuchma SL, Bordeleau E, et al. 2019.. Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa. . J. Bacteriol. 201:(18):e00741
    [Crossref] [Google Scholar]
  10. 10.
    Bassis CM, Visick KL. 2010.. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. . J. Bacteriol. 192:(5):126978
    [Crossref] [Google Scholar]
  11. 11.
    Basu Roy A, Sauer K. 2014.. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. . Mol. Microbiol. 94:(4):77193
    [Crossref] [Google Scholar]
  12. 12.
    Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL. 2000.. The Pfam protein families database. . Nucleic Acids Res. 28:(1):26366
    [Crossref] [Google Scholar]
  13. 13.
    Beyhan S, Tischler AD, Camilli A, Yildiz FH. 2006.. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. . J. Bacteriol. 188:(10):360013
    [Crossref] [Google Scholar]
  14. 14.
    Biswas S, Chouhan OP, Bandekar D. 2020.. Diguanylate cyclases in Vibrio cholerae: essential regulators of lifestyle switching. . Front. Cell. Infect. Microbiol. 10::582947
    [Crossref] [Google Scholar]
  15. 15.
    Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sørensen SR, Moser C, et al. 2013.. The in vivo biofilm. . Trends Microbiol. 21:(9):46674
    [Crossref] [Google Scholar]
  16. 16.
    Blanco-Romero E, Garrido-Sanz D, Durán D, Rivilla R, Redondo-Nieto M, Martín M. 2022.. Regulation of extracellular matrix components by AmrZ is mediated by c-di-GMP in Pseudomonas ogarae F113. . Sci. Rep. 12::11914
    [Crossref] [Google Scholar]
  17. 17.
    Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, et al. 2010.. Second messenger–mediated adjustment of bacterial swimming velocity. . Cell 141:(1):10716
    [Crossref] [Google Scholar]
  18. 18.
    Boles BR, McCarter LL. 2002.. Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. . J. Bacteriol. 184:(21):594654
    [Crossref] [Google Scholar]
  19. 19.
    Brown SA, Palmer KL, Whiteley M. 2008.. Revisiting the host as a growth medium. . Nat. Rev. Microbiol. 6:(9):65766
    [Crossref] [Google Scholar]
  20. 20.
    Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, et al. 2011.. STING is a direct innate immune sensor of cyclic di-GMP. . Nature 478:(7370):51518
    [Crossref] [Google Scholar]
  21. 21.
    Caetano-Anollés G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G. 1988.. Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. . Plant Physiol. 86:(4):122835
    [Crossref] [Google Scholar]
  22. 22.
    Chan C, Paul R, Samoray D, Amiot NC, Giese B, et al. 2004.. Structural basis of activity and allosteric control of diguanylate cyclase. . PNAS 101:(49):1708489
    [Crossref] [Google Scholar]
  23. 23.
    Cheng S-T, Wang F-F, Qian W. 2019.. Cyclic-di-GMP binds to histidine kinase RavS to control RavS-RavR phosphotransfer and regulates the bacterial lifestyle transition between virulence and swimming. . PLOS Pathog. 15:(8):e1007952
    [Crossref] [Google Scholar]
  24. 24.
    Chen T, Pu M, Subramanian S, Kearns D, Rowe-Magnus D. 2023.. PlzD modifies Vibrio vulnificus foraging behavior and virulence in response to elevated c-di-GMP. . mBio 14:(5):e0153623
    [Crossref] [Google Scholar]
  25. 25.
    Chen Y, Zhou J, Lv M, Liang Z, Parsek MR, Zhang LH. 2020.. Systematic analysis of c-di-GMP signaling mechanisms and biological functions in Dickeya zeae EC1. . mBio 11:(6):e02993
    [Google Scholar]
  26. 26.
    Chou S-H, Galperin MY. 2016.. Diversity of cyclic di-GMP-binding proteins and mechanisms. . J. Bacteriol. 198:(1):3246
    [Crossref] [Google Scholar]
  27. 27.
    Choy W-K, Zhou L, Syn CK-C, Zhang L-H, Swarup S. 2004.. MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species. . J. Bacteriol. 186:(21):722128
    [Crossref] [Google Scholar]
  28. 28.
    Christen B, Christen M, Paul R, Schmid F, Folcher M, et al. 2006.. Allosteric control of cyclic di-GMP signaling. . J. Biol. Chem. 281:(42):3201524
    [Crossref] [Google Scholar]
  29. 29.
    Christen M, Christen B, Folcher M, Schauerte A, Jenal U. 2005.. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. . J. Biol. Chem. 280:(35):3082937
    [Crossref] [Google Scholar]
  30. 30.
    Christensen DG, Marsden AE, Hodge-Hanson K, Essock-Burns T, Visick KL. 2020.. LapG mediates biofilm dispersal in Vibrio fischeri by controlling maintenance of the VCBS-containing adhesin LapV. . Mol. Microbiol. 114:(5):74261
    [Crossref] [Google Scholar]
  31. 31.
    Collins AJ, Smith TJ, Sondermann H, O'Toole GA. 2020.. From input to output: the Lap/c-di-GMP biofilm regulatory circuit. . Annu. Rev. Microbiol. 74::60731
    [Crossref] [Google Scholar]
  32. 32.
    Conner JG, Zamorano-Sánchez D, Park JH, Sondermann H, Yildiz FH. 2017.. The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. . Curr. Opin. Microbiol. 36::2029
    [Crossref] [Google Scholar]
  33. 33.
    Cooley RB, Smith TJ, Leung W, Tierney V, Borlee BR, et al. 2016.. Cyclic di-GMP-regulated periplasmic proteolysis of a Pseudomonas aeruginosa type Vb secretion system substrate. . J. Bacteriol. 198:(1):6676
    [Crossref] [Google Scholar]
  34. 34.
    Dahlstrom KM, Collins AJ, Doing G, Taroni JN, Gauvin TJ, et al. 2018.. A multimodal strategy used by a large c-di-GMP network. . J. Bacteriol. 200:(8):e00703
    [Crossref] [Google Scholar]
  35. 35.
    Dahlstrom KM, O'Toole GA. 2017.. A symphony of cyclases: specificity in diguanylate cyclase signaling. . Annu. Rev. Microbiol. 71::17995
    [Crossref] [Google Scholar]
  36. 36.
    Dalia TN, Yoon SH, Galli E, Barre F-X, Waters CM, Dalia AB. 2017.. Enhancing multiplex genome editing by natural transformation (MuGENT) via inactivation of ssDNA exonucleases. . Nucleic Acids Res. 45:(12):752737
    [Crossref] [Google Scholar]
  37. 37.
    Dow JM, Crossman L, Findlay K, He Y-Q, Feng J-X, Tang J-L. 2003.. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. . PNAS 100:(19):109951000
    [Crossref] [Google Scholar]
  38. 38.
    Downie JA. 2010.. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. . FEMS Microbiol. Rev. 34:(2):15070
    [Crossref] [Google Scholar]
  39. 39.
    Dreifus JE, O'Neal L, Jacobs HM, Subramanian AS, Howell PL, et al. 2022.. The Sia system and c-di-GMP play a crucial role in controlling cell-association of Psl in planktonic P. aeruginosa. . J. Bacteriol. 204:(12):e0033522
    [Crossref] [Google Scholar]
  40. 40.
    Dubey BN, Lori C, Ozaki S, Fucile G, Plaza-Menacho I, et al. 2016.. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking. . Sci. Adv. 2:(9):e1600823
    [Crossref] [Google Scholar]
  41. 41.
    Elgamoudi BA, Starr KS, Korolik V. 2022.. Extracellular c-di-GMP plays a role in biofilm formation and dispersion of Campylobacter jejuni. . Microorganisms 10:(10):2030
    [Crossref] [Google Scholar]
  42. 42.
    Ellison CK, Kan J, Dillard RS, Kysela DT, Ducret A, et al. 2017.. Obstruction of pilus retraction stimulates bacterial surface sensing. . Science 358:(6362):53538
    [Crossref] [Google Scholar]
  43. 43.
    Fang X, Gomelsky M. 2010.. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. . Mol. Microbiol. 76:(5):1295305
    [Crossref] [Google Scholar]
  44. 44.
    Feirer N, Xu J, Allen KD, Koestler BJ, Bruger EL, et al. 2015.. A pterin-dependent signaling pathway regulates a dual-function diguanylate cyclase-phosphodiesterase controlling surface attachment in Agrobacterium tumefaciens. . mBio 6:(4):e00156
    [Crossref] [Google Scholar]
  45. 45.
    Fernandez NL, Srivastava D, Ngouajio AL, Waters CM. 2018.. Cyclic di-GMP positively regulates DNA repair in Vibrio cholerae. . J. Bacteriol. 200:(15):e00005
    [Crossref] [Google Scholar]
  46. 46.
    Fernandez NL, Waters CM. 2019.. Cyclic di-GMP increases catalase production and hydrogen peroxide tolerance in Vibrio cholerae. . Appl. Environ. Microbiol. 85:(18):e01043
    [Crossref] [Google Scholar]
  47. 47.
    Flemming H-C, Wingender J. 2010.. The biofilm matrix. . Nat. Rev. Microbiol. 8:(9):62333
    [Crossref] [Google Scholar]
  48. 48.
    Frangipani E, Visaggio D, Heeb S, Kaever V, Cámara M, et al. 2014.. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. . Environ. Microbiol. 16:(3):67688
    [Crossref] [Google Scholar]
  49. 49.
    Gallagher KA, Schumacher MA, Bush MJ, Bibb MJ, Chandra G, et al. 2020. c-di-GMP arms an anti-σ to control progression of multicellular differentiation in Streptomyces. . Mol. Cell 77:(3):58699.e6
    [Crossref] [Google Scholar]
  50. 50.
    Galperin MY. 2004.. Bacterial signal transduction network in a genomic perspective. . Environ. Microbiol. 6:(6):55267
    [Crossref] [Google Scholar]
  51. 51.
    Galperin MY, Chou S-H. 2022.. Sequence conservation, domain architectures, and phylogenetic distribution of the HD-GYP type c-di-GMP phosphodiesterases. . J. Bacteriol. 204:(4):e0056121
    [Crossref] [Google Scholar]
  52. 52.
    Galperin MY, Natale DA, Aravind L, Koonin EV. 1999.. A specialized version of the HD hydrolase domain implicated in signal transduction. . J. Mol. Microbiol. Biotechnol. 1:(2):3035
    [Google Scholar]
  53. 53.
    Galperin MY, Nikolskaya AN, Koonin EV. 2001.. Novel domains of the prokaryotic two-component signal transduction systems. . FEMS Microbiol. Lett. 203:(1):1121
    [Crossref] [Google Scholar]
  54. 54.
    Gutierrez MD, Wong TY, Damron FH, Fernández J, Sisti F. 2022.. Cyclic di-GMP regulates the type III secretion system and virulence in Bordetella bronchiseptica. . Infect. Immun. 90:(6):e0010722
    [Crossref] [Google Scholar]
  55. 55.
    Hall CL, Lee VT. 2018.. Cyclic-di-GMP regulation of virulence in bacterial pathogens. . Wiley Interdiscip. Rev. RNA 9:(1):e1454
    [Crossref] [Google Scholar]
  56. 56.
    Hecht GB, Newton A. 1995.. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. . J. Bacteriol. 177:(21):622329
    [Crossref] [Google Scholar]
  57. 57.
    Hengge R. 2009.. Principles of c-di-GMP signalling in bacteria. . Nat. Rev. Microbiol. 7:(4):26373
    [Crossref] [Google Scholar]
  58. 58.
    Hengge R. 2021.. High-specificity local and global c-di-GMP signaling. . Trends Microbiol. 29:(11):9931003
    [Crossref] [Google Scholar]
  59. 59.
    Hengge R, Gründling A, Jenal U, Ryan R, Yildiz F. 2016.. Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. . J. Bacteriol. 198:(1):1526
    [Crossref] [Google Scholar]
  60. 60.
    Hobley L, Fung RKY, Lambert C, Harris MATS, Dabhi JM, et al. 2012.. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. . PLOS Pathog. 8:(2):e1002493
    [Crossref] [Google Scholar]
  61. 61.
    Homma M, Kojima S. 2022.. Roles of the second messenger c-di-GMP in bacteria: focusing on the topics of flagellar regulation and Vibrio spp. . Genes Cells 27:(3):15772
    [Crossref] [Google Scholar]
  62. 62.
    Hsiao A, Liu Z, Joelsson A, Zhu J. 2006.. Vibrio cholerae virulence regulator–coordinated evasion of host immunity. . PNAS 103:(39):1454247
    [Crossref] [Google Scholar]
  63. 63.
    Huang B, Whitchurch CB, Mattick JS. 2003.. FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. . J. Bacteriol. 185:(24):706876
    [Crossref] [Google Scholar]
  64. 64.
    Huang C-J, Wang Z-C, Huang H-Y, Huang H-D, Peng H-L. 2013.. YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. . PLOS ONE 8:(7):e66740
    [Crossref] [Google Scholar]
  65. 65.
    Hug I, Deshpande S, Sprecher KS, Pfohl T, Jenal U. 2017.. Second messenger–mediated tactile response by a bacterial rotary motor. . Science 358:(6362):53134
    [Crossref] [Google Scholar]
  66. 66.
    Isenberg RY, Christensen DG, Visick KL, Mandel MJ. 2022.. High levels of cyclic diguanylate interfere with beneficial bacterial colonization. . mBio 13:(4):e0167122
    [Crossref] [Google Scholar]
  67. 67.
    Isenberg RY, Holschbach CS, Gao J, Mandel MJ. 2024.. Functional analysis of cyclic diguanylate-modulating proteins in Vibrio fischeri. . mSystems 0:e0095624. https://doi.org/10.1128/msystems.00956-24
    [Google Scholar]
  68. 68.
    Jenal U, Reinders A, Lori C. 2017.. Cyclic di-GMP: second messenger extraordinaire. . Nat. Rev. Microbiol. 15:(5):27184
    [Crossref] [Google Scholar]
  69. 69.
    Jenson J, Chen ZJ. 2020.. Bacteria sting viral invaders. . Nature 586:(7829):36364
    [Crossref] [Google Scholar]
  70. 70.
    Jiang D, Zeng Q, Banerjee B, Lin H, Srok J, et al. 2022.. The phytopathogen Dickeya dadantii 3937 cpxR locus gene participates in the regulation of virulence and the global c-di-GMP network. . Mol. Plant Pathol. 23:(8):118799
    [Crossref] [Google Scholar]
  71. 71.
    Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D, et al. 2015.. c-di-GMP regulates motile to sessile transition by modulating MshA Pili biogenesis and near-surface motility behavior in Vibrio cholerae. . PLOS Pathog. 11:(10):e1005068
    [Crossref] [Google Scholar]
  72. 72.
    Jones HA, Lillard JW, Perry RD. 1999.. HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. . Microbiology 145:(8):211728
    [Crossref] [Google Scholar]
  73. 73.
    Joshi A, Mahmoud SA, Kim S-K, Ogdahl JL, Lee VT, et al. 2020.. c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae. . PLOS Genet. 16:(6):e1008897
    [Crossref] [Google Scholar]
  74. 74.
    Kaczmarczyk A, Hempel AM, von Arx C, Böhm R, Dubey BN, et al. 2020.. Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter. . Nat. Commun. 11::816
    [Crossref] [Google Scholar]
  75. 75.
    Kamruzzaman M, Udden SMN, Cameron DE, Calderwood SB, Nair GB, et al. 2010.. Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. . PNAS 107:(4):158893
    [Crossref] [Google Scholar]
  76. 76.
    Katharios-Lanwermeyer S, Whitfield GB, Howell PL, O'Toole GA. 2021.. Pseudomonas aeruginosa uses c-di-GMP phosphodiesterases RmcA and MorA to regulate biofilm maintenance. . mBio 12:(1):e03384
    [Crossref] [Google Scholar]
  77. 77.
    Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD. 2004.. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. . Mol. Microbiol. 54:(1):7588
    [Crossref] [Google Scholar]
  78. 78.
    Kong W, Luo W, Wang Y, Liu Y, Tian Q, et al. 2022.. Dual GGDEF/EAL-domain protein RmcA controls the type III secretion system of Pseudomonas aeruginosa by interaction with CbrB. . ACS Infect Dis. 8:(12):244150
    [Crossref] [Google Scholar]
  79. 79.
    Krol E, Schäper S, Becker A. 2020.. Cyclic di-GMP signaling controlling the free-living lifestyle of α-proteobacterial rhizobia. . Biol. Chem. 401:(12):133548
    [Crossref] [Google Scholar]
  80. 80.
    Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O'Toole GA. 2007.. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. . J. Bacteriol. 189:(22):816578
    [Crossref] [Google Scholar]
  81. 81.
    Kuchma SL, Griffin EF, O'Toole GA. 2012.. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. . J. Bacteriol. 194:(19):5388403
    [Crossref] [Google Scholar]
  82. 82.
    Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, et al. 2006.. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. . PNAS 103:(8):283944. Correction . 2006.. PNAS 103::6411
    [Google Scholar]
  83. 83.
    Kumagai Y, Matsuo J, Hayakawa Y, Rikihisa Y. 2010.. Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. . J. Bacteriol. 192:(16):412233
    [Crossref] [Google Scholar]
  84. 84.
    Li ML, Jiao J, Zhang B, Shi WT, Yu WH, Tian CF. 2021.. Global transcriptional repression of diguanylate cyclases by MucR1 is essential for Sinorhizobium–soybean symbiosis. . mBio 12:(5):e0119221
    [Crossref] [Google Scholar]
  85. 85.
    Li S, Sun H, Li J, Zhao Y, Wang R, et al. 2022.. Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone. . Nat. Commun. 13::6684
    [Crossref] [Google Scholar]
  86. 86.
    Li W, Cui T, Hu L, Wang Z, Li Z, He Z-G. 2015.. Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. . Nat. Commun. 6::8330
    [Crossref] [Google Scholar]
  87. 87.
    Li W, Hu L, Xie Z, Xu H, Li M, et al. 2018.. Cyclic di-GMP integrates functionally divergent transcription factors into a regulation pathway for antioxidant defense. . Nucleic Acids Res. 46:(14):727083
    [Crossref] [Google Scholar]
  88. 88.
    Liang Z, Rybtke M, Kragh KN, Johnson O, Schicketanz M, et al. 2022.. Transcription of the alginate operon in Pseudomonas aeruginosa is regulated by c-di-GMP. . Microbiol Spectr. 10:(4):e0067522
    [Crossref] [Google Scholar]
  89. 89.
    Liao J, Sauer K. 2012.. The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. . J. Bacteriol. 194:(18):482336
    [Crossref] [Google Scholar]
  90. 90.
    Liu C, Sun D, Liu J, Chen Y, Zhou X, et al. 2022.. cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors. . Nat. Commun. 13::1493
    [Crossref] [Google Scholar]
  91. 91.
    Liu X, Cao B, Yang L, Gu J-D. 2022.. Biofilm control by interfering with c-di-GMP metabolism and signaling. . Biotechnol. Adv. 56::107915
    [Crossref] [Google Scholar]
  92. 92.
    Lorite MJ, Casas-Román A, Girard L, Encarnación S, Díaz-Garrido N, et al. 2023.. Impact of c-di-GMP on the extracellular proteome of Rhizobium etli. . Biology 12:(1):44
    [Crossref] [Google Scholar]
  93. 93.
    Ludvik DA, Bultman KM, Mandel MJ. 2021.. Hybrid histidine kinase BinK represses Vibrio fischeri biofilm signaling at multiple developmental stages. . J. Bacteriol. 203:(15):e0015521
    [Crossref] [Google Scholar]
  94. 94.
    Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA, et al. 2015.. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. . mBio 6:(1):e02456
    [Crossref] [Google Scholar]
  95. 95.
    Mandel MJ, Schaefer AL, Brennan CA, Heath-Heckman EAC, Deloney-Marino CR, et al. 2012.. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. . Appl. Environ. Microbiol. 78:(13):462026
    [Crossref] [Google Scholar]
  96. 96.
    Martinez-Gil M, Ramos C. 2018.. Role of cyclic di-GMP in the bacterial virulence and evasion of the plant immunity. . Curr. Issues Mol. Biol. 25::199222
    [Crossref] [Google Scholar]
  97. 97.
    McCarthy RR, Yu M, Eilers K, Wang Y-C, Lai E-M, Filloux A. 2019.. Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens. . Mol. Microbiol. 112:(2):63248
    [Crossref] [Google Scholar]
  98. 98.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, et al. 2013.. Animals in a bacterial world, a new imperative for the life sciences. . PNAS 110:(9):322936
    [Crossref] [Google Scholar]
  99. 99.
    Méndez-Ortiz MM, Hyodo M, Hayakawa Y, Membrillo-Hernández J. 2006.. Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3′,5′-cyclic diguanylic acid. . J. Biol. Chem. 281:(12):809099
    [Crossref] [Google Scholar]
  100. 100.
    Merritt JH, Brothers KM, Kuchma SL, O'Toole GA. 2007.. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. . J. Bacteriol. 189:(22):815464
    [Crossref] [Google Scholar]
  101. 101.
    Merritt JH, Ha D-G, Cowles KN, Lu W, Morales DK, et al. 2010.. Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. . mBio 1:(4):e00183
    [Crossref] [Google Scholar]
  102. 102.
    Metzger LC, Stutzmann S, Scrignari T, van der Henst C, Matthey N, Blokesch M. 2016.. Independent regulation of type VI secretion in Vibrio cholerae by TfoX and TfoY. . Cell Rep. 15:(5):95158
    [Crossref] [Google Scholar]
  103. 103.
    Mhatre E, Snyder DJ, Sileo E, Turner CB, Buskirk SW, et al. 2020.. One gene, multiple ecological strategies: A biofilm regulator is a capacitor for sustainable diversity. . PNAS 117:(35):2164757
    [Crossref] [Google Scholar]
  104. 104.
    Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, et al. 2020.. STING cyclic dinucleotide sensing originated in bacteria. . Nature 586:(7829):42933
    [Crossref] [Google Scholar]
  105. 105.
    Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A. 2011.. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. . Environ. Microbiol. 13:(12):312838. Erratum . 2012.. Environ. Microbiol. 14::108889
    [Google Scholar]
  106. 106.
    Nakhamchik A, Wilde C, Rowe-Magnus DA. 2008.. Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus. . Appl. Environ. Microbiol. 74:(13):4199209
    [Crossref] [Google Scholar]
  107. 107.
    Nesper J, Hug I, Kato S, Hee C-S, Habazettl JM, et al. 2017.. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. . eLife 6::e28842
    [Crossref] [Google Scholar]
  108. 108.
    Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ. 2000.. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. . PNAS 97:(18):1023135
    [Crossref] [Google Scholar]
  109. 109.
    Obeng N, Czerwinski A, Schütz D, Michels J, Leipert J, et al. 2023.. Bacterial c-di-GMP has a key role in establishing host–microbe symbiosis. . Nat. Microbiol. 8:(10):180919
    [Crossref] [Google Scholar]
  110. 110.
    O'Shea TM, Klein AH, Geszvain K, Wolfe AJ, Visick KL. 2006.. Diguanylate cyclases control magnesium-dependent motility of Vibrio fischeri. . J. Bacteriol. 188:(23):8196205
    [Crossref] [Google Scholar]
  111. 111.
    Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. 2010.. The c-di-GMP Binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. . Mol. Cell 38:(1):12839
    [Crossref] [Google Scholar]
  112. 112.
    Pérez-Mendoza D, Aragón IM, Prada-Ramírez HA, Romero-Jiménez L, Ramos C, et al. 2014.. Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. . PLOS ONE 9:(3):e91645
    [Crossref] [Google Scholar]
  113. 113.
    Pérez-Mendoza D, Rodríguez-Carvajal , Romero-Jiménez L, Farias GD, Lloret J, et al. 2015.. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti. . PNAS 112:(7):E75765
    [Crossref] [Google Scholar]
  114. 114.
    Povolotsky TL, Hengge R. 2016.. Genome-based comparison of cyclic di-GMP signaling in pathogenic and commensal Escherichia coli strains. . J. Bacteriol. 198:(1):11126
    [Crossref] [Google Scholar]
  115. 115.
    Ribeiro VB, Mujahid S, Orsi RH, Bergholz TM, Wiedmann M, et al. 2014.. Contributions of σB and PrfA to Listeria monocytogenes salt stress under food relevant conditions. . Int. J. Food Microbiol. 177::98108
    [Crossref] [Google Scholar]
  116. 116.
    Robinson CD, Sweeney EG, Ngo J, Ma E, Perkins A, et al. 2021.. Host-emitted amino acid cues regulate bacterial chemokinesis to enhance colonization. . Cell Host Microbe 29:(8):122134.e8
    [Crossref] [Google Scholar]
  117. 117.
    Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW, et al. 2015.. Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. . PLOS Pathog. 11:(10):e1005232
    [Crossref] [Google Scholar]
  118. 118.
    Römling U. 2023.. Cyclic di-GMP signaling—where did you come from and where will you go?. Mol. Microbiol. 120:(4):56474
    [Crossref] [Google Scholar]
  119. 119.
    Römling U, Galperin MY, Gomelsky M. 2013.. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. . Microbiol. Mol. Biol. Rev. 77:(1):152
    [Crossref] [Google Scholar]
  120. 120.
    Römling U, Rohde M, Olsén A, Normark S, Reinköster J. 2000.. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. . Mol. Microbiol. 36:(1):1023
    [Crossref] [Google Scholar]
  121. 121.
    Ross P, Aloni Y, Weinhouse H, Michaeli D, Weinberger-Ohana P, et al. 1986.. Control of cellulose synthesis Acetobacter xylinum. A unique guanyl oligonucleotide is the immediate activator of the cellulose synthase. . Carbohydr. Res. 149:(1):10117
    [Crossref] [Google Scholar]
  122. 122.
    Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, et al. 1987.. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. . Nature 325:(6101):27981
    [Crossref] [Google Scholar]
  123. 123.
    Ruby EG, Asato LM. 1993.. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. . Arch. Microbiol. 159:(2):16067
    [Crossref] [Google Scholar]
  124. 124.
    Rudlaff RM, Waters CM. 2014.. What is the role of cyclic di-GMP signaling within the human gut microbiome?. Microbiome Sci. Med. 1:(1):3944
    [Crossref] [Google Scholar]
  125. 125.
    Ryan RP, Dow JM. 2010.. Intermolecular interactions between HD-GYP and GGDEF domain proteins mediate virulence-related signal transduction in Xanthomonas campestris. . Virulence 1:(5):4048
    [Crossref] [Google Scholar]
  126. 126.
    Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, et al. 2006.. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. . PNAS 103:(17):671217
    [Crossref] [Google Scholar]
  127. 127.
    Sangermani M, Hug I, Sauter N, Pfohl T, Jenal U. 2019.. Tad pili play a dynamic role in Caulobacter crescentus surface colonization. . mBio 10:(3):e01237
    [Crossref] [Google Scholar]
  128. 128.
    Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, et al. 2022.. The biofilm life cycle: expanding the conceptual model of biofilm formation. . Nat. Rev. Microbiol. 20:(10):60820
    [Crossref] [Google Scholar]
  129. 129.
    Schäper S, Krol E, Skotnicka D, Kaever V, Hilker R, et al. 2016.. Cyclic di-GMP regulates multiple cellular functions in the symbiotic alphaproteobacterium Sinorhizobium meliloti. . J. Bacteriol. 198:(3):52135
    [Crossref] [Google Scholar]
  130. 130.
    Schäper S, Steinchen W, Krol E, Altegoer F, Skotnicka D, et al. 2017.. AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. . PNAS 114:(24):E482231
    [Crossref] [Google Scholar]
  131. 131.
    Schäper S, Wendt H, Bamberger J, Sieber V, Schmid J, Becker A. 2019.. A bifunctional UDP-sugar 4-epimerase supports biosynthesis of multiple cell surface polysaccharides in Sinorhizobium meliloti. . J. Bacteriol. 201:(10):e00801
    [Crossref] [Google Scholar]
  132. 132.
    Schirmer T. 2016.. c-di-GMP synthesis: structural aspects of evolution, catalysis and regulation. . J. Mol. Biol. 428:(19):3683701
    [Crossref] [Google Scholar]
  133. 133.
    Schirmer T, Jenal U. 2009.. Structural and mechanistic determinants of c-di-GMP signalling. . Nat. Rev. Microbiol. 7:(10):72435
    [Crossref] [Google Scholar]
  134. 134.
    Schultz J, Copley RR, Doerks T, Ponting CP, Bork P. 2000.. SMART: a web-based tool for the study of genetically mobile domains. . Nucleic Acids Res. 28:(1):23134
    [Crossref] [Google Scholar]
  135. 135.
    Schumacher MA, Gallagher KA, Holmes NA, Chandra G, Henderson M, et al. 2021.. Evolution of a σ-(c-di-GMP)-anti-σ switch. . PNAS 118:(30):e2105447118
    [Crossref] [Google Scholar]
  136. 136.
    Seshasayee ASN, Fraser GM, Luscombe NM. 2010.. Comparative genomics of cyclic-di-GMP signalling in bacteria: post-translational regulation and catalytic activity. . Nucleic Acids Res. 38:(18):597081
    [Crossref] [Google Scholar]
  137. 137.
    Shrestha P, Razvi A, Fung BL, Eichinger SJ, Visick KL. 2022.. Mutational analysis of Vibrio fischeri c-di-GMP-modulating genes reveals complex regulation of motility. . J. Bacteriol. 204:(7):e0010922
    [Crossref] [Google Scholar]
  138. 138.
    Simm R, Morr M, Kader A, Nimtz M, Römling U. 2004.. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. . Mol. Microbiol. 53:(4):112334
    [Crossref] [Google Scholar]
  139. 139.
    Skorupska A, Janczarek M, Marczak M, Mazur A, Król J. 2006.. Rhizobial exopolysaccharides: genetic control and symbiotic functions. . Microb. Cell Fact. 5::7
    [Crossref] [Google Scholar]
  140. 140.
    Skotnicka D, Petters T, Heering J, Hoppert M, Kaever V, Søgaard-Andersen L. 2016.. Cyclic di-GMP regulates type IV pilus–dependent motility in Myxococcus xanthus. . J. Bacteriol. 198:(1):7790
    [Crossref] [Google Scholar]
  141. 141.
    Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM. 2000.. A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. . Mol. Microbiol. 38:(5):9861003
    [Crossref] [Google Scholar]
  142. 142.
    Srivastava D, Waters CM. 2012.. A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. . J. Bacteriol. 194:(17):448593
    [Crossref] [Google Scholar]
  143. 143.
    Steiner S, Lori C, Boehm A, Jenal U. 2013.. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. . EMBO J. 32:(3):35468
    [Crossref] [Google Scholar]
  144. 144.
    Sultan SZ, Pitzer JE, Boquoi T, Hobbs G, Miller MR, Motaleb MA. 2011.. Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. . Infect. Immun. 79:(8):327383
    [Crossref] [Google Scholar]
  145. 145.
    Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, et al. 1998.. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. . J. Bacteriol. 180:(17):441625
    [Crossref] [Google Scholar]
  146. 146.
    Tamayo R, Tischler AD, Camilli A. 2005.. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. . J. Biol. Chem. 280:(39):3332430
    [Crossref] [Google Scholar]
  147. 147.
    Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000.. The COG database: a tool for genome-scale analysis of protein functions and evolution. . Nucleic Acids Res. 28:(1):3336
    [Crossref] [Google Scholar]
  148. 148.
    Tischler AD, Camilli A. 2004.. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. . Mol. Microbiol. 53:(3):85769
    [Crossref] [Google Scholar]
  149. 149.
    Tischler AH, Lie L, Thompson CM, Visick KL. 2018.. Discovery of calcium as a biofilm-promoting signal for Vibrio fischeri reveals new phenotypes and underlying regulatory complexity. . J. Bacteriol. 200:(15):e00016
    [Crossref] [Google Scholar]
  150. 150.
    Townsley L, Yildiz FH. 2015.. Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae. . Environ. Microbiol. 17:(11):4290305
    [Crossref] [Google Scholar]
  151. 151.
    Trampari E, Stevenson CEM, Little RH, Wilhelm T, Lawson DM, Malone JG. 2015.. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. . J. Biol. Chem. 290:(40):2447083
    [Crossref] [Google Scholar]
  152. 152.
    Trimble MJ, McCarter LL. 2011.. Bis-(3′-5′)-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus. . PNAS 108:(44):1807984
    [Crossref] [Google Scholar]
  153. 153.
    Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. 2015.. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. . PNAS 112:(13):411015
    [Crossref] [Google Scholar]
  154. 154.
    Valentini M, Filloux A. 2019.. Multiple roles of c-di-GMP signaling in bacterial pathogenesis. . Annu. Rev. Microbiol. 73::387406
    [Crossref] [Google Scholar]
  155. 155.
    Viruega-Góngora VI, Acatitla-Jácome IS, Zamorano-Sánchez D, Reyes-Carmona SR, Xiqui-Vázquez ML, et al. 2022.. The GGDEF-EAL protein CdgB from Azospirillum baldaniorum Sp245, is a dual function enzyme with potential polar localization. . PLOS ONE 17:(11):e0278036
    [Crossref] [Google Scholar]
  156. 156.
    Visick KL, Stabb EV, Ruby EG. 2021.. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. . Nat. Rev. Microbiol. 19::65465
    [Crossref] [Google Scholar]
  157. 157.
    Wang Z, Song L, Liu X, Shen X, Li X. 2023.. Bacterial second messenger c-di-GMP: emerging functions in stress resistance. . Microbiol. Res. 268::127302
    [Crossref] [Google Scholar]
  158. 158.
    Wassmann P, Chan C, Paul R, Beck A, Heerklotz H, et al. 2007.. Structure of BeF3-modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. . Structure 15:(8):91527
    [Crossref] [Google Scholar]
  159. 159.
    Waters CM. 2018.. Shining the light on cyclic di-GMP dark matter. . J. Bacteriol. 200:(8):e00030
    [Crossref] [Google Scholar]
  160. 160.
    Watnick PI, Fullner KJ, Kolter R. 1999.. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. . J. Bacteriol. 181:(11):36069
    [Crossref] [Google Scholar]
  161. 161.
    Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. 2006.. Cyclic-di-GMP-mediated signalling within the σS network of Escherichia coli. . Mol. Microbiol. 62:(4):101434
    [Crossref] [Google Scholar]
  162. 162.
    Webster SS, Lee CK, Schmidt WC, Wong GCL, O'Toole GA. 2021.. Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation. . PNAS 118:(26):e2105566118
    [Crossref] [Google Scholar]
  163. 163.
    Wolfe AJ, Visick KL, eds. 2010.. The Second Messenger Cyclic di-GMP. Washington, DC:: Am. Soc. Microbiol.
    [Google Scholar]
  164. 164.
    Wolfe AJ, Visick KL. 2010.. Roles of diguanylate cyclases and phosphodiesterases in motility and biofilm formation in Vibrio fischeri. . See Ref. 163 , pp. 186200
  165. 165.
    Wu DC, Zamorano-Sánchez D, Pagliai FA, Park JH, Floyd KA, et al. 2020.. Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. . PLOS Genet. 16:(3):e1008703
    [Crossref] [Google Scholar]
  166. 166.
    Xu Z, Zhang H, Zhang X, Jiang H, Liu C, et al. 2019.. Interplay between the bacterial protein deacetylase CobB and the second messenger c-di-GMP. . EMBO J. 38:(18):e100948
    [Crossref] [Google Scholar]
  167. 167.
    Yan J, Deforet M, Boyle KE, Rahman R, Liang R, et al. 2017.. Bow-tie signaling in c-di-GMP: machine learning in a simple biochemical network. . PLOS Comput. Biol. 13:(8):e1005677
    [Crossref] [Google Scholar]
  168. 168.
    Yang F, Xue D, Tian F, Hutchins W, Yang C-H, He C. 2019.. Identification of c-di-GMP signaling components in Xanthomonas oryzae and their orthologs in xanthomonads involved in regulation of bacterial virulence expression. . Front. Microbiol. 10::1402
    [Crossref] [Google Scholar]
  169. 169.
    Yi X, Yamazaki A, Biddle E, Zeng Q, Yang C-H. 2010.. Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. . Mol. Microbiol. 77:(3):787800
    [Crossref] [Google Scholar]
  170. 170.
    Yildiz FH, Schoolnik GK. 1999.. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. . PNAS 96:(7):402833
    [Crossref] [Google Scholar]
  171. 171.
    Yildiz FH, Visick KL. 2009.. Vibrio biofilms: so much the same yet so different. . Trends Microbiol. 17:(3):10918
    [Crossref] [Google Scholar]
  172. 172.
    Yin W, Wang Y, Liu L, He J. 2019.. Biofilms: the microbial “protective clothing” in extreme environments. . Int. J. Mol. Sci. 20:(14):3423
    [Crossref] [Google Scholar]
  173. 173.
    Yip ES, Geszvain K, DeLoney-Marino CR, Visick KL. 2006.. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. . Mol. Microbiol. 62:(6):1586600
    [Crossref] [Google Scholar]
  174. 174.
    Yip ES, Grublesky BT, Hussa EA, Visick KL. 2005.. A novel, conserved cluster of genes promotes symbiotic colonization and σ54-dependent biofilm formation by Vibrio fischeri: Syp, a novel symbiosis locus in Vibrio fischeri. . Mol. Microbiol. 57:(5):148598
    [Crossref] [Google Scholar]
  175. 175.
    Zamorano-Sánchez D, Xian W, Lee CK, Salinas M, Thongsomboon W, et al. 2019.. Functional specialization in Vibrio cholerae diguanylate cyclases: distinct modes of motility suppression and c-di-GMP production. . mBio 10:(2):e00670
    [Crossref] [Google Scholar]
  176. 176.
    Zeng X, Huang M, Sun Q-X, Peng Y-J, Xu X, et al. 2023.. A c-di-GMP binding effector controls cell size in a cyanobacterium. . PNAS 120:(13):e2221874120
    [Crossref] [Google Scholar]
  177. 177.
    Zhang Y, Qiu Y, Gao H, Sun J, Li X, et al. 2021.. OpaR controls the metabolism of c-di-GMP in Vibrio parahaemolyticus. . Front. Microbiol. 12::676436
    [Crossref] [Google Scholar]
  178. 178.
    Zhu J, Mekalanos JJ. 2003.. Quorum sensing–dependent biofilms enhance colonization in Vibrio cholerae. . Dev. Cell 5:(4):64756
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041522-101729
Loading
/content/journals/10.1146/annurev-micro-041522-101729
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error