1932

Abstract

Envelope biogenesis and homeostasis in gram-negative bacteria are exceptionally intricate processes that require a multitude of periplasmic chaperones to ensure cellular survival. Remarkably, these chaperones perform diverse yet specialized functions entirely in the absence of external energy such as ATP, and as such have evolved sophisticated mechanisms by which their activities are regulated. In this article, we provide an overview of the predominant periplasmic chaperones that enable efficient outer membrane biogenesis and envelope homeostasis in . We also discuss stress responses that act to combat unfolded protein stress within the cell envelope, highlighting the periplasmic chaperones involved and the mechanisms by which envelope homeostasis is restored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041522-102901
2024-11-20
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041522-102901.html?itemId=/content/journals/10.1146/annurev-micro-041522-102901&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ades SE, Connolly LE, Alba BM, Gross CA. 1999.. The Escherichia coli σE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-σ factor. . Genes Dev. 13:(18):244961
    [Crossref] [Google Scholar]
  2. 2.
    Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA. 2002.. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. . Genes Dev. 16:(16):215668
    [Crossref] [Google Scholar]
  3. 3.
    Arié J, Sassoon N, Betton J. 2001.. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. . Mol. Microbiol. 39:(1):199210
    [Crossref] [Google Scholar]
  4. 4.
    Bader MW, Hiniker A, Regeimbal J, Goldstone D, Haebel PW, et al. 2001.. Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA. . EMBO J. 20:(7):155562
    [Crossref] [Google Scholar]
  5. 5.
    Barchinger SE, Ades SE. 2013.. Regulated proteolysis: control of the Escherichia coli σE-dependent cell envelope stress response. . Subcell. Biochem. 66::12960
    [Crossref] [Google Scholar]
  6. 6.
    Bardwell JCA, Lee J-O, Jander G, Martin N, Belin D, Beckwith J. 1993.. A pathway for disulfide bond formation in vivo. . PNAS 90:(3):103842
    [Crossref] [Google Scholar]
  7. 7.
    Bardwell JCA, McGovern K, Beckwith J. 1991.. Identification of a protein required for disulfide bond formation in vivo. . Cell 67:(3):58189
    [Crossref] [Google Scholar]
  8. 8.
    Behrens S, Maier R, de Cock H, Schmid FX, Gross CA. 2001.. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. . EMBO J. 20:(1):28594
    [Crossref] [Google Scholar]
  9. 9.
    Bennion D, Charlson ES, Coon E, Misra R. 2010.. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. . Mol. Microbiol. 77:(5):115371
    [Crossref] [Google Scholar]
  10. 10.
    Bitto E, McKay DB. 2002.. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. . Structure 10:(11):148998
    [Crossref] [Google Scholar]
  11. 11.
    Bitto E, McKay DB. 2003.. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. . J. Biol. Chem. 278:(49):4931622
    [Crossref] [Google Scholar]
  12. 12.
    Bitto E, McKay DB. 2004.. Binding of phage-display-selected peptides to the periplasmic chaperone protein SurA mimics binding of unfolded outer membrane proteins. . FEBS Lett. 568:(3):9498
    [Crossref] [Google Scholar]
  13. 13.
    Bos MP, Tefsen B, Geurtsen J, Tommassen J. 2004.. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. . PNAS 101:(25):941722
    [Crossref] [Google Scholar]
  14. 14.
    Bothmann H, Plückthun A. 2000.. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. . J. Biol. Chem. 275:(22):171005
    [Crossref] [Google Scholar]
  15. 15.
    Braun M, Silhavy TJ. 2002.. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. . Mol. Microbiol. 45:(5):1289302
    [Crossref] [Google Scholar]
  16. 16.
    Brynildsen MP, Liao JC. 2009.. An integrated network approach identifies the isobutanol response network of Escherichia coli. . Mol. Syst. Biol. 5:(1):277
    [Crossref] [Google Scholar]
  17. 17.
    Bulieris PV, Behrens S, Holst O, Kleinschmidt JH. 2003.. Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. . J. Biol. Chem. 278:(11):909299
    [Crossref] [Google Scholar]
  18. 18.
    Burmann BM, Wang C, Hiller S. 2013.. Conformation and dynamics of the periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp. . Nat. Struct. Mol. Biol. 20:(11):126572
    [Crossref] [Google Scholar]
  19. 19.
    Bury-Moné S, Nomane Y, Reymond N, Barbet R, Jacquet E, et al. 2009.. Global analysis of extracytoplasmic stress signaling in Escherichia coli. . PLOS Genet. 5:(9):e1000651
    [Crossref] [Google Scholar]
  20. 20.
    Calabrese AN, Schiffrin B, Watson M, Karamanos TK, Walko M, et al. 2020.. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. . Nat. Commun. 11::2155
    [Crossref] [Google Scholar]
  21. 21.
    CastilloKeller M, Misra R. 2003.. Protease-deficient DegP suppresses lethal effects of a mutant OmpC protein by its capture. . J. Bacteriol. 185:(1):14854
    [Crossref] [Google Scholar]
  22. 22.
    Chamachi N, Hartmann A, Ma MQ, Svirina A, Krainer G, Schlierf M. 2022.. Chaperones Skp and SurA dynamically expand unfolded OmpX and synergistically disassemble oligomeric aggregates. . PNAS 119:(9):e2118919119
    [Crossref] [Google Scholar]
  23. 23.
    Chen R, Henning U. 1996.. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. . Mol. Microbiol. 19:(6):128794
    [Crossref] [Google Scholar]
  24. 24.
    Combs AN, Silhavy TJ. 2022.. The sacrificial adaptor protein Skp functions to remove stalled substrates from the β-barrel assembly machine. . PNAS 119:(1):e2114997119
    [Crossref] [Google Scholar]
  25. 25.
    Crane JM, Randall LL. 2017.. The Sec system: protein export in Escherichia coli. . EcoSal Plus 7:(2). https://doi.org/10.1128/ecosalplus.ESP-0002–2017
    [Crossref] [Google Scholar]
  26. 26.
    Cremers CM, Knoefler D, Vitvitsky V, Banerjee R, Jakob U. 2014.. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. . PNAS 111:(16):E161019
    [Crossref] [Google Scholar]
  27. 27.
    Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL. 2015.. Phage and host protein requirements for HK97 genome injection. . Mol. Microbiol. 96:(3):43747
    [Crossref] [Google Scholar]
  28. 28.
    Dahl J-U, Koldewey P, Salmon L, Horowitz S, Bardwell JCA, Jakob U. 2015.. HdeB functions as an acid-protective chaperone in bacteria. . J. Biol. Chem. 290:(1):6575
    [Crossref] [Google Scholar]
  29. 29.
    Daimon Y, Iwama-Masui C, Tanaka Y, Shiota T, Suzuki T, et al. 2017.. The TPR domain of BepA is required for productive interaction with substrate proteins and the β-barrel assembly machinery complex. . Mol. Microbiol. 106:(5):76076
    [Crossref] [Google Scholar]
  30. 30.
    Daimon Y, Narita S, Miyazaki R, Hizukuri Y, Mori H, et al. 2020.. Reversible autoinhibitory regulation of Escherichia coli metallopeptidase BepA for selective β-barrel protein degradation. . PNAS 117:(45):2798996
    [Crossref] [Google Scholar]
  31. 31.
    Danese PN, Silhavy TJ. 1997.. The σE and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. . Genes Dev. 11:(9):118393
    [Crossref] [Google Scholar]
  32. 32.
    Danese PN, Snyder WB, Cosma CL, Davis LJ, Silhavy TJ. 1995.. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. . Genes Dev. 9:(4):38798
    [Crossref] [Google Scholar]
  33. 33.
    Dartigalongue C, Raina S. 1998.. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. . EMBO J. 17:(14):396880
    [Crossref] [Google Scholar]
  34. 34.
    Denoncin K, Schwalm J, Vertommen D, Silhavy TJ, Collet J-F. 2012.. Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics. . Proteomics 12:(9):1391401
    [Crossref] [Google Scholar]
  35. 35.
    Devlin T, Marx DC, Roskopf MA, Bubb QR, Plummer AM, Fleming KG. 2023.. FkpA enhances membrane protein folding using an extensive interaction surface. . Protein Sci. 32:(4):e4592
    [Crossref] [Google Scholar]
  36. 36.
    Driessen AJM, Nouwen N. 2008.. Protein translocation across the bacterial cytoplasmic membrane. . Biochemistry 77:(1):64367
    [Google Scholar]
  37. 37.
    Duguay AR, Silhavy TJ. 2004.. Quality control in the bacterial periplasm. . Biochim. Biophys. Acta Mol. Cell Res. 1694:(3):12134
    [Crossref] [Google Scholar]
  38. 38.
    Erickson JW, Gross CA. 1989.. Identification of the σE subunit of Escherichia coli RNA polymerase: a second alternate σ factor involved in high-temperature gene expression. . Genes Dev. 3:(9):146271
    [Crossref] [Google Scholar]
  39. 39.
    Flynn JM, Levchenko I, Sauer RT, Baker TA. 2004.. Modulating substrate choice: The SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. . Genes Dev. 18:(18):2292301
    [Crossref] [Google Scholar]
  40. 40.
    Foit L, George JS, Zhang BW, Brooks CL, Bardwell JCA. 2013.. Chaperone activation by unfolding. . PNAS 110:(14):E125462
    [Crossref] [Google Scholar]
  41. 41.
    Gajiwala KS, Burley SK. 2000.. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. . J. Mol. Biol. 295:(3):60512
    [Crossref] [Google Scholar]
  42. 42.
    Ge X, Lyu Z-X, Liu Y, Wang R, Zhao XS, et al. 2014.. Identification of FkpA as a key quality control factor for the biogenesis of outer membrane proteins under heat shock conditions. . J. Bacteriol. 196:(3):67280
    [Crossref] [Google Scholar]
  43. 43.
    Gogol EB, Rhodius VA, Papenfort K, Vogel J, Gross CA. 2011.. Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. . PNAS 108:(31):1287580
    [Crossref] [Google Scholar]
  44. 44.
    Goyal P, Krasteva PV, Gerven NV, Gubellini F, den Broeck IV, et al. 2014.. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. . Nature 516:(7530):25053
    [Crossref] [Google Scholar]
  45. 45.
    Grabowicz M, Koren D, Silhavy TJ. 2016.. The CpxQ sRNA negatively regulates Skp to prevent mistargeting of β-barrel outer membrane proteins into the cytoplasmic membrane. . mBio 7:(2):e00312
    [Crossref] [Google Scholar]
  46. 46.
    Grabowicz M, Silhavy TJ. 2017.. Envelope stress responses: an interconnected safety net. . Trends Biochem. Sci. 42:(3):23242
    [Crossref] [Google Scholar]
  47. 47.
    Grigorova IL, Chaba R, Zhong HJ, Alba BM, Rhodius V, et al. 2004.. Fine-tuning of the Escherichia coli σE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-σ factor, RseA. . Genes Dev. 18:(21):268697
    [Crossref] [Google Scholar]
  48. 48.
    Guest RL, Raivio TL. 2016.. Role of the Gram-negative envelope stress response in the presence of antimicrobial agents. . Trends Microbiol. 24:(5):37790
    [Crossref] [Google Scholar]
  49. 49.
    Guest RL, Silhavy TJ. 2023.. Cracking outer membrane biogenesis. . Biochim. Biophys. Acta Mol. Cell Res. 1870:(2):119405
    [Crossref] [Google Scholar]
  50. 50.
    Hagenmaier S, Stierhof YD, Henning U. 1997.. A new periplasmic protein of Escherichia coli which is synthesized in spheroplasts but not in intact cells. . J. Bacteriol. 179:(6):207376
    [Crossref] [Google Scholar]
  51. 51.
    He L, Sharpe T, Mazur A, Hiller S. 2016.. A molecular mechanism of chaperone–client recognition. . Sci. Adv. 2:(11):e1601625
    [Crossref] [Google Scholar]
  52. 52.
    He W, Yu G, Li T, Bai L, Yang Y, et al. 2021.. Chaperone Spy protects outer membrane proteins from folding stress via dynamic complex formation. . mBio 12:(5):e02130
    [Crossref] [Google Scholar]
  53. 53.
    Heppel LA. 1967.. Selective release of enzymes from bacteria. . Science 156:(3781):145155
    [Crossref] [Google Scholar]
  54. 54.
    Holck A, Kleppe K. 1988.. Cloning and sequencing of the gene for the DNA-binding 17K protein of Escherichia coli. . Gene 67:(1):11724
    [Crossref] [Google Scholar]
  55. 55.
    Holck A, Lossius I, Aasland R, Kleppe K. 1987.. Purification and characterization of the 17 K protein, a DNA-binding protein from Escherichia coli. . Biochim. Biophys. Acta Protein Struct. Mol. Enzym. 914:(1):4954
    [Crossref] [Google Scholar]
  56. 56.
    Holdbrook DA, Burmann BM, Huber RG, Petoukhov MV, Svergun DI, et al. 2017.. A spring-loaded mechanism governs the clamp-like dynamics of the Skp chaperone. . Structure 25:(7):107988.e3
    [Crossref] [Google Scholar]
  57. 57.
    Horowitz S, Salmon L, Koldewey P, Ahlstrom LS, Martin R, et al. 2016.. Visualizing chaperone-assisted protein folding. . Nat. Struct. Mol. Biol. 23:(7):69197
    [Crossref] [Google Scholar]
  58. 58.
    Hullmann J, Patzer SI, Römer C, Hantke K, Braun V. 2008.. Periplasmic chaperone FkpA is essential for imported colicin M toxicity. . Mol. Microbiol. 69:(4):92637
    [Crossref] [Google Scholar]
  59. 59.
    Isaac DD, Pinkner JS, Hultgren SJ, Silhavy TJ. 2005.. The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. . PNAS 102:(49):1777579
    [Crossref] [Google Scholar]
  60. 60.
    Iwanczyk J, Damjanovic D, Kooistra J, Leong V, Jomaa A, et al. 2007.. Role of the PDZ domains in Escherichia coli DegP protein. . J. Bacteriol. 189:(8):317686
    [Crossref] [Google Scholar]
  61. 61.
    Jiang J, Zhang X, Chen Y, Wu Y, Zhou ZH, et al. 2008.. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. . PNAS 105:(33):1193944
    [Crossref] [Google Scholar]
  62. 62.
    Jones CH, Danese PN, Pinkner JS, Silhavy TJ, Hultgren SJ. 1997.. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. . EMBO J. 16:(21):6394406
    [Crossref] [Google Scholar]
  63. 63.
    Justice SS, Hunstad DA, Harper JR, Duguay AR, Pinkner JS, et al. 2005.. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. . J. Bacteriol. 187:(22):768086
    [Crossref] [Google Scholar]
  64. 64.
    Kanehara K, Ito K, Akiyama Y. 2002.. YaeL (EcfE) activates the σE pathway of stress response through a site-2 cleavage of anti-σE, RseA. . Genes Dev. 16:(16):214755
    [Crossref] [Google Scholar]
  65. 65.
    Kern R, Malki A, Abdallah J, Tagourti J, Richarme G. 2007.. Escherichia coli HdeB is an acid stress chaperone. . J. Bacteriol. 189:(2):60310
    [Crossref] [Google Scholar]
  66. 66.
    Kim S, Grant RA, Sauer RT. 2011.. Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages. . Cell 145:(1):6778
    [Crossref] [Google Scholar]
  67. 67.
    Kim S, Sauer RT. 2012.. Cage assembly of DegP protease is not required for substrate-dependent regulation of proteolytic activity or high-temperature cell survival. . PNAS 109:(19):726368
    [Crossref] [Google Scholar]
  68. 68.
    Kim S, Sauer RT. 2014.. Distinct regulatory mechanisms balance DegP proteolysis to maintain cellular fitness during heat stress. . Genes Dev. 28:(8):90211
    [Crossref] [Google Scholar]
  69. 69.
    Kim S, Song I, Eom G, Kim S. 2018.. A small periplasmic protein with a hydrophobic C-terminal residue enhances DegP proteolysis as a suicide activator. . J. Bacteriol. 200:(3):e00519
    [Crossref] [Google Scholar]
  70. 70.
    Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. 2013.. Molecular chaperone functions in protein folding and proteostasis. . Annu. Rev. Biochem. 82::32355
    [Crossref] [Google Scholar]
  71. 71.
    Kleerebezem M, Heutink M, Tommassen J. 1995.. Characterization of an Escherichia coli rotA mutant, affected in periplasmic peptidyl-prolyl cis/trans isomerase. . Mol. Microbiol. 18:(2):31320
    [Crossref] [Google Scholar]
  72. 72.
    Koldewey P, Stull F, Horowitz S, Martin R, Bardwell JCA. 2016.. Forces driving chaperone action. . Cell 166:(2):36979
    [Crossref] [Google Scholar]
  73. 73.
    Kolmar H, Waller PR, Sauer RT. 1996.. The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. . J. Bacteriol. 178:(20):592529
    [Crossref] [Google Scholar]
  74. 74.
    Konovalova A, Grabowicz M, Balibar CJ, Malinverni JC, Painter RE, et al. 2018.. Inhibitor of intramembrane protease RseP blocks the σE response causing lethal accumulation of unfolded outer membrane proteins. . PNAS 115:(28):E661421
    [Crossref] [Google Scholar]
  75. 75.
    Korndörfer IP, Dommel MK, Skerra A. 2004.. Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. . Nat. Struct. Mol. Biol. 11:(10):nsmb828
    [Crossref] [Google Scholar]
  76. 76.
    Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T. 2002.. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. . Nature 416:(6879):45559
    [Crossref] [Google Scholar]
  77. 77.
    Krojer T, Pangerl K, Kurt J, Sawa J, Stingl C, et al. 2008.. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. . PNAS 105:(22):77027
    [Crossref] [Google Scholar]
  78. 78.
    Krojer T, Sawa J, Schäfer E, Saibil HR, Ehrmann M, Clausen T. 2008.. Structural basis for the regulated protease and chaperone function of DegP. . Nature 453:(7197):88590
    [Crossref] [Google Scholar]
  79. 79.
    Kwon E, Kim DY, Gross CA, Gross JD, Kim KK. 2010.. The crystal structure Escherichia coli Spy. . Protein Sci. 19:(11):225259
    [Crossref] [Google Scholar]
  80. 80.
    Landeta C, Blazyk JL, Hatahet F, Meehan BM, Eser M, et al. 2015.. Compounds targeting disulfide bond forming enzyme DsbB of gram-negative bacteria. . Nat. Chem. Biol. 11:(4):29298
    [Crossref] [Google Scholar]
  81. 81.
    Landeta C, Boyd D, Beckwith J. 2018.. Disulfide bond formation in prokaryotes. . Nat. Microbiol. 3:(3):27080
    [Crossref] [Google Scholar]
  82. 82.
    Lazar SW, Kolter R. 1996.. SurA assists the folding of Escherichia coli outer membrane proteins. . J. Bacteriol. 178:(6):177073
    [Crossref] [Google Scholar]
  83. 83.
    Lee C, Betschinger P, Wu K, Żyła DS, Glockshuber R, Bardwell JC. 2020.. A metabolite binding protein moonlights as a bile-responsive chaperone. . EMBO J. 39:(20):e104231
    [Crossref] [Google Scholar]
  84. 84.
    Lee J, Sutterlin HA, Wzorek JS, Mandler MD, Hagan CL, et al. 2018.. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. . PNAS 115:(10):235964
    [Crossref] [Google Scholar]
  85. 85.
    Lewis K. 2020.. The science of antibiotic discovery. . Cell 181:(1):2945
    [Crossref] [Google Scholar]
  86. 86.
    Li G, He C, Bu P, Bi H, Pan S, et al. 2018.. Single-molecule detection reveals different roles of Skp and SurA as chaperones. . ACS Chem. Biol. 13:(4):108289
    [Crossref] [Google Scholar]
  87. 87.
    Li G-W, Burkhardt D, Gross C, Weissman JS. 2014.. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. . Cell 157:(3):62435
    [Crossref] [Google Scholar]
  88. 88.
    Li X-Z, Plésiat P, Nikaido H. 2015.. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. . Clin. Microbiol. Rev. 28:(2):337418
    [Crossref] [Google Scholar]
  89. 89.
    Lima S, Guo MS, Chaba R, Gross CA, Sauer RT. 2013.. Dual molecular signals mediate the bacterial response to outer-membrane stress. . Science 340:(6134):83741
    [Crossref] [Google Scholar]
  90. 90.
    Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VAJ. 2006.. Trimeric autotransporter adhesins: variable structure, common function. . Trends Microbiol. 14:(6):26470
    [Crossref] [Google Scholar]
  91. 91.
    Lipinska B, Fayet O, Baird L, Georgopoulos C. 1989.. Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. . J. Bacteriol. 171:(3):157484
    [Crossref] [Google Scholar]
  92. 92.
    Lipinska B, Zylicz M, Georgopoulos C. 1990.. The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. . J. Bacteriol. 172:(4):179197
    [Crossref] [Google Scholar]
  93. 93.
    Maddalo G, Stenberg-Bruzell F, Götzke H, Toddo S, Björkholm P, et al. 2011.. Systematic analysis of native membrane protein complexes in Escherichia coli. . J. Proteome Res. 10:(4):184859
    [Crossref] [Google Scholar]
  94. 94.
    Malamy M, Horecker BL. 1961.. The localization of alkaline phosphatase in E. coli K12. . Biochem. Biophys. Res. Commun. 5:(2):1048
    [Crossref] [Google Scholar]
  95. 95.
    Malamy MH, Horecker BL. 1964.. Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation. . Biochemistry 3:(12):188993
    [Crossref] [Google Scholar]
  96. 96.
    Marx DC, Plummer AM, Faustino AM, Devlin T, Roskopf MA, et al. 2020.. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. . PNAS 117:(45):2802635
    [Crossref] [Google Scholar]
  97. 97.
    Mas G, Burmann BM, Sharpe T, Claudi B, Bumann D, Hiller S. 2020.. Regulation of chaperone function by coupled folding and oligomerization. . Sci. Adv. 6:(43):eabc5822
    [Crossref] [Google Scholar]
  98. 98.
    Matern Y, Barion B, Behrens-Kneip S. 2010.. PpiD is a player in the network of periplasmic chaperones in Escherichia coli. . BMC Microbiol. 10::251
    [Crossref] [Google Scholar]
  99. 99.
    May KL, Lehman KM, Mitchell AM, Grabowicz M. 2019.. A stress response monitoring lipoprotein trafficking to the outer membrane. . mBio 10:(3):e00618
    [Crossref] [Google Scholar]
  100. 100.
    Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA. 1993.. The activity of σE, an Escherichia coli heat-inducible σ-factor, is modulated by expression of outer membrane proteins. . Genes Dev. 7:(12B):261828
    [Crossref] [Google Scholar]
  101. 101.
    Meehan BM, Landeta C, Boyd D, Beckwith J. 2017.. The disulfide bond formation pathway is essential for anaerobic growth of Escherichia coli. . J. Bacteriol. 199:(16):e00120
    [Crossref] [Google Scholar]
  102. 102.
    Meehan BM, Landeta C, Boyd D, Beckwith J. 2017.. The essential cell division protein FtsN contains a critical disulfide bond in a non-essential domain. . Mol. Microbiol. 103:(3):41322
    [Crossref] [Google Scholar]
  103. 103.
    Misra R, CastilloKeller M, Deng M. 2000.. Overexpression of protease-deficient DegPS210A rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a degP background. . J. Bacteriol. 182:(17):488288
    [Crossref] [Google Scholar]
  104. 104.
    Misra R, Peterson A, Ferenci T, Silhavy TJ. 1991.. A genetic approach for analyzing the pathway of LamB assembly into the outer membrane of Escherichia coli. . J. Biol. Chem. 266:(21):1359297
    [Crossref] [Google Scholar]
  105. 105.
    Missiakas D, Betton J, Raina S. 1996.. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. . Mol. Microbiol. 21:(4):87184
    [Crossref] [Google Scholar]
  106. 106.
    Missiakas D, Georgopoulos C, Raina S. 1994.. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. . EMBO J. 13:(8):201320
    [Crossref] [Google Scholar]
  107. 107.
    Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S. 1997.. Modulation of the Escherichia coli σE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. . Mol. Microbiol. 24:(2):35571
    [Crossref] [Google Scholar]
  108. 108.
    Missiakas D, Schwager F, Raina S. 1995.. Identification and characterization of a new disulfide isomerase–like protein (DsbD) in Escherichia coli. . EMBO J. 14:(14):341524
    [Crossref] [Google Scholar]
  109. 109.
    Mitchell AM, Silhavy TJ. 2019.. Envelope stress responses: balancing damage repair and toxicity. . Nat. Rev. Microbiol. 17:(7):41728
    [Crossref] [Google Scholar]
  110. 110.
    Mitchell P. 1961.. Approaches to the analysis of specific membrane transport. . In Biological Structure and Function, ed. TW Goodwin, O Lindberg , pp. 581603. New York:: Academic
    [Google Scholar]
  111. 111.
    Mitra R, Gadkari VV, Meinen BA, van Mierlo CPM, Ruotolo BT, Bardwell JCA. 2021.. Mechanism of the small ATP-independent chaperone Spy is substrate specific. . Nat. Commun. 12::851
    [Crossref] [Google Scholar]
  112. 112.
    Mitra R, Wu K, Lee C, Bardwell JCA. 2022.. ATP-independent chaperones. . Annu. Rev. Biophys. 51::40929
    [Crossref] [Google Scholar]
  113. 113.
    Miyazaki R, Watanabe T, Yoshitani K, Akiyama Y. 2021.. Edge-strand of BepA interacts with immature LptD on the β-barrel assembly machine to direct it to on- and off-pathways. . eLife 10::e70541
    [Crossref] [Google Scholar]
  114. 114.
    Moon CP, Zaccai NR, Fleming PJ, Gessmann D, Fleming KG. 2013.. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. . PNAS 110:(11):428590
    [Crossref] [Google Scholar]
  115. 115.
    Nagakubo S, Nishino K, Hirata T, Yamaguchi A. 2002.. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. . J. Bacteriol. 184:(15):416167
    [Crossref] [Google Scholar]
  116. 116.
    Narita S, Masui C, Suzuki T, Dohmae N, Akiyama Y. 2013.. Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli. . PNAS 110:(38):E361221
    [Crossref] [Google Scholar]
  117. 117.
    Nikaido H. 2003.. Molecular basis of bacterial outer membrane permeability revisited. . Microbiol. Mol. Biol. Rev. 67:(4):593656
    [Crossref] [Google Scholar]
  118. 118.
    Oh E, Becker AH, Sandikci A, Huber D, Chaba R, et al. 2011.. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. . Cell 147:(6):1295308
    [Crossref] [Google Scholar]
  119. 119.
    Pan S, Yang C, Zhao XS. 2020.. Affinity of Skp to OmpC revealed by single-molecule detection. . Sci. Rep. 10::14871
    [Crossref] [Google Scholar]
  120. 120.
    Patel GJ, Behrens-Kneip S, Holst O, Kleinschmidt JH. 2009.. The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential. . Biochemistry 48:(43):1023545
    [Crossref] [Google Scholar]
  121. 121.
    Patel GJ, Kleinschmidt JH. 2013.. The lipid bilayer-inserted membrane protein BamA of Escherichia coli facilitates insertion and folding of outer membrane protein A from its complex with Skp. . Biochemistry 52:(23):397486
    [Crossref] [Google Scholar]
  122. 122.
    Peñas ADL, Connolly L, Gross CA. 1997.. The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE. . Mol. Microbiol. 24:(2):37385
    [Crossref] [Google Scholar]
  123. 123.
    Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J. 1997.. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. . Genes Dev. 11:(9):116982
    [Crossref] [Google Scholar]
  124. 124.
    Price NL, Raivio TL. 2009.. Characterization of the Cpx regulon in Escherichia coli strain MC4100. . J. Bacteriol. 191:(6):1798815
    [Crossref] [Google Scholar]
  125. 125.
    Qu J, Behrens-Kneip S, Holst O, Kleinschmidt JH. 2009.. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study. . Biochemistry 48:(22):492636
    [Crossref] [Google Scholar]
  126. 126.
    Qu J, Mayer C, Behrens S, Holst O, Kleinschmidt JH. 2007.. The trimeric periplasmic chaperone Skp of Escherichia coli forms 1:1 complexes with outer membrane proteins via hydrophobic and electrostatic interactions. . J. Mol. Biol. 374:(1):91105
    [Crossref] [Google Scholar]
  127. 127.
    Quan S, Koldewey P, Tapley T, Kirsch N, Ruane KM, et al. 2011.. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. . Nat. Struct. Mol. Biol. 18:(3):26269
    [Crossref] [Google Scholar]
  128. 128.
    Raffa RG, Raivio TL. 2002.. A third envelope stress signal transduction pathway in Escherichia coli. . Mol. Microbiol. 45:(6):1599611
    [Crossref] [Google Scholar]
  129. 129.
    Raivio TL. 2014.. Everything old is new again: an update on current research on the Cpx envelope stress response. . Biochim. Biophys. Acta Mol. Cell Res. 1843:(8):152941
    [Crossref] [Google Scholar]
  130. 130.
    Raivio TL, Laird MW, Joly JC, Silhavy TJ. 2000.. Tethering of CpxP to the inner membrane prevents spheroplast induction of the Cpx envelope stress response. . Mol. Microbiol. 37:(5):118697
    [Crossref] [Google Scholar]
  131. 131.
    Raivio TL, Popkin DL, Silhavy TJ. 1999.. The Cpx envelope stress response is controlled by amplification and feedback inhibition. . J. Bacteriol. 181:(17):526372
    [Crossref] [Google Scholar]
  132. 132.
    Ramm K, Plückthun A. 2000.. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. II. Isomerase-independent chaperone activity in vitro. . J. Biol. Chem. 275:(22):1710613
    [Crossref] [Google Scholar]
  133. 133.
    Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. 2006.. Conserved and variable functions of the σE stress response in related genomes. . PLOS Biol. 4:(1):e2
    [Crossref] [Google Scholar]
  134. 134.
    Ricci DP, Schwalm J, Gonzales-Cope M, Silhavy TJ. 2013.. The activity and specificity of the outer membrane protein chaperone SurA are modulated by a proline isomerase domain. . mBio 4:(4):e00540
    [Crossref] [Google Scholar]
  135. 135.
    Rietsch A, Belin D, Martin N, Beckwith J. 1996.. An in vivo pathway for disulfide bond isomerization in Escherichia coli. . PNAS 93:(23):1304853
    [Crossref] [Google Scholar]
  136. 136.
    Rizzitello AE, Harper JR, Silhavy TJ. 2001.. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. . J. Bacteriol. 183:(23):6794800
    [Crossref] [Google Scholar]
  137. 137.
    Rouvière PE, Gross CA. 1996.. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. . Genes Dev. 10:(24):317082
    [Crossref] [Google Scholar]
  138. 138.
    Ruiz N, Chng S-S, Hiniker A, Kahne D, Silhavy TJ. 2010.. Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. . PNAS 107:(27):1224550
    [Crossref] [Google Scholar]
  139. 139.
    Sachelaru I, Petriman N-A, Kudva R, Koch H-G. 2014.. Dynamic interaction of the Sec translocon with the chaperone PpiD. . J. Biol. Chem. 289:(31):2170615
    [Crossref] [Google Scholar]
  140. 140.
    Sandlin CW, Zaccai NR, Fleming KG. 2015.. Skp trimer formation is insensitive to salts in the physiological range. . Biochemistry 54:(48):705962
    [Crossref] [Google Scholar]
  141. 141.
    Saul FA, Arié J-P, Normand BV, Kahn R, Betton J-M, Bentley GA. 2004.. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. . J. Mol. Biol. 335:(2):595608
    [Crossref] [Google Scholar]
  142. 142.
    Schäfer U, Beck K, Müller M. 1999.. Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. . J. Biol. Chem. 274:(35):2456774
    [Crossref] [Google Scholar]
  143. 143.
    Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, et al. 2016.. Skp is a multivalent chaperone of outer-membrane proteins. . Nat. Struct. Mol. Biol. 23:(9):nsmb.3266
    [Crossref] [Google Scholar]
  144. 144.
    Schiffrin B, Calabrese AN, Higgins AJ, Humes JR, Ashcroft AE, et al. 2017.. Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. . J. Mol. Biol. 429:(23):377692
    [Crossref] [Google Scholar]
  145. 145.
    Schiffrin B, Machin JM, Karamanos TK, Zhuravleva A, Brockwell DJ, et al. 2022.. Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. . Commun. Biol. 5::560
    [Crossref] [Google Scholar]
  146. 146.
    Schwalm J, Mahoney TF, Soltes GR, Silhavy TJ. 2013.. Role for Skp in LptD assembly in Escherichia coli. . J. Bacteriol. 195:(16):373442
    [Crossref] [Google Scholar]
  147. 147.
    Shahrizal M, Daimon Y, Tanaka Y, Hayashi Y, Nakayama S, et al. 2018.. Structural basis for the function of the β-barrel assembly-enhancing protease BepA. . J. Mol. Biol. 431:(3):62535
    [Crossref] [Google Scholar]
  148. 148.
    Shevchik VE, Condemine G, Robert-Baudouy J. 1994.. Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. . EMBO J. 13:(8):200712
    [Crossref] [Google Scholar]
  149. 149.
    Silhavy TJ, Kahne D, Walker S. 2010.. The bacterial cell envelope. . Cold Spring Harb. Perspect. Biol. 2:(5):a000414
    [Crossref] [Google Scholar]
  150. 150.
    Sklar JG, Wu T, Kahne D, Silhavy TJ. 2007.. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. . Genes Dev. 21:(19):247384
    [Crossref] [Google Scholar]
  151. 151.
    Snyder WB, Davis LJ, Danese PN, Cosma CL, Silhavy TJ. 1995.. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. . J. Bacteriol. 177:(15):421623
    [Crossref] [Google Scholar]
  152. 152.
    Soltes GR, Martin NR, Park E, Sutterlin HA, Silhavy TJ. 2017.. Distinctive roles for periplasmic proteases in the maintenance of essential outer membrane protein assembly. . J. Bacteriol. 199:(20):e00418
    [Crossref] [Google Scholar]
  153. 153.
    Soltes GR, Schwalm J, Ricci DP, Silhavy TJ. 2016.. The activity of Escherichia coli chaperone SurA is regulated by conformational changes involving a parvulin domain. . J. Bacteriol. 198:(6):92129
    [Crossref] [Google Scholar]
  154. 154.
    Spiess C, Beil A, Ehrmann M. 1999.. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. . Cell 97:(3):33947
    [Crossref] [Google Scholar]
  155. 155.
    Stewart EJ, Katzen F, Beckwith J. 1999.. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. . EMBO J. 18:(21):596371
    [Crossref] [Google Scholar]
  156. 156.
    Strauch KL, Beckwith J. 1988.. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. . PNAS 85:(5):157680
    [Crossref] [Google Scholar]
  157. 157.
    Strauch KL, Johnson K, Beckwith J. 1989.. Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. . J. Bacteriol. 171:(5):268996
    [Crossref] [Google Scholar]
  158. 158.
    Stull F, Koldewey P, Humes JR, Radford SE, Bardwell JCA. 2016.. Substrate protein folds while it is bound to the ATP-independent chaperone Spy. . Nat. Struct. Mol. Biol. 23:(1):5358
    [Crossref] [Google Scholar]
  159. 159.
    Šulskis D, Thoma J, Burmann BM. 2021.. Structural basis of DegP protease temperature-dependent activation. . Sci. Adv. 7:(50):eabj1816
    [Crossref] [Google Scholar]
  160. 160.
    Sun J, Rutherford ST, Silhavy TJ, Huang KC. 2022.. Physical properties of the bacterial outer membrane. . Nat. Rev. Microbiol. 20:(4):23648
    [Crossref] [Google Scholar]
  161. 161.
    Tamae C, Liu A, Kim K, Sitz D, Hong J, et al. 2008.. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. . J. Bacteriol. 190:(17):598188
    [Crossref] [Google Scholar]
  162. 162.
    Tapley TL, Franzmann TM, Chakraborty S, Jakob U, Bardwell JCA. 2010.. Protein refolding by pH-triggered chaperone binding and release. . PNAS 107:(3):107176
    [Crossref] [Google Scholar]
  163. 163.
    Tapley TL, Körner JL, Barge MT, Hupfeld J, Schauerte JA, et al. 2009.. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. . PNAS 106:(14):555762
    [Crossref] [Google Scholar]
  164. 164.
    Thoma J, Burmann BM, Hiller S, Müller DJ. 2015.. Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. . Nat. Struct. Mol. Biol. 22:(10):795
    [Crossref] [Google Scholar]
  165. 165.
    Thome BM, Hoffschulte HK, Schiltz E, Müller M. 1990.. A protein with sequence identity to Skp (FirA) supports protein translocation into plasma membrane vesicles of Escherichia coli. . FEBS Lett. 269:(1):11316
    [Crossref] [Google Scholar]
  166. 166.
    Thome BM, Müller M. 1991.. Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export. . Mol. Microbiol. 5:(11):281521
    [Crossref] [Google Scholar]
  167. 167.
    Tormo A, Almirón M, Kolter R. 1990.. surA, an Escherichia coli gene essential for survival in stationary phase. . J. Bacteriol. 172:(8):433947
    [Crossref] [Google Scholar]
  168. 168.
    Vertommen D, Ruiz N, Leverrier P, Silhavy TJ, Collet J-F. 2009.. Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics. . Proteomics 9:(9):243243
    [Crossref] [Google Scholar]
  169. 169.
    Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J. 2003.. Role of a highly conserved bacterial protein in outer membrane protein assembly. . Science 299:(5604):26265
    [Crossref] [Google Scholar]
  170. 170.
    Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT. 2003.. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. . Cell 113:(1):6171
    [Crossref] [Google Scholar]
  171. 171.
    Walton TA, Sandoval CM, Fowler CA, Pardi A, Sousa MC. 2009.. The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains. . PNAS 106:(6):177277
    [Crossref] [Google Scholar]
  172. 172.
    Walton TA, Sousa MC. 2004.. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. . Mol. Cell 15:(3):36774
    [Crossref] [Google Scholar]
  173. 173.
    Wang X, Peterson JH, Bernstein HD. 2021.. Bacterial outer membrane proteins are targeted to the Bam complex by two parallel mechanisms. . mBio 12:(3):e00597
    [Google Scholar]
  174. 174.
    Weininger U, Jakob RP, Kovermann M, Balbach J, Schmid FX. 2010.. The prolyl isomerase domain of PpiD from Escherichia coli shows a parvulin fold but is devoid of catalytic activity. . Protein Sci. 19:(1):618
    [Crossref] [Google Scholar]
  175. 175.
    Weski J, Ehrmann M. 2012.. Genetic analysis of 15 protein folding factors and proteases of the Escherichia coli cell envelope. . J. Bacteriol. 194:(12):322533
    [Crossref] [Google Scholar]
  176. 176.
    Wu K, Stull F, Lee C, Bardwell JCA. 2019.. Protein folding while chaperone bound is dependent on weak interactions. . Nat. Commun. 10::4833
    [Crossref] [Google Scholar]
  177. 177.
    Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. 2005.. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. . Cell 121:(2):23545
    [Crossref] [Google Scholar]
  178. 178.
    Wu T, McCandlish AC, Gronenberg LS, Chng S-S, Silhavy TJ, Kahne D. 2006.. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. . PNAS 103:(31):1175459
    [Crossref] [Google Scholar]
  179. 179.
    Zhang M, Lin S, Song X, Liu J, Fu Y, et al. 2011.. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. . Nat. Chem. Biol. 7:(10):67177
    [Crossref] [Google Scholar]
  180. 180.
    Zhang S, He D, Yang Y, Lin S, Zhang M, et al. 2016.. Comparative proteomics reveal distinct chaperone–client interactions in supporting bacterial acid resistance. . PNAS 113:(39):1087277
    [Crossref] [Google Scholar]
  181. 181.
    Zoetendal EG, Smith AH, Sundset MA, Mackie RI. 2008.. The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli. . Appl. Environ. Microbiol. 74:(2):53539
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041522-102901
Loading
/content/journals/10.1146/annurev-micro-041522-102901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error