1932

Abstract

Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041522-102707
2024-11-20
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041522-102707.html?itemId=/content/journals/10.1146/annurev-micro-041522-102707&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ailloud F, Didelot X, Woltemate S, Pfaffinger G, Overmann J, et al. 2019.. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. . Nat. Commun. 10:(1):2273
    [Crossref] [Google Scholar]
  2. 2.
    Akatsu S, Noguchi H. 1917.. The drug-fastness of spirochetes to arsenic, mercurial, and iodide compounds in vitro. . J. Exp. Med. 25:(3):34962
    [Crossref] [Google Scholar]
  3. 3.
    Alderliesten JB, Duxbury SJN, Zwart MP, de Visser JAGM, Stegeman A, Fischer EAJ. 2020.. Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis. . BMC Microbiol. 20:(1):135
    [Crossref] [Google Scholar]
  4. 4.
    Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, et al. 2020.. Antibiotic resistance: turning evolutionary principles into clinical reality. . FEMS Microbiol. Rev. 44:(2):17188
    [Crossref] [Google Scholar]
  5. 5.
    Andersson DI, Hughes D. 2009.. Gene amplification and adaptive evolution in bacteria. . Annu. Rev. Genet. 43::16795
    [Crossref] [Google Scholar]
  6. 6.
    Angst DC, Tepekule B, Sun L, Bogos B, Bonhoeffer S. 2021.. Comparing treatment strategies to reduce antibiotic resistance in an in vitro epidemiological setting. . PNAS 118:(13):e2023467118
    [Crossref] [Google Scholar]
  7. 7.
    Barrett RDH, Schluter D. 2008.. Adaptation from standing genetic variation. . Trends Ecol. Evol. 23:(1):3844
    [Crossref] [Google Scholar]
  8. 8.
    Bearson BL, Brunelle BW. 2015.. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella. . Int. J. Antimicrob. Agents 46:(2):2014
    [Crossref] [Google Scholar]
  9. 9.
    Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW, et al. 2016.. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. . mBio 7:(2):e00347-16
    [Crossref] [Google Scholar]
  10. 10.
    Björkman J, Nagaev I, Berg OG, Hughes D, Andersson DI. 2000.. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. . Science 287:(5457):147982
    [Crossref] [Google Scholar]
  11. 11.
    Blango MG, Mulvey MA. 2010.. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. . Antimicrob. Agents Chemother. 54:(5):185563
    [Crossref] [Google Scholar]
  12. 12.
    Blanquart F. 2019.. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. . Evol. Appl. 12:(3):36583
    [Crossref] [Google Scholar]
  13. 13.
    Blanquart F, Lehtinen S, Lipsitch M, Fraser C. 2018.. The evolution of antibiotic resistance in a structured host population. . J. R. Soc. Interface 15:(143):20180040
    [Crossref] [Google Scholar]
  14. 14.
    Blokesch M. 2016.. Natural competence for transformation. . Curr. Biol. 26:(21):R112630
    [Crossref] [Google Scholar]
  15. 15.
    Bottery MJ. 2022.. Ecological dynamics of plasmid transfer and persistence in microbial communities. . Curr. Opin. Microbiol. 68::102152
    [Crossref] [Google Scholar]
  16. 16.
    Bottery MJ, Matthews JL, Wood AJ, Johansen HK, Pitchford JW, Friman V-P. 2022.. Inter-species interactions alter antibiotic efficacy in bacterial communities. . ISME J. 16:(3):81221
    [Crossref] [Google Scholar]
  17. 17.
    Bottery MJ, Pitchford JW, Friman V-P. 2021.. Ecology and evolution of antimicrobial resistance in bacterial communities. . ISME J. 15:(4):93948
    [Crossref] [Google Scholar]
  18. 18.
    Brauner A, Fridman O, Gefen O, Balaban NQ. 2016.. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. . Nat. Rev. Microbiol. 14:(5):32030
    [Crossref] [Google Scholar]
  19. 19.
    Bridier-Nahmias A, Launay A, Bleibtreu A, Magnan M, Walewski V, et al. 2021.. Escherichia coli genomic diversity within extraintestinal acute infections argues for adaptive evolution at play. . mSphere 6(1):e01176-20
    [Google Scholar]
  20. 20.
    Calland JK, Haukka K, Kpordze SW, Brusah A, Corbella M, et al. 2023.. Population structure and antimicrobial resistance among Klebsiella isolates sampled from human, animal, and environmental sources in Ghana: a cross-sectional genomic One Health study. . Lancet Microbe 4:(11):e94352
    [Crossref] [Google Scholar]
  21. 21.
    Cao Q, Didelot X, Wu Z, Li Z, He L, et al. 2015.. Progressive genomic convergence of two Helicobacter pylori strains during mixed infection of a patient with chronic gastritis. . Gut 64:(4):55461
    [Crossref] [Google Scholar]
  22. 22.
    Card KJ, Thomas MD, Graves JL, Barrick JE, Lenski RE. 2021.. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. . PNAS 118:(5):e2016886118
    [Crossref] [Google Scholar]
  23. 23.
    Cent. Dis. Control Prev. 2019.. Antibiotic resistance threats in the United States, 2019. Atlanta, GA:: U.S. Dept. Health Hum. Serv. https://www.cdc.gov/antimicrobial-resistance/media/pdfs/2019-ar-threats-report-508.pdf
    [Google Scholar]
  24. 24.
    Chambers HF, DeLeo FR. 2009.. Waves of resistance: Staphylococcus aureus in the antibiotic era. . Nat. Rev. Microbiol. 7:(9):62941
    [Crossref] [Google Scholar]
  25. 25.
    Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, et al. 2018.. Genome hypermobility by lateral transduction. . Science 362:(6411):20712
    [Crossref] [Google Scholar]
  26. 26.
    Chung H, Merakou C, Schaefers MM, Flett KB, Martini S, et al. 2022.. Rapid expansion and extinction of antibiotic resistance mutations during treatment of acute bacterial respiratory infections. . Nat. Commun. 13:(1):1231
    [Crossref] [Google Scholar]
  27. 27.
    Connor CH, Zucoloto AZ, Munnoch JT, Yu I-L, Corander J, et al. 2023.. Multidrug-resistant E. coli encoding high genetic diversity in carbohydrate metabolism genes displace commensal E. coli from the intestinal tract. . PLOS Biol. 21:(10):e3002329
    [Crossref] [Google Scholar]
  28. 28.
    Culyba MJ, Tyne DV. 2021.. Bacterial evolution during human infection: adapt and live or adapt and die. . PLOS Pathog. 17:(9):e1009872
    [Crossref] [Google Scholar]
  29. 29.
    Cuthbertson L, Rogers GB, Walker AW, Oliver A, Green LE, et al. 2016.. Respiratory microbiota resistance and resilience to pulmonary exacerbation and subsequent antimicrobial intervention. . ISME J. 10:(5):108191
    [Crossref] [Google Scholar]
  30. 30.
    Datta MS, Yelin I, Hochwald O, Kassis I, Borenstein-Levin L, et al. 2021.. Rapid methicillin resistance diversification in Staphylococcus epidermidis colonizing human neonates. . Nat. Commun. 12:(1):6062
    [Crossref] [Google Scholar]
  31. 31.
    David S, Reuter S, Harris SR, Glasner C, Feltwell T, et al. 2019.. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. . Nat. Microbiol. 4:(11):191929
    [Crossref] [Google Scholar]
  32. 32.
    Davies J, Davies D. 2010.. Origins and evolution of antibiotic resistance. . Microbiol. Mol. Biol. Rev. 74:(3):41733
    [Crossref] [Google Scholar]
  33. 33.
    De Lastours V, Maugy E, Mathy V, Chau F, Rossi B, et al. 2017.. Ecological impact of ciprofloxacin on commensal enterococci in healthy volunteers. . J. Antimicrob. Chemother. 72:(6):157480
    [Crossref] [Google Scholar]
  34. 34.
    DelaFuente J, Toribio-Celestino L, Santos-Lopez A, León-Sampedro R, Alonso-del Valle A, et al. 2022.. Within-patient evolution of plasmid-mediated antimicrobial resistance. . Nat. Ecol. Evol. 6:(12):198091
    [Crossref] [Google Scholar]
  35. 35.
    Denamur E, Bonacorsi S, Giraud A, Duriez P, Hilali F, et al. 2002.. High frequency of mutator strains among human uropathogenic Escherichia coli isolates. . J. Bacteriol. 184:(2):6059
    [Crossref] [Google Scholar]
  36. 36.
    DePas WH, Starwalt-Lee R, Van Sambeek L, Ravindra Kumar S, Gradinaru V, Newman DK. 2016.. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling. . mBio 7:(5):e00796-16
    [Crossref] [Google Scholar]
  37. 37.
    Diaz Caballero J, Wheatley RM, Kapel N, López-Causapé C, van der Schalk T, et al. 2023.. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. . Nat. Commun. 14::4083
    [Crossref] [Google Scholar]
  38. 38.
    Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. 2016.. Within-host evolution of bacterial pathogens. . Nat. Rev. Microbiol. 14:(3):15062
    [Crossref] [Google Scholar]
  39. 39.
    Diep BA, Stone GG, Basuino L, Graber CJ, Miller A, et al. 2008.. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. . J. Infect. Dis. 197:(11):152330
    [Crossref] [Google Scholar]
  40. 40.
    Dodson TA, Carlson EA, Wamer NC, Morse CN, Gadient JN, Prestwich EG. 2022.. Characterization of distinct biofilm cell subpopulations and implications in quorum sensing and antibiotic resistance. . mBio 13:(3):e00191-22
    [Crossref] [Google Scholar]
  41. 41.
    Domingues S, Harms K, Fricke WF, Johnsen PJ, da Silva GJ, Nielsen KM. 2012.. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. . PLOS Pathog. 8:(8):e1002837
    [Crossref] [Google Scholar]
  42. 42.
    Drlica K, Zhao X. 2007.. Mutant selection window hypothesis updated. . Clin. Infect. Dis. 44:(5):68188
    [Crossref] [Google Scholar]
  43. 43.
    Dunn S, Carrilero L, Brockhurst M, McNally A. 2021.. Limited and strain-specific transcriptional and growth responses to acquisition of a multidrug resistance plasmid in genetically diverse Escherichia coli lineages. . mSystems 6::e00083-21
    [Crossref] [Google Scholar]
  44. 44.
    Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, et al. 2014.. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. . Genome Biol. 15:(11):490
    [Crossref] [Google Scholar]
  45. 45.
    Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit M-A. 2017.. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. . ISME J. 11:(1):23747
    [Crossref] [Google Scholar]
  46. 46.
    Enne VI, Livermore DM, Stephens P, Hall LM. 2001.. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. . Lancet 357:(9265):132528
    [Crossref] [Google Scholar]
  47. 47.
    Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI, et al. 2020.. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. . eLife 9::e53886
    [Crossref] [Google Scholar]
  48. 48.
    Fancello L, Desnues C, Raoult D, Rolain JM. 2011.. Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. . J. Antimicrob. Chemother. 66:(11):244854
    [Crossref] [Google Scholar]
  49. 49.
    Filkins LM, O'Toole GA. 2015.. Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. . PLOS Pathog. 11:(12):e1005258
    [Crossref] [Google Scholar]
  50. 50.
    Fisher RA, Gollan B, Helaine S. 2017.. Persistent bacterial infections and persister cells. . Nat. Rev. Microbiol. 15:(8):45364
    [Crossref] [Google Scholar]
  51. 51.
    Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, et al. 2012.. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. . PLOS ONE 7:(9):e45001
    [Crossref] [Google Scholar]
  52. 52.
    Forde BM, Roberts LW, Phan M-D, Peters KM, Fleming BA, et al. 2019.. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. . Nat. Commun. 10::3643
    [Crossref] [Google Scholar]
  53. 53.
    Fuzi M, Rodriguez Baño J, Toth A. 2020.. Global evolution of pathogenic bacteria with extensive use of fluoroquinolone agents. . Front. Microbiol. 11::504697
    [Crossref] [Google Scholar]
  54. 54.
    Gifford DR, Berríos-Caro E, Joerres C, Suñé M, Forsyth JH, et al. 2023.. Mutators can drive the evolution of multi-resistance to antibiotics. . PLOS Genet. 19:(6):e1010791
    [Crossref] [Google Scholar]
  55. 55.
    Gillings MR. 2014.. Integrons: past, present, and future. . Microbiol. Mol. Biol. Rev. 78:(2):25777
    [Crossref] [Google Scholar]
  56. 56.
    Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu Y-G. 2015.. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. . ISME J. 9:(6):126979
    [Crossref] [Google Scholar]
  57. 57.
    Goig GA, Menardo F, Salaam-Dreyer Z, Dippenaar A, Streicher EM, et al. 2023.. Effect of compensatory evolution in the emergence and transmission of rifampicin-resistant Mycobacterium tuberculosis in Cape Town, South Africa: a genomic epidemiology study. . Lancet Microbe 4:(7):e50615
    [Crossref] [Google Scholar]
  58. 58.
    Gumpert H, Kubicek-Sutherland JZ, Porse A, Karami N, Munck C, et al. 2017.. Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment. . Front. Microbiol. 8::1852
    [Crossref] [Google Scholar]
  59. 59.
    Habets MGJL, Brockhurst MA. 2012.. Therapeutic antimicrobial peptides may compromise natural immunity. . Biol. Lett. 8:(3):41618
    [Crossref] [Google Scholar]
  60. 60.
    Hall JPJ, Wood AJ, Harrison E, Brockhurst MA. 2016.. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. . PNAS 113:(29):826065
    [Crossref] [Google Scholar]
  61. 61.
    Hernando-Amado S, Coque TM, Baquero F, Martínez JL. 2019.. Defining and combating antibiotic resistance from One Health and Global Health perspectives. . Nat. Microbiol. 4:(9):143242
    [Crossref] [Google Scholar]
  62. 62.
    Herren CM, Baym M. 2022.. Decreased thermal niche breadth as a trade-off of antibiotic resistance. . ISME J. 16:(7):184352
    [Crossref] [Google Scholar]
  63. 63.
    Hocquet D, Llanes C, Thouverez M, Kulasekara HD, Bertrand X, et al. 2012.. Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. . PLOS Pathog. 8:(6):e1002778
    [Crossref] [Google Scholar]
  64. 64.
    Hol FJH, Hubert B, Dekker C, Keymer JE. 2016.. Density-dependent adaptive resistance allows swimming bacteria to colonize an antibiotic gradient. . ISME J. 10:(1):3038
    [Crossref] [Google Scholar]
  65. 65.
    Hu Y, Yang X, Qin J, Lu N, Cheng G, et al. 2013.. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. . Nat. Commun. 4:(1):2151
    [Crossref] [Google Scholar]
  66. 66.
    Hubbard ATM, Jafari NV, Feasey N, Rohn JL, Roberts AP. 2019.. Effect of environment on the evolutionary trajectories and growth characteristics of antibiotic-resistant Escherichia coli mutants. . Front. Microbiol. 10::2001
    [Crossref] [Google Scholar]
  67. 67.
    Hughes D, Andersson DI. 2017.. Evolutionary trajectories to antibiotic resistance. . Annu. Rev. Microbiol. 71::57996
    [Crossref] [Google Scholar]
  68. 68.
    Huo W, Busch LM, Hernandez-Bird J, Hamami E, Marshall CW, et al. 2022.. Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. . Nat. Microbiol. 7:(6):796809
    [Crossref] [Google Scholar]
  69. 69.
    Imamovic L, Sommer MOA. 2013.. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. . Sci. Transl. Med. 5:(204):204ra132
    [Crossref] [Google Scholar]
  70. 70.
    Jangir PK, Ogunlana L, Szili P, Czikkely M, Shaw LP, et al. 2023.. The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. . eLife 12::e84395
    [Crossref] [Google Scholar]
  71. 71.
    Jensen LK, Bjarnsholt T, Kragh KN, Aalbæk B, Henriksen NL, et al. 2019.. In vivo gentamicin susceptibility test for prevention of bacterial biofilms in bone tissue and on implants. . Antimicrob. Agents Chemother. 63:(2):e01889-18
    [Crossref] [Google Scholar]
  72. 72.
    Jiao YJ, Baym M, Veres A, Kishony R. 2016.. Population diversity jeopardizes the efficacy of antibiotic cycling. . bioRxiv 082107. https://doi.org/10.1101/082107
  73. 73.
    Johnsborg O, Eldholm V, Håvarstein LS. 2007.. Natural genetic transformation: prevalence, mechanisms and function. . Res. Microbiol. 158:(10):76778
    [Crossref] [Google Scholar]
  74. 74.
    Jorth P, Staudinger BJ, Wu X, Hisert K, Hayden H, et al. 2015.. Regional isolation drives bacterial diversification within cystic fibrosis lungs. . Cell Host Microbe 18:(3):30719
    [Crossref] [Google Scholar]
  75. 75.
    Karami N, Martner A, Enne VI, Swerkersson S, Adlerberth I, Wold AE. 2007.. Transfer of an ampicillin resistance gene between two Escherichia coli strains in the bowel microbiota of an infant treated with antibiotics. . J. Antimicrob. Chemother. 60:(5):114245
    [Crossref] [Google Scholar]
  76. 76.
    Karslake J, Maltas J, Brumm P, Wood KB. 2016.. Population density modulates drug inhibition and gives rise to potential bistability of treatment outcomes for bacterial infections. . PLOS Comput. Biol. 12:(10):e1005098
    [Crossref] [Google Scholar]
  77. 77.
    Kendall EA, Fofana MO, Dowdy DW. 2015.. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. . Lancet Respir. Med. 3:(12):96372
    [Crossref] [Google Scholar]
  78. 78.
    Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL. 2020.. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. . Nat. Commun. 11:(1):4379
    [Crossref] [Google Scholar]
  79. 79.
    Kim S, Lieberman TD, Kishony R. 2014.. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. . PNAS 111:(40):1449499
    [Crossref] [Google Scholar]
  80. 80.
    Klümper U, Recker M, Zhang L, Yin X, Zhang T, et al. 2019.. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. . ISME J. 13:(12):292737
    [Crossref] [Google Scholar]
  81. 81.
    Laborda P, Martínez JL, Hernando-Amado S. 2022.. Evolution of habitat-dependent antibiotic resistance in Pseudomonas aeruginosa. . Microbiol. Spectr. 10:(4):e00247-22
    [Crossref] [Google Scholar]
  82. 82.
    Lázár V, Pal Singh G, Spohn R, Nagy I, Horváth B, et al. 2013.. Bacterial evolution of antibiotic hypersensitivity. . Mol. Syst. Biol. 9:(1):700
    [Crossref] [Google Scholar]
  83. 83.
    Le Thomas I, Couetdic G, Clermont O, Brahimi N, Plésiat P, Bingen E. 2001.. In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy. . J. Antimicrob. Chemother. 48:(4):55355
    [Crossref] [Google Scholar]
  84. 84.
    Lehtinen S, Blanquart F, Croucher NJ, Turner P, Lipsitch M, Fraser C. 2017.. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. . PNAS 114:(5):107580
    [Crossref] [Google Scholar]
  85. 85.
    León-Sampedro R, DelaFuente J, Díaz-Agero C, Crellen T, Musicha P, et al. 2021.. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. . Nat. Microbiol. 6:(5):60616
    [Crossref] [Google Scholar]
  86. 86.
    Levert M, Zamfir O, Clermont O, Bouvet O, Lespinats S, et al. 2010.. Molecular and evolutionary bases of within-patient genotypic and phenotypic diversity in Escherichia coli extraintestinal infections. . PLOS Pathog. 6:(9):e1001125
    [Crossref] [Google Scholar]
  87. 87.
    Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, et al. 2014.. Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. . Nat. Genet. 46:(1):8287
    [Crossref] [Google Scholar]
  88. 88.
    Lieberman TD, Wilson D, Misra R, Xiong LL, Moodley P, et al. 2016.. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. . Nat. Med. 22:(12):147074
    [Crossref] [Google Scholar]
  89. 89.
    Lipsitch M, Moxon E. 1997.. Virulence and transmissibility of pathogens: What is the relationship?. Trends Microbiol. 5:(1):3137
    [Crossref] [Google Scholar]
  90. 90.
    Lipsitch M, Samore MH. 2002.. Antimicrobial use and antimicrobial resistance: a population perspective. . Emerg. Infect. Dis. 8:(4):34754
    [Crossref] [Google Scholar]
  91. 91.
    Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, et al. 2016.. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. . Lancet Infect. Dis. 16:(2):16168
    [Crossref] [Google Scholar]
  92. 92.
    Long H, Miller SF, Strauss C, Zhao C, Cheng L, et al. 2016.. Antibiotic treatment enhances the genome-wide mutation rate of target cells. . PNAS 113:(18):E2498505
    [Crossref] [Google Scholar]
  93. 93.
    Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. 2017.. Persistence and reversal of plasmid-mediated antibiotic resistance. . Nat. Commun. 8:(1):1689
    [Crossref] [Google Scholar]
  94. 94.
    Luangtongkum T, Shen Z, Seng VW, Sahin O, Jeon B, et al. 2012.. Impaired fitness and transmission of macrolide-resistant Campylobacter jejuni in its natural host. . Antimicrob. Agents Chemother. 56:(3):13008
    [Crossref] [Google Scholar]
  95. 95.
    Ludden C, Raven KE, Jamrozy D, Gouliouris T, Blane B, et al. 2019.. One Health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. . mBio 10::e02693-18
    [Crossref] [Google Scholar]
  96. 96.
    Lukačišinová M, Fernando B, Bollenbach T. 2020.. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. . Nat. Commun. 11:(1):3105
    [Crossref] [Google Scholar]
  97. 97.
    Markussen T, Marvig RL, Gómez-Lozano M, Aanæs K, Burleigh AE, et al. 2014.. Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa. . mBio 5:(5):e01592-14
    [Crossref] [Google Scholar]
  98. 98.
    Martinez JL, Baquero F. 2000.. Mutation frequencies and antibiotic resistance. . Antimicrob. Agents Chemother. 44:(7):177177
    [Crossref] [Google Scholar]
  99. 99.
    Mathers AJ, Peirano G, Pitout JDD. 2015.. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. . Clin. Microbiol. Rev. 28:(3):56591
    [Crossref] [Google Scholar]
  100. 100.
    McCarthy AJ, Loeffler A, Witney AA, Gould KA, Lloyd DH, Lindsay JA. 2014.. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. . Genome Biol. Evol. 6:(10):2697708
    [Crossref] [Google Scholar]
  101. 101.
    Melnyk AH, Wong A, Kassen R. 2015.. The fitness costs of antibiotic resistance mutations. . Evol. Appl. 8:(3):27383
    [Crossref] [Google Scholar]
  102. 102.
    Modi SR, Lee HH, Spina CS, Collins JJ. 2013.. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. . Nature 499:(7457):21922
    [Crossref] [Google Scholar]
  103. 103.
    Moradigaravand D, Gouliouris T, Blane B, Naydenova P, Ludden C, et al. 2017.. Within-host evolution of Enterococcus faecium during longitudinal carriage and transition to bloodstream infection in immunocompromised patients. . Genome Med. 9:(1):119
    [Crossref] [Google Scholar]
  104. 104.
    Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, et al. 2022.. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. . Lancet 399:(10325):62955
    [Crossref] [Google Scholar]
  105. 105.
    Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, et al. 2007.. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. . PNAS 104:(22):945156
    [Crossref] [Google Scholar]
  106. 106.
    Nazarian P, Tran F, Boedicker JQ. 2018.. Modeling multispecies gene flow dynamics reveals the unique roles of different horizontal gene transfer mechanisms. . Front. Microbiol. 9::416876
    [Crossref] [Google Scholar]
  107. 107.
    Neil K, Allard N, Grenier F, Burrus V, Rodrigue S. 2020.. Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl2 conjugative plasmid TP114. . Commun. Biol. 3:(1):523
    [Crossref] [Google Scholar]
  108. 108.
    Nicolas-Chanoine M-H, Bertrand X, Madec J-Y. 2014.. Escherichia coli ST131, an intriguing clonal group. . Clin. Microbiol. Rev. 27:(3):54374
    [Crossref] [Google Scholar]
  109. 109.
    Nicoloff H, Hjort K, Levin BR, Andersson DI. 2019.. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. . Nat. Microbiol. 4:(3):50414
    [Crossref] [Google Scholar]
  110. 110.
    O'Brien S, Baumgartner M, Hall AR. 2021.. Species interactions drive the spread of ampicillin resistance in human-associated gut microbiota. . Evol. Med. Public Health 9:(1):25666
    [Crossref] [Google Scholar]
  111. 111.
    Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. 2000.. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. . Science 288:(5469):125153
    [Crossref] [Google Scholar]
  112. 112.
    Oliver A, Mulet X, López-Causapé C, Juan C. 2015.. The increasing threat of Pseudomonas aeruginosa high-risk clones. . Drug Resist. Updates 21::4159
    [Crossref] [Google Scholar]
  113. 113.
    Partridge SR, Kwong SM, Firth N, Jensen SO. 2018.. Mobile genetic elements associated with antimicrobial resistance. . Clin. Microbiol. Rev. 31:(4):e00088-17
    [Crossref] [Google Scholar]
  114. 114.
    Pathak A, Angst DC, León-Sampedro R, Hall AR. 2023.. Antibiotic-degrading resistance changes bacterial community structure via species-specific responses. . ISME J. 17:(9):1495503
    [Crossref] [Google Scholar]
  115. 115.
    Peter S, Bosio M, Gross C, Bezdan D, Gutierrez J, et al. 2020.. Tracking of antibiotic resistance transfer and rapid plasmid evolution in a hospital setting by nanopore sequencing. . mSphere 5::e00525-20
    [Crossref] [Google Scholar]
  116. 116.
    Pfeifer E, Bonnin RA, Rocha EPC. 2022.. Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion. . mBio 13:(5):e01851-22
    [Crossref] [Google Scholar]
  117. 117.
    Pitout JDD, Peirano G, Chen L, DeVinney R, Matsumura Y. 2022.. Escherichia coli ST1193: following in the footsteps of E. coli ST131. . Antimicrob. Agents Chemother. 66:(7):e00511-22
    [Crossref] [Google Scholar]
  118. 118.
    Planet PJ. 2017.. Life after USA300: the rise and fall of a superbug. . J. Infect. Dis. 215:(Suppl. 1):S7177
    [Crossref] [Google Scholar]
  119. 119.
    Prasad NK, Seiple IB, Cirz RT, Rosenberg OS. 2022.. Leaks in the pipeline: a failure analysis of Gram-negative antibiotic development from 2010 to 2020. . Antimicrob. Agents Chemother. 66:(5):e00054-22
    [Crossref] [Google Scholar]
  120. 120.
    Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys J-P. 2006.. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. . Science 313:(5783):8992
    [Crossref] [Google Scholar]
  121. 121.
    Pujol M, Peña C, Pallares R, Ariza J, Ayats J, et al. 1996.. Nosocomial Staphylococcus aureus bacteremia among nasal carriers of methicillin-resistant and methicillin-susceptible strains. . Am. J. Med. 100:(5):50916
    [Crossref] [Google Scholar]
  122. 122.
    Quirós P, Colomer-Lluch M, Martínez-Castillo A, Miró E, Argente M, et al. 2014.. Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples. . Antimicrob. Agents Chemother. 58:(1):6069
    [Crossref] [Google Scholar]
  123. 123.
    Rau MH, Marvig RL, Ehrlich GD, Molin S, Jelsbak L. 2012.. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. . Environ. Microbiol. 14:(8):220011
    [Crossref] [Google Scholar]
  124. 124.
    Robinson DA, Enright MC. 2003.. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. . Antimicrob. Agents Chemother. 47:(12):392634
    [Crossref] [Google Scholar]
  125. 125.
    Rodríguez-Beltrán J, Sørum V, Toll-Riera M, de la Vega C, Peña-Miller R, San Millán Á. 2020.. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. . PNAS 117:(27):1575562
    [Crossref] [Google Scholar]
  126. 126.
    Sakoulas G, Okumura CY, Thienphrapa W, Olson J, Nonejuie P, et al. 2014.. Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. . J. Mol. Med. 92:(2):13949
    [Crossref] [Google Scholar]
  127. 127.
    San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC. 2016.. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. . Nat. Ecol. Evol. 1:(1):0010
    [Crossref] [Google Scholar]
  128. 128.
    San Millan A, MacLean RC. 2017.. Fitness costs of plasmids: a limit to plasmid transmission. . Microbiol. Spectr. 5:(5):MTBP0016-2017
    [Crossref] [Google Scholar]
  129. 129.
    Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. 2019.. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. . eLife 8::e47612
    [Crossref] [Google Scholar]
  130. 130.
    Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S, et al. 2018.. Intestinal colonization traits of pandemic multidrug-resistant Escherichia coli ST131. . J. Infect. Dis. 218:(6):97990
    [Crossref] [Google Scholar]
  131. 131.
    Schaufler K, Semmler T, Pickard DJ, de Toro M, de la Cruz F, et al. 2016.. Carriage of extended-spectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic E. coli lineages. . Front. Microbiol. 7::336
    [Crossref] [Google Scholar]
  132. 132.
    Selgrad M, Tammer I, Langner C, Bornschein J, Meißle J, et al. 2014.. Different antibiotic susceptibility between antrum and corpus of the stomach, a possible reason for treatment failure of Helicobacter pylori infection. . World J. Gastroenterol. 20:(43):1624551
    [Crossref] [Google Scholar]
  133. 133.
    Sentausa E, Basso P, Berry A, Adrait A, Bellement G, et al. 2019.. Insertion sequences drive the emergence of a highly adapted human pathogen. . Microb. Genom. 6:(9):mgen000265
    [Google Scholar]
  134. 134.
    Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. 2003.. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. . CHEST 123:(5):1495502
    [Crossref] [Google Scholar]
  135. 135.
    Sommer MOA, Dantas G, Church GM. 2009.. Functional characterization of the antibiotic resistance reservoir in the human microflora. . Science 325:(5944):112831
    [Crossref] [Google Scholar]
  136. 136.
    Souque C, Escudero JA, MacLean RC. 2021.. Integron activity accelerates the evolution of antibiotic resistance. . eLife 10::e62474
    [Crossref] [Google Scholar]
  137. 137.
    Stecher B, Denzler R, Maier L, Bernet F, Sanders MJ, et al. 2012.. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. . PNAS 109:(4):126974
    [Crossref] [Google Scholar]
  138. 138.
    Stevanovic M, Boukéké-Lesplulier T, Hupe L, Hasty J, Bittihn P, Schultz D. 2022.. Nutrient gradients mediate complex colony-level antibiotic responses in structured microbial populations. . Front. Microbiol. 13::740259
    [Crossref] [Google Scholar]
  139. 139.
    Stevenson C, Hall JP, Harrison E, Wood AJ, Brockhurst MA. 2017.. Gene mobility promotes the spread of resistance in bacterial populations. . ISME J. 11:(8):193032
    [Crossref] [Google Scholar]
  140. 140.
    Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE, et al. 2016.. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. . mBio 7:(2):e02162
    [Crossref] [Google Scholar]
  141. 141.
    Stracy M, Snitser O, Yelin I, Amer Y, Parizade M, et al. 2022.. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. . Science 375:(6583):88994
    [Crossref] [Google Scholar]
  142. 142.
    Sukhum KV, Newcomer EP, Cass C, Wallace MA, Johnson C, et al. 2022.. Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates. . Commun. Med. 2:(1):62
    [Crossref] [Google Scholar]
  143. 143.
    Sun G, Luo T, Yang C, Dong X, Li J, et al. 2012.. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. . J. Infect. Dis. 206:(11):172433
    [Crossref] [Google Scholar]
  144. 144.
    Sun L, Alexander HK, Bogos B, Kiviet DJ, Ackermann M, Bonhoeffer S. 2018.. Effective polyploidy causes phenotypic delay and influences bacterial evolvability. . PLOS Biol. 16:(2):e2004644
    [Crossref] [Google Scholar]
  145. 145.
    Sundqvist M, Geli P, Andersson DI, Sjolund-Karlsson M, Runehagen A, et al. 2010.. Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. . J. Antimicrob. Chemother. 65:(2):35060
    [Crossref] [Google Scholar]
  146. 146.
    Szybalski W, Bryson V. 1952.. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. . J. Bacteriol. 64:(4):48999
    [Crossref] [Google Scholar]
  147. 147.
    Tedijanto C, Olesen SW, Grad YH, Lipsitch M. 2018.. Estimating the proportion of bystander selection for antibiotic resistance among potentially pathogenic bacterial flora. . PNAS 115:(51):E1198895
    [Crossref] [Google Scholar]
  148. 148.
    Thänert R, Reske KA, Hink T, Wallace MA, Wang B, et al. 2019.. Comparative genomics of antibiotic-resistant uropathogens implicates three routes for recurrence of urinary tract infections. . mBio 10:(4):e01977-19
    [Crossref] [Google Scholar]
  149. 149.
    Theuretzbacher U, Bush K, Harbarth S, Paul M, Rex JH, et al. 2020.. Critical analysis of antibacterial agents in clinical development. . Nat. Rev. Microbiol. 18:(5):28698
    [Crossref] [Google Scholar]
  150. 150.
    Thurlow LR, Joshi GS, Richardson AR. 2012.. Virulence strategies of the dominant USA300 lineage of community associated methicillin resistant Staphylococcus aureus (CA-MRSA). . FEMS Immunol. Med. Microbiol. 65:(1):522
    [Crossref] [Google Scholar]
  151. 151.
    Tonkin-Hill G, Ling C, Chaguza C, Salter SJ, Hinfonthong P, et al. 2022.. Pneumococcal within-host diversity during colonization, transmission and treatment. . Nat. Microbiol. 7:(11):1791804
    [Crossref] [Google Scholar]
  152. 152.
    Traglia GM, Place K, Dotto C, Fernandez JS, Montaña S, et al. 2019.. Interspecies DNA acquisition by a naturally competent Acinetobacter baumannii strain. . Int. J. Antimicrob. Agents 53:(4):48390
    [Crossref] [Google Scholar]
  153. 153.
    van Duijn PJ, Verbrugghe W, Jorens PG, Spöhr F, Schedler D, et al. 2018.. The effects of antibiotic cycling and mixing on antibiotic resistance in intensive care units: a cluster-randomised crossover trial. . Lancet Infect. Dis. 18:(4):4019
    [Crossref] [Google Scholar]
  154. 154.
    Vega NM, Gore J. 2014.. Collective antibiotic resistance: mechanisms and implications. . Curr. Opin. Microbiol. 21::2834
    [Crossref] [Google Scholar]
  155. 155.
    Vogwill T, Kojadinovic M, MacLean RC. 2016.. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. . Proc. R. Soc. B Biol. Sci. 283:(1830):20160151
    [Crossref] [Google Scholar]
  156. 156.
    Vogwill T, MacLean RC. 2015.. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. . Evol. Appl. 8:(3):28495
    [Crossref] [Google Scholar]
  157. 157.
    Wang R, van Dorp L, Shaw LP, Bradley P, Wang Q, et al. 2018.. The global distribution and spread of the mobilized colistin resistance gene mcr-1. . Nat. Commun. 9:(1):1179
    [Crossref] [Google Scholar]
  158. 158.
    Wheatley R, Diaz Caballero J, Kapel N, de Winter FHR, Jangir P, et al. 2021.. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. . Nat. Commun. 12:(1):2460
    [Crossref] [Google Scholar]
  159. 159.
    Wheatley RM, Caballero JD, van der Schalk TE, De Winter FHR, Shaw LP, et al. 2022.. Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient. . Nat. Commun. 13:(1):6523
    [Crossref] [Google Scholar]
  160. 160.
    Willems RJL, Hanage WP, Bessen DE, Feil EJ. 2011.. Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. . FEMS Microbiol. Rev. 35:(5):872
    [Crossref] [Google Scholar]
  161. 161.
    Williams D, Fothergill JL, Evans B, Caples J, Haldenby S, et al. 2018.. Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain. . Microb. Genom. 4:(3):e000167
    [Google Scholar]
  162. 162.
    Willmann M, Vehreschild MJGT, Biehl LM, Vogel W, Dörfel D, et al. 2019.. Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. . BMC Biol. 17:(1):76
    [Crossref] [Google Scholar]
  163. 163.
    Woodford N, Turton JF, Livermore DM. 2011.. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. . FEMS Microbiol. Rev. 35:(5):73655
    [Crossref] [Google Scholar]
  164. 164.
    Woods LC, Gorrell RJ, Taylor F, Connallon T, Kwok T, McDonald MJ. 2020.. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. . PNAS 117:(43):2686875
    [Crossref] [Google Scholar]
  165. 165.
    Worby CJ, Sridhar S, Turbett SE, Becker MV, Kogut L, et al. 2023.. Gut microbiome perturbation, antibiotic resistance, and Escherichia coli strain dynamics associated with international travel: a metagenomic analysis. . Lancet Microbe 4:(10):e79099
    [Crossref] [Google Scholar]
  166. 166.
    Wyres KL, Lam MMC, Holt KE. 2020.. Population genomics of Klebsiella pneumoniae. . Nat. Rev. Microbiol. 18:(6):34459
    [Crossref] [Google Scholar]
  167. 167.
    Yang QE, Walsh TR. 2017.. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. . FEMS Microbiol. Rev. 41:(3):34353
    [Crossref] [Google Scholar]
  168. 168.
    Yassour M, Vatanen T, Siljander H, Hämäläinen A-M, Härkönen T, et al. 2016.. Natural history of the infant gut microbiome and impact of antibiotic treatments on strain-level diversity and stability. . Sci. Transl. Med. 8:(343):343ra81
    [Crossref] [Google Scholar]
  169. 169.
    Young BC, Wu C-H, Gordon NC, Cole K, Price JR, et al. 2017.. Severe infections emerge from commensal bacteria by adaptive evolution. . eLife 6::e30637
    [Crossref] [Google Scholar]
  170. 170.
    Yurtsev EA, Chao HX, Datta MS, Artemova T, Gore J. 2013.. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. . Mol. Syst. Biol. 9::683
    [Crossref] [Google Scholar]
  171. 171.
    Zhai Y, Pribis JP, Dooling SW, Garcia-Villada L, Minnick PJ, et al. 2023.. Drugging evolution of antibiotic resistance at a regulatory network hub. . Sci. Adv. 9:(25):eadg0188
    [Crossref] [Google Scholar]
  172. 172.
    Zhou J, Dong Y, Zhao X, Lee S, Amin A, et al. 2000.. Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutations. . J. Infect. Dis. 182:(2):51725
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041522-102707
Loading
/content/journals/10.1146/annurev-micro-041522-102707
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error