1932

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligate mutualists that can enhance nutrition and growth of their plant hosts while providing protection against pathogens. AMF produce spores and hyphal networks that can carry thousands of nuclei in a continuous cytoplasm, with no evidence of sexual reproduction. This review examines the impact of genomic technologies on our view of AMF genetics and evolution. We highlight how the genetics, nuclear dynamics, and epigenetics of these prominent symbionts follow trends preserved in distant multinucleate fungal relatives. We also propose new avenues of research to improve our understanding of their nuclear biology and their intricate genetic interactions with plant hosts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041522-105143
2024-11-20
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041522-105143.html?itemId=/content/journals/10.1146/annurev-micro-041522-105143&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agnolucci M, Avio L, Pepe A, Turrini A, Cristani C, et al. 2019.. Bacteria associated with a commercial mycorrhizal inoculum: community composition and multifunctional activity as assessed by Illumina sequencing and culture-dependent tools. . Front. Plant Sci. 9::1956
    [Crossref] [Google Scholar]
  2. 2.
    Agnolucci M, Battini F, Cristani C, Giovannetti M. 2015.. Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. . Biol. Fertil. Soils 51:(3):37989
    [Crossref] [Google Scholar]
  3. 3.
    Anderson JB, Kohn LM. 2007.. Dikaryons, diploids, and evolution. . In Sex in Fungi: Molecular Determination and Evolutionary Implications, ed. J Heitman, JW Kronstad, JW Taylor, LA Casselton , pp. 33348. Washington, DC:: Am. Soc. Microbiol.
    [Google Scholar]
  4. 4.
    Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR. 2010.. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. . Curr. Biol. 20:(13):121621
    [Crossref] [Google Scholar]
  5. 5.
    Angelard C, Sanders IR. 2011.. Effect of segregation and genetic exchange on arbuscular mycorrhizal fungi in colonization of roots. . New Phytol. 189:(3):65257
    [Crossref] [Google Scholar]
  6. 6.
    Angelard C, Tanner CJ, Fontanillas P, Niculita-Hirzel H, Masclaux F, Sanders IR. 2014.. Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. . ISME J. 8:(2):28494
    [Crossref] [Google Scholar]
  7. 7.
    Basiru S, Ait Si Mhand K, Hijri M. 2023.. Disentangling arbuscular mycorrhizal fungi and bacteria at the soil–root interface. . Mycorrhiza 33:(3):11937
    [Crossref] [Google Scholar]
  8. 8.
    Beaudet D, Chen ECH, Mathieu S, Yildirir G, Ndikumana S, et al. 2017.. Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi. . DNA Res. 25:(2):21727
    [Crossref] [Google Scholar]
  9. 9.
    Beaudet D, de la Providencia IE, Labridy M, Roy-Bolduc A, Daubois L, Hijri M. 2014.. Intraisolate mitochondrial genetic polymorphism and gene variants coexpression in arbuscular mycorrhizal fungi. . Genome Biol. Evol. 7:(1):21827
    [Crossref] [Google Scholar]
  10. 10.
    Beaudet D, Terrat Y, Halary S, de la Providencia IE, Hijri M. 2013.. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes. . Genome Biol. Evol. 5:(9):162843
    [Crossref] [Google Scholar]
  11. 11.
    Berruti A, Demasi S, Lumini E, Kobayashi N, Scariot V, Bianciotto V. 2017.. Wild Camellia japonica specimens in the Shimane Prefecture (Japan) host previously undescribed AMF diversity. . Appl. Soil Ecol. 115::1018
    [Crossref] [Google Scholar]
  12. 12.
    Bever JD, Wang M. 2005.. Arbuscular mycorrhizal fungi: hyphal fusion and multigenomic structure. . Nature 433:(7022):E34
    [Crossref] [Google Scholar]
  13. 13.
    Bharadwaj DP, Lundquist P-O, Persson P, Alström S. 2008.. Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. . FEMS Microbiol. Ecol. 65:(2):31022
    [Crossref] [Google Scholar]
  14. 14.
    Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P. 1996.. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. . Appl. Environ. Microbiol. 62:(8):300510
    [Crossref] [Google Scholar]
  15. 15.
    Bianciotto V, Genre A, Jargeat P, Lumini E, Bécard G, Bonfante P. 2004.. Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. . Appl. Environ. Microbiol. 70:(6):36008
    [Crossref] [Google Scholar]
  16. 16.
    Bianciotto V, Lumini E, Bonfante P, Vandamme P. 2003.. “ Candidatus Glomeribacter gigasporarum” gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. . Int. J. Syst. Evol. Microbiol. 53:(Part 1):12124
    [Crossref] [Google Scholar]
  17. 17.
    Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A, et al. 2022.. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. . Nat. Biotechnol. 40:(5):71119
    [Crossref] [Google Scholar]
  18. 18.
    Bonfante P. 2022.. Gigaspora margarita, a multifaceted arbuscular mycorrhizal fungus. . Microbiology 168:(6). https://doi.org/10.1099/mic.0.001202
    [Crossref] [Google Scholar]
  19. 19.
    Bonfante P, Balestrini R, Mend Gen K. 1994.. Storage and secretion processes in the spore of Gigaspora margarita Becker & Hall as revealed by high-pressure freezing and freeze substitution. . New Phytol. 128:(1):93101
    [Crossref] [Google Scholar]
  20. 20.
    Börstler B, Raab PA, Thiéry O, Morton JB, Redecker D. 2008.. Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. . New Phytol. 180:(2):45265
    [Crossref] [Google Scholar]
  21. 21.
    Chen ECH, Mathieu S, Hoffrichter A, Ropars J, Dreissig S, et al. 2020.. More filtering on SNP calling does not remove evidence of inter-nucleus recombination in dikaryotic arbuscular mycorrhizal fungi. . Front. Plant Sci. 11::912
    [Crossref] [Google Scholar]
  22. 22.
    Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, et al. 2018.. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. . New Phytol. 220:(4):116171
    [Crossref] [Google Scholar]
  23. 23.
    Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. 2018.. Beneficial services of arbuscular mycorrhizal fungi—from ecology to application. . Front. Plant Sci. 9::1270
    [Crossref] [Google Scholar]
  24. 24.
    Colard A, Angelard C, Sanders IR. 2011.. Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription. . Appl. Environ. Microbiol. 77:(18):651015
    [Crossref] [Google Scholar]
  25. 25.
    Cornell C, Kokkoris V, Turcu B, Dettman J, Stefani F, Corradi N. 2022.. The arbuscular mycorrhizal fungus Rhizophagus irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors. . Fungal Genet. Biol. 158::103639
    [Crossref] [Google Scholar]
  26. 26.
    Corradi N, Brachmann A. 2016.. Fungal mating in the most widespread plant symbionts?. Trends Plant Sci. 22:(2):17583
    [Crossref] [Google Scholar]
  27. 27.
    Corradi N, Croll D, Colard A, Kuhn G, Ehinger M, Sanders IR. 2007.. Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. . Appl. Environ. Microbiol. 73:(1):36669
    [Crossref] [Google Scholar]
  28. 28.
    Corradi N, Kuhn G, Sanders IR. 2004.. Monophyly of β-tubulin and H+-ATPase gene variants in Glomus intraradices: consequences for molecular evolutionary studies of AM fungal genes. . Fungal Genet. Biol. 41:(2):26273
    [Crossref] [Google Scholar]
  29. 29.
    Dallaire A, Manley BF, Wilkens M, Bista I, Quan C, et al. 2021.. Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus Rhizophagus irregularis. . Genome Res. 31:(12):2290302
    [Crossref] [Google Scholar]
  30. 30.
    de la Providencia IE, Nadimi M, Beaudet D, Rodriguez Morales G, Hijri M. 2013.. Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi. . New Phytol. 200:(1):21121
    [Crossref] [Google Scholar]
  31. 31.
    Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. 2014.. Extensive error in the number of genes inferred from draft genome assemblies. . PLOS Comput. Biol. 10:(12):e1003998
    [Crossref] [Google Scholar]
  32. 32.
    Dhillon B, Kema GHJ, Hamelin RC, Bluhm BH, Goodwin SB. 2019.. Variable genome evolution in fungi after transposon-mediated amplification of a housekeeping gene. . Mob. DNA 10::37
    [Crossref] [Google Scholar]
  33. 33.
    Du Z-Y, Zienkiewicz K, Vande Pol N, Ostrom NE, Benning C, Bonito GM. 2019.. Algal–fungal symbiosis leads to photosynthetic mycelium. . eLife 8::e47815
    [Crossref] [Google Scholar]
  34. 34.
    Ehinger M, Koch AM, Sanders IR. 2009.. Changes in arbuscular mycorrhizal fungal phenotypes and genotypes in response to plant species identity and phosphorus concentration. . New Phytol. 184:(2):41223
    [Crossref] [Google Scholar]
  35. 35.
    Emmett BD, Lévesque-Tremblay V, Harrison MJ. 2021.. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. . ISME J. 15:(8):227688
    [Crossref] [Google Scholar]
  36. 36.
    Ezawa T, Silvestri A, Maruyama H, Tawaraya K, Suzuki M, et al. 2023.. Structurally distinct mitoviruses: Are they an ancestral lineage of the Mitoviridae exclusive to arbuscular mycorrhizal fungi (Glomeromycotina)?. mBio 14:(4):00240
    [Google Scholar]
  37. 37.
    Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, et al. 2020.. RepeatModeler2 for automated genomic discovery of transposable element families. . PNAS 117:(17):945157
    [Crossref] [Google Scholar]
  38. 38.
    Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, et al. 2002.. Arbuscular mycorrhiza on root-organ cultures. . Can. J. Bot. 80:(1):120
    [Crossref] [Google Scholar]
  39. 39.
    Fouché S, Oggenfuss U, Chanclud E, Croll D. 2022.. A devil's bargain with transposable elements in plant pathogens. . Trends Genet. 38:(3):22230
    [Crossref] [Google Scholar]
  40. 40.
    Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu C-H, Panstruga R. 2020.. Rapid evolution in plant–microbe interactions—a molecular genomics perspective. . New Phytol. 225:(3):113442
    [Crossref] [Google Scholar]
  41. 41.
    Fraser JA, Heitman J. 2003.. Fungal mating-type loci. . Curr. Biol. 13:(20):R79295
    [Crossref] [Google Scholar]
  42. 42.
    Galagan JE, Selker EU. 2004.. RIP: the evolutionary cost of genome defense. . Trends Genet. 20:(9):41723
    [Crossref] [Google Scholar]
  43. 43.
    Gandolfi A, Sanders IR, Rossi V, Menozzi P. 2003.. Evidence of recombination in putative ancient asexuals. . Mol. Biol. Evol. 20:(5):75461
    [Crossref] [Google Scholar]
  44. 44.
    Gehrmann T, Pelkmans JF, Ohm RA, Vos AM, Sonnenberg ASM, et al. 2018.. Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs. . PNAS 115:(17):442934
    [Crossref] [Google Scholar]
  45. 45.
    Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 2015.. 50-plus years of fungal viruses. . Virology 479/480::35668
    [Crossref] [Google Scholar]
  46. 46.
    Ghabrial SA, Suzuki N. 2009.. Viruses of plant pathogenic fungi. . Annu. Rev. Phytopathol. 47::35384
    [Crossref] [Google Scholar]
  47. 47.
    Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G, et al. 2012.. The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. . ISME J. 6:(1):13645
    [Crossref] [Google Scholar]
  48. 48.
    Giovannini L, Palla M, Agnolucci M, Avio L, Sbrana C, et al. 2020.. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing inocula. . Agronomy 10:(1):106
    [Crossref] [Google Scholar]
  49. 49.
    Guinto T, Balendres MA. 2023.. Current knowledge on mycoviruses associated with mycorrhizal fungi. . Arch. Phytopathol. Plant Protect. 56:(10):76186
    [Crossref] [Google Scholar]
  50. 50.
    Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, et al. 2009.. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. . Nature 461:(7262):39398
    [Crossref] [Google Scholar]
  51. 51.
    Halary S, Malik S-B, Lildhar L, Slamovits CH, Hijri M, Corradi N. 2011.. Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. . Genome Biol. Evol. 3::95058
    [Crossref] [Google Scholar]
  52. 52.
    Hayward A, Gilbert C. 2022.. Transposable elements. . Curr. Biol. 32:(17):R9049
    [Crossref] [Google Scholar]
  53. 53.
    Heitman J. 2006.. Sexual reproduction and the evolution of microbial pathogens. . Curr. Biol. 16:(17):R71125
    [Crossref] [Google Scholar]
  54. 54.
    Hijri M, Sanders IR. 2004.. The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes. . Fungal Genet. Biol. 41:(2):25361
    [Crossref] [Google Scholar]
  55. 55.
    Hijri M, Sanders IR. 2005.. Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. . Nature 433:(7022):16063
    [Crossref] [Google Scholar]
  56. 56.
    Hiltunen M, Grudzinska-Sterno M, Wallerman O, Ryberg M, Johannesson H. 2019.. Maintenance of high genome integrity over vegetative growth in the fairy-ring mushroom Marasmius oreades. . Curr. Biol. 29:(16):275865.e6
    [Crossref] [Google Scholar]
  57. 57.
    Iffis B, St-Arnaud M, Hijri M. 2016.. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes. . Environ. Microbiol. 18:(8):2689704
    [Crossref] [Google Scholar]
  58. 58.
    Jiang F, Zhang L, Zhou J, George TS, Feng G. 2021.. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. . New Phytol. 230:(1):30415
    [Crossref] [Google Scholar]
  59. 59.
    Judson OP, Normark BB. 1996.. Ancient asexual scandals. . Trends Ecol. Evol. 11:(2):4146
    [Crossref] [Google Scholar]
  60. 60.
    Kakouridis A, Hagen JA, Kan MP, Mambelli S, Feldman LJ, et al. 2022.. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. . New Phytol. 236:(1):21021
    [Crossref] [Google Scholar]
  61. 61.
    Kapitonov VV, Jurka J. 2007.. Helitrons on a roll: eukaryotic rolling-circle transposons. . Trends Genet. 23:(10):52129
    [Crossref] [Google Scholar]
  62. 62.
    Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, et al. 2017.. Lipid transfer from plants to arbuscular mycorrhiza fungi. . eLife 6::e29107
    [Crossref] [Google Scholar]
  63. 63.
    Koch AM, Antunes PM, Maherali H, Hart MM, Klironomos JN. 2017.. Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: Conservatism in fungal morphology does not predict host plant growth. . New Phytol. 214:(3):133037
    [Crossref] [Google Scholar]
  64. 64.
    Koch AM, Croll D, Sanders IR. 2006.. Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. . Ecol. Lett. 9:(2):10310
    [Crossref] [Google Scholar]
  65. 65.
    Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR. 2004.. High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. . PNAS 101:(8):236974
    [Crossref] [Google Scholar]
  66. 66.
    Kokkoris V, Chagnon P-L, Yildirir G, Clarke K, Goh D, et al. 2021.. Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. . Curr. Biol. 31:(7):153138.e6
    [Crossref] [Google Scholar]
  67. 67.
    Kokkoris V, Stefani F, Dalpé Y, Dettman J, Corradi N. 2020.. Nuclear dynamics in the arbuscular mycorrhizal fungi. . Trends Plant Sci. 25:(8):76578
    [Crossref] [Google Scholar]
  68. 68.
    Krüger C, Kohout P, Janoušková M, Püschel D, Frouz J, Rydlová J. 2017.. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. . Front. Microbiol. 8::719
    [Crossref] [Google Scholar]
  69. 69.
    Kuhn G, Hijri M, Sanders IR. 2001.. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. . Nature 414:(6865):74548
    [Crossref] [Google Scholar]
  70. 70.
    Lanfranco L, Bonfante P. 2023.. Lessons from arbuscular mycorrhizal fungal genomes. . Curr. Opin. Microbiol. 75::102357
    [Crossref] [Google Scholar]
  71. 71.
    Lax C, Tahiri G, Patiño-Medina JA, Cánovas-Márquez JT, Pérez-Ruiz JA, et al. 2020.. The evolutionary significance of RNAi in the fungal kingdom. . Int. J. Mol. Sci. 21:(24):9348
    [Crossref] [Google Scholar]
  72. 72.
    Lee J, Young JPW. 2009.. The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. . New Phytol. 183:(1):20011
    [Crossref] [Google Scholar]
  73. 73.
    Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, et al. 2014.. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. . PLOS Genet. 10:(1):e1004078
    [Crossref] [Google Scholar]
  74. 74.
    Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, et al. 2007.. Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. . Cell. Microbiol. 9:(7):171629
    [Crossref] [Google Scholar]
  75. 75.
    Macdonald RM, Chandler MR. 1981.. Bacterium-like organelles in the vesicular-arbuscular mycorrhizal fungus Glomus caledonius. . New Phytol. 89:(2):24146
    [Crossref] [Google Scholar]
  76. 76.
    Macdonald RM, Chandler MR, Mosse B. 1982.. The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi. . New Phytol. 90:(4):65963
    [Crossref] [Google Scholar]
  77. 77.
    Malar CM, Krüger M, Krüger C, Wang Y, Stajich JE, et al. 2021.. The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. . Curr. Biol. 31:(7):157880
    [Crossref] [Google Scholar]
  78. 78.
    Malar CM, Wang Y, Stajich JE, Kokkoris V, Villeneuve-Laroche M, et al. 2022.. Early branching arbuscular mycorrhizal fungus Paraglomus occultum carries a small and repeat-poor genome compared to relatives in the Glomeromycotina. . Microb. Genom. 8:(4):000810
    [Google Scholar]
  79. 79.
    Manley BF, Lotharukpong JS, Barrera-Redondo J, Llewellyn T, Yildirir G, et al. 2023.. A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus Rhizophagus irregularis. . G3 13:(6):jkad077
    [Crossref] [Google Scholar]
  80. 80.
    Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, et al. 2008.. The long hard road to a completed Glomus intraradices genome. . New Phytol. 180:(4):74750
    [Crossref] [Google Scholar]
  81. 81.
    Martin FM, Uroz S, Barker DG. 2017.. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. . Science 356:(6340):eaad4501
    [Crossref] [Google Scholar]
  82. 82.
    Mathieu S, Cusant L, Roux C, Corradi N. 2018.. Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. . New Phytol. 220:(4):112934
    [Crossref] [Google Scholar]
  83. 83.
    Meunier C, Darolti I, Reimegård J, Mank JE, Johannesson H. 2022.. Nuclear-specific gene expression in heterokaryons of the filamentous ascomycete Neurospora tetrasperma. . Proc. Biol. Sci. 289:(1980):20220971
    [Google Scholar]
  84. 84.
    Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, et al. 2020.. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. . Nat. Commun. 11::5125
    [Crossref] [Google Scholar]
  85. 85.
    Mondo SJ, Toomer KH, Morton JB, Lekberg Y, Pawlowska TE. 2012.. Evolutionary stability in a 400-million-year-old heritable facultative mutualism. . Evolution 66:(8):256476
    [Crossref] [Google Scholar]
  86. 86.
    Montoliu-Nerin M, Sánchez-García M, Bergin C, Kutschera VE, Johannesson H, et al. 2021.. In-depth phylogenomic analysis of arbuscular mycorrhizal fungi based on a comprehensive set of de novo genome assemblies. . Front. Fungal Biol. 2::716395
    [Crossref] [Google Scholar]
  87. 87.
    Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A, et al. 2019.. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. . New Phytol. 222:(3):158498
    [Crossref] [Google Scholar]
  88. 88.
    Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF. 2012.. Group I intron–mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. . Mol. Biol. Evol. 29:(9):2199210
    [Crossref] [Google Scholar]
  89. 89.
    Nadimi M, Stefani FOP, Hijri M. 2014.. The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. . Genome Biol. Evol. 7:(1):96105
    [Crossref] [Google Scholar]
  90. 90.
    Nadimi M, Stefani FOP, Hijri M. 2016.. The large (134.9 kb) mitochondrial genome of the glomeromycete Funneliformis mosseae. . Mycorrhiza 26:(7):74755
    [Crossref] [Google Scholar]
  91. 91.
    Naito M, Desirò A, González JB, Tao G, Morton JB, et al. 2017.. “ Candidatus Moeniiplasma glomeromycotorum,” an endobacterium of arbuscular mycorrhizal fungi. . Int. J. Syst. Evol. Microbiol. 67:(5):117784
    [Crossref] [Google Scholar]
  92. 92.
    Naito M, Morton JB, Pawlowska TE. 2015.. Minimal genomes of Mycoplasma-related endobacteria are plastic and contain host-derived genes for sustained life within Glomeromycota. . PNAS 112:(25):779196
    [Crossref] [Google Scholar]
  93. 93.
    Naito M, Pawlowska TE. 2016.. Defying Muller's ratchet: Ancient heritable endobacteria escape extinction through retention of recombination and genome plasticity. . mBio 7:(3):02057
    [Crossref] [Google Scholar]
  94. 94.
    Naumann M, Schüssler A, Bonfante P. 2010.. The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. . ISME J. 4:(7):86271
    [Crossref] [Google Scholar]
  95. 95.
    Oliveira JIN, Corradi N. 2023.. Strain-specific evolution and host-specific regulation of transposable elements in the model plant symbiont Rhizophagus irregularis. . G3 14:(5):jkae055
    [Crossref] [Google Scholar]
  96. 96.
    Parniske M. 2008.. Arbuscular mycorrhiza: the mother of plant root endosymbioses. . Nat. Rev. Microbiol. 6:(10):76375
    [Crossref] [Google Scholar]
  97. 97.
    Pawlowska TE. 2005.. Genetic processes in arbuscular mycorrhizal fungi. . FEMS Microbiol. Lett. 251:(2):18592
    [Crossref] [Google Scholar]
  98. 98.
    Pawlowska TE, Taylor JW. 2004.. Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. . Nature 427:(6976):73337
    [Crossref] [Google Scholar]
  99. 99.
    Pelin A, Pombert J-F, Salvioli A, Bonen L, Bonfante P, Corradi N. 2012.. The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns. . New Phytol. 194:(3):83645
    [Crossref] [Google Scholar]
  100. 100.
    Peyret-Guzzon M, Stockinger H, Bouffaud M-L, Farcy P, Wipf D, Redecker D. 2016.. Arbuscular mycorrhizal fungal communities and Rhizophagus irregularis populations shift in response to short-term ploughing and fertilisation in a buffer strip. . Mycorrhiza 26:(1):3346
    [Crossref] [Google Scholar]
  101. 101.
    Plett JM, Martin F. 2012.. Poplar root exudates contain compounds that induce the expression of MiSSP7 in Laccaria bicolor. . Plant Signal. Behav. 7:(1):1215
    [Crossref] [Google Scholar]
  102. 102.
    Raab PA, Brennwald A, Redecker D. 2005.. Mitochondrial large ribosomal subunit sequences are homogeneous within isolates of Glomus (arbuscular mycorrhizal fungi, Glomeromycota). . Mycol. Res. 109:(12):131522
    [Crossref] [Google Scholar]
  103. 103.
    Rich MK, Vigneron N, Libourel C, Keller J, Xue L, et al. 2021.. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. . Science 372:(6544):86468
    [Crossref] [Google Scholar]
  104. 104.
    Ropars J, Dupont J, Fontanillas E, Rodríguez de la Vega RC, Malagnac F, et al. 2012.. Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti. . PLOS ONE 7:(11):e49665
    [Crossref] [Google Scholar]
  105. 105.
    Ropars J, López-Villavicencio M, Dupont J, Snirc A, Gillot G, et al. 2014.. Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti. . Evol. Appl. 7:(4):43341
    [Crossref] [Google Scholar]
  106. 106.
    Ropars J, Toro KS, Noel J, Pelin A, Charron P, et al. 2016.. Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. . Nat. Microbiol. 1::16033
    [Crossref] [Google Scholar]
  107. 107.
    Rosendahl S. 2008.. Communities, populations and individuals of arbuscular mycorrhizal fungi. . New Phytol. 178:(2):25366
    [Crossref] [Google Scholar]
  108. 108.
    Sahraei SE, Sánchez-García M, Montoliu-Nerin M, Manyara D, Bergin C, et al. 2022.. Whole genome analyses based on single, field collected spores of the arbuscular mycorrhizal fungus Funneliformis geosporum. . Mycorrhiza 32:(5/6):36171
    [Crossref] [Google Scholar]
  109. 109.
    Sanders IR. 1999.. No sex please, we're fungi. . Nature 399:(6738):73739
    [Crossref] [Google Scholar]
  110. 110.
    Sanders IR. 2002.. Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. . Am. Nat. 160:(Suppl. 4):S12841
    [Crossref] [Google Scholar]
  111. 111.
    Sanders IR, Croll D. 2010.. Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. . Annu. Rev. Genet. 44::27192
    [Crossref] [Google Scholar]
  112. 112.
    Savary R, Masclaux FG, Wyss T, Droh G, Cruz Corella J, et al. 2017.. A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. . ISME J. 12::1730
    [Crossref] [Google Scholar]
  113. 113.
    Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, et al. 2020.. Biodiversity genomics of small metazoans: high quality de novo genomes from single specimens of field-collected and ethanol-preserved springtails. . bioRxiv 2020.08.10.244541. https://doi.org/10.1101/2020.08.10.244541
  114. 114.
    Sędzielewska KA, Fuchs J, Temsch EM, Baronian K, Watzke R, Kunze G. 2011.. Estimation of the Glomus intraradices nuclear DNA content. . New Phytol. 192:(4):79497
    [Crossref] [Google Scholar]
  115. 115.
    Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. 2021.. Homo- and dikaryons of the arbuscular mycorrhizal fungus Rhizophagus irregularis differ in life history strategy. . Front. Plant Sci. 12::715377
    [Crossref] [Google Scholar]
  116. 116.
    Shahid S, Slotkin RK. 2020.. The current revolution in transposable element biology enabled by long reads. . Curr. Opin. Plant Biol. 54::4956
    [Crossref] [Google Scholar]
  117. 117.
    Shapiro JA, von Sternberg R. 2005.. Why repetitive DNA is essential to genome function. . Biol. Rev. Camb. Philos. Soc. 80:(2):22750
    [Crossref] [Google Scholar]
  118. 118.
    Sheng M, Chen X, Zhang X, Hamel C, Cui X, et al. 2017.. Changes in arbuscular mycorrhizal fungal attributes along a chronosequence of black locust (Robinia pseudoacacia) plantations can be attributed to the plantation-induced variation in soil properties. . Sci. Total Environ. 599/600::27383
    [Crossref] [Google Scholar]
  119. 119.
    Silvestri A, Fiorilli V, Miozzi L, Accotto GP, Turina M, Lanfranco L. 2019.. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. . BMC Genom. 20::169
    [Crossref] [Google Scholar]
  120. 120.
    Silvestri A, Turina M, Fiorilli V, Miozzi L, Venice F, et al. 2020.. Different genetic sources contribute to the small RNA population in the arbuscular mycorrhizal fungus Gigaspora margarita. . Front. Microbiol. 11::395
    [Crossref] [Google Scholar]
  121. 121.
    Singh PP, Srivastava D, Shukla S, Varsha. 2021.. Rhizophagus proliferus genome sequence reiterates conservation of genetic traits in AM fungi, but predicts higher saprotrophic activity. . Arch. Microbiol. 204::105
    [Crossref] [Google Scholar]
  122. 122.
    Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. 2013.. DNA transposon–based gene vehicles—scenes from an evolutionary drive. . J. Biomed. Sci. 20::92
    [Crossref] [Google Scholar]
  123. 123.
    Smith SE, Read DJ. 2010.. Mycorrhizal Symbiosis. San Diego, CA:: Academic. , 3rd ed..
    [Google Scholar]
  124. 124.
    Soyer JL, Clairet C, Gay EJ, Lapalu N, Rouxel T, et al. 2021.. Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization. . Chromosome Res. 29:(2):21936
    [Crossref] [Google Scholar]
  125. 125.
    Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, et al. 2016.. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. . Mycologia 108:(5):102846
    [Crossref] [Google Scholar]
  126. 126.
    Sperschneider J, Yildirir G, Rizzi YS, Malar C M, Mayrand Nicol A, et al. 2023.. Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions. . Nat. Microbiol. 8::214253
    [Crossref] [Google Scholar]
  127. 127.
    Stenlid J. 2000.. Variation with and without sex in mycorrhizal fungi. . Oikos 90:(3):60911
    [Crossref] [Google Scholar]
  128. 128.
    Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. 2021.. The Dfam community resource of transposable element families, sequence models, and genome annotations. . Mob. DNA 12::2
    [Crossref] [Google Scholar]
  129. 129.
    Sun X, Chen W, Ivanov S, MacLean AM, Wight H, et al. 2019.. Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. . New Phytol. 221:(3):155673
    [Crossref] [Google Scholar]
  130. 130.
    Terry V, Kokkoris V, Villeneuve-Laroche M, Turcu B, Chapman K, et al. 2023.. Mycorrhizal response of Solanum tuberosum to homokaryotic versus dikaryotic arbuscular mycorrhizal fungi. . Mycorrhiza 33:(5/6):33344
    [Crossref] [Google Scholar]
  131. 131.
    Teulet A, Quan C, Evangelisti E, Wanke A, Yang W, Schornack S. 2022.. A pathogen effector FOLD diversified in symbiotic fungi. . New Phytol. 239:(3):112739
    [Crossref] [Google Scholar]
  132. 132.
    Thiéry O, Moora M, Vasar M, Zobel M, Öpik M. 2012.. Inter- and intrasporal nuclear ribosomal gene sequence variation within one isolate of arbuscular mycorrhizal fungus, Diversispora sp. . Symbiosis 58::13547
    [Crossref] [Google Scholar]
  133. 133.
    Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, et al. 2012.. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. . New Phytol. 193:(3):75569
    [Crossref] [Google Scholar]
  134. 134.
    Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, et al. 2013.. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. . PNAS 110:(50):2011722
    [Crossref] [Google Scholar]
  135. 135.
    Torres-Martínez S, Ruiz-Vázquez RM. 2017.. The RNAi universe in fungi: a varied landscape of small RNAs and biological functions. . Annu. Rev. Microbiol. 71::37191
    [Crossref] [Google Scholar]
  136. 136.
    Turina M, Ghignone S, Astolfi N, Silvestri A, Bonfante P, Lanfranco L. 2018.. The virome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals the first report of DNA fragments corresponding to replicating non-retroviral RNA viruses in fungi. . Environ. Microbiol. 20:(6):201225
    [Crossref] [Google Scholar]
  137. 137.
    Turrini A, Avio L, Giovannetti M, Agnolucci M. 2018.. Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. . Front. Plant Sci. 9::1407
    [Crossref] [Google Scholar]
  138. 138.
    Ueling JK, Salvioli A, Amses KR, Partida-Martínez LP, Bonito G, Bonfante P. Endosymbionts of Mucoromycota fungi: diversity and function of their interactions. . In Evolution of Fungi and Fungal-Like Organisms, ed. S Pöggeler, T James , pp. 177205. Berlin:: Springer. , 2nd ed..
    [Google Scholar]
  139. 139.
    van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, et al. 1998.. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. . Nature 396:(6706):6972
    [Crossref] [Google Scholar]
  140. 140.
    Venice F, Chialva M, Domingo G, Novero M, Carpentieri A, et al. 2021.. Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. . Plant J. 108:(6):154764
    [Crossref] [Google Scholar]
  141. 141.
    Venice F, Ghignone S, Salvioli di Fossalunga A, Amselem J, Novero M, et al. 2020.. At the nexus of three kingdoms: The genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. . Environ. Microbiol. 22:(1):12241
    [Crossref] [Google Scholar]
  142. 142.
    Wang L, Zhang L, George TS, Feng G. 2023.. A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization. . New Phytol. 238:(2):85973
    [Crossref] [Google Scholar]
  143. 143.
    Wells JN, Feschotte C. 2020.. A field guide to eukaryotic transposable elements. . Annu. Rev. Genet. 54::53961
    [Crossref] [Google Scholar]
  144. 144.
    Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, et al. 2007.. A unified classification system for eukaryotic transposable elements. . Nat. Rev. Genet. 8:(12):97382
    [Crossref] [Google Scholar]
  145. 145.
    Yildirir G, Sperschneider J, Malar CM. 2022.. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. . New Phytol. 233:(3):1097107
    [Crossref] [Google Scholar]
  146. 146.
    Young JP. 2015.. Genome diversity in arbuscular mycorrhizal fungi. . Curr. Opin. Plant Biol. 26::11319
    [Crossref] [Google Scholar]
  147. 147.
    Zeng T, Holmer R, Hontelez J, te Lintel-Hekkert B, Marufu L, et al. 2018.. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. . Plant J. 94:(3):41125
    [Crossref] [Google Scholar]
  148. 148.
    Zhao H, Zhang R, Wu J, Meng L, Okazaki Y, et al. 2023.. A 1.5-Mb continuous endogenous viral region in the arbuscular mycorrhizal fungus Rhizophagus irregularis. . Virus Evol. 9:(2):vead064
    [Crossref] [Google Scholar]
  149. 149.
    Zuo W, Chen G, Gao Z, Li S, Chen Y, et al. 2021.. Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment. . Nat. Commun. 12::5827
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041522-105143
Loading
/content/journals/10.1146/annurev-micro-041522-105143
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error