1932

Abstract

Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts’ virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041522-105358
2024-11-20
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041522-105358.html?itemId=/content/journals/10.1146/annurev-micro-041522-105358&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Al Rwahnih M, Daubert S, Úrbez-Torres JR, Cordero F, Rowhani A. 2011.. Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. . Arch. Virol. 156::397403
    [Crossref] [Google Scholar]
  2. 2.
    Allen A, Islamovic E, Kaur J, Gold S, Shah D, Smith TJ. 2013.. The virally encoded killer proteins from Ustilago maydis. . Fungal Biol. Rev. 26::16673
    [Crossref] [Google Scholar]
  3. 3.
    Andika IB, Wei S, Cao C, Salaipeth L, Kondo H, Sun L. 2017.. Phytopathogenic fungus hosts a plant virus: a naturally occurring cross-kingdom viral infection. . PNAS 114::1226772
    [Crossref] [Google Scholar]
  4. 4.
    Applen Clancey S, Ruchti F, LeibundGut-Landmann S, Heitman J, Ianiri G. 2020.. A novel mycovirus evokes transcriptional rewiring in the fungus Malassezia and stimulates beta interferon production in macrophages. . mBio 11::e01534-20
    [Crossref] [Google Scholar]
  5. 5.
    Arthur K, Pearson M. 2014.. Geographic distribution and sequence diversity of the mycovirus Botrytis virus F. . Mycol. Prog. 13::124953
    [Crossref] [Google Scholar]
  6. 6.
    Aulia A, Andika IB, Kondo H, Hillman BI, Suzuki N. 2019.. A symptomless hypovirus, CHV4, facilitates stable infection of the chestnut blight fungus by a coinfecting reovirus likely through suppression of antiviral RNA silencing. . Virology 533::99107
    [Crossref] [Google Scholar]
  7. 7.
    Ayllón MA, Turina M, Xie J, Nerva L, Marzano S-YL, et al. 2020.. ICTV virus taxonomy profile. : Botourmiaviridae. J. Gen. Virol. 101::45455
    [Crossref] [Google Scholar]
  8. 8.
    Ayllón MA, Vainio EJ. 2023.. Mycoviruses as a part of the global virome: diversity, evolutionary links and lifestyle. . Adv. Virus Res. 115::186
    [Crossref] [Google Scholar]
  9. 9.
    Banks GT, Buck KW, Chain EB, Himmelweit F, Marks JE, et al. 1968.. Viruses in fungi and interferon stimulation. . Nature 218::54245
    [Crossref] [Google Scholar]
  10. 10.
    Bao X, Roossinck MJ. 2013.. Multiplexed interactions: viruses of endophytic fungi. . Adv. Virus Res. 86::3758
    [Crossref] [Google Scholar]
  11. 11.
    Bartholomäus A, Wibberg D, Winkler A, Pühler A, Schlüter A, Varrelmann M. 2016.. Deep sequencing analysis reveals the mycoviral diversity of the virome of an avirulent isolate of Rhizoctonia solani AG-2-2 IV. . PLOS ONE 11::e0165965
    [Crossref] [Google Scholar]
  12. 12.
    Bhattacharjee AS, Schulz F, Woyke T, Orcutt BN, Martínez Martínez J. 2023.. Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids. . ISME Commun. 3::10
    [Crossref] [Google Scholar]
  13. 13.
    Bian R, Andika IB, Pang T, Lian Z, Wei S, et al. 2020.. Facilitative and synergistic interactions between fungal and plant viruses. . PNAS 117::377988
    [Crossref] [Google Scholar]
  14. 14.
    Botella L, Janoušek J, Maia C, Jung MH, Raco M, Jung T. 2020.. Marine oomycetes of the genus Halophytophthora harbor viruses related to bunyaviruses. . Front. Microbiol. 11::1467
    [Crossref] [Google Scholar]
  15. 15.
    Botella L, Jung MH, Rost M, Jung T. 2022.. Natural populations from the Phytophthora palustris complex show a high diversity and abundance of ssRNA and dsRNA viruses. . J. Fungi 8::1118
    [Crossref] [Google Scholar]
  16. 16.
    Botella L, Jung T. 2021.. Multiple viral infections detected in Phytophthora condilina by total and small RNA sequencing. . Viruses 13::620
    [Crossref] [Google Scholar]
  17. 17.
    Boulanouar F, Ranque S, Levasseur A. 2023.. Tracking mycoviruses in public RNAseq datasets of Malassezia: three original totiviruses revealed. . Viruses 15::1368
    [Crossref] [Google Scholar]
  18. 18.
    Brusini J, Robin C. 2013.. Mycovirus transmission revisited by in situ pairings of vegetatively incompatible isolates of Cryphonectria parasitica. . J. Virol. Methods 187::43542
    [Crossref] [Google Scholar]
  19. 19.
    Cai G, Krychiw JF, Myers K, Fry WE, Hillman BI. 2013.. A new virus from the plant pathogenic oomycete Phytophthora infestans with an 8 kb dsRNA genome: the sixth member of a proposed new virus genus. . Virology 435::34149
    [Crossref] [Google Scholar]
  20. 20.
    Cañizares MC, López-Escudero FJ, Pérez-Artés E, García-Pedrajas MD. 2018.. Characterization of a novel single-stranded RNA mycovirus related to invertebrate viruses from the plant pathogen Verticillium dahliae. . Arch. Virol. 163::77176
    [Crossref] [Google Scholar]
  21. 21.
    Chao S, Wang H, Zhang S, Chen G, Mao C, et al. 2022.. Novel RNA viruses discovered in weeds in rice fields. . Viruses 14::2489
    [Crossref] [Google Scholar]
  22. 22.
    Chen BS, Choi GH, Nuss DL. 1994.. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. . Science 264::176264
    [Crossref] [Google Scholar]
  23. 23.
    Chen Y-M, Sadiq S, Tian J-H, Chen X, Lin X-D, et al. 2022.. RNA viromes from terrestrial sites across China expand environmental viral diversity. . Nat. Microbiol. 7::131223
    [Crossref] [Google Scholar]
  24. 24.
    Cheng J, Jiang D, Fu Y, Li G, Peng Y, Ghabrial SA. 2003.. Molecular characterization of a dsRNA totivirus infecting the sclerotial parasite Coniothyrium minitans. . Virus Res. 93::4150
    [Crossref] [Google Scholar]
  25. 25.
    Chiapello M, Rodríguez-Romero J, Ayllón MA, Turina M. 2020.. Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. . Virus Evol. 6::veaa058
    [Crossref] [Google Scholar]
  26. 26.
    Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W, et al. 2011.. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. . PLOS Pathog. 7::e1002146
    [Crossref] [Google Scholar]
  27. 27.
    Chiba S, Suzuki N. 2015.. Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus. . PNAS 112::E491118
    [Crossref] [Google Scholar]
  28. 28.
    Choi GH, Nuss DL. 1992.. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. . Science 257::8003
    [Crossref] [Google Scholar]
  29. 29.
    Chun J, Yang H-E, Kim D-H. 2018.. Identification and molecular characterization of a novel partitivirus from Trichoderma atroviride NFCF394. . Viruses 10::578
    [Crossref] [Google Scholar]
  30. 30.
    Chun J, Yang H-E, Kim D-H. 2018.. Identification of a novel partitivirus of Trichoderma harzianum NFCF319 and evidence for the related antifungal activity. . Front. Plant Sci. 9::1699
    [Crossref] [Google Scholar]
  31. 31.
    Coclet C, Sorensen PO, Karaoz U, Wang S, Brodie EL, et al. 2023.. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. . Microbiome 11::237
    [Crossref] [Google Scholar]
  32. 32.
    Dai R, Yang S, Pang T, Tian M, Wang H, et al. 2024.. Identification of a negative-strand RNA virus with natural plant and fungal hosts. . PNAS 121::e2319582121
    [Crossref] [Google Scholar]
  33. 33.
    Dawe AL, Nuss DL. 2001.. Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. . Annu. Rev. Genet. 35::129
    [Crossref] [Google Scholar]
  34. 34.
    de Sá PB, Havens WM, Ghabrial SA. 2010.. Characterization of a novel broad-spectrum antifungal protein from virus-infected Helminthosporium (Cochliobolus) victoriae. . Phytopathology 100::88089
    [Crossref] [Google Scholar]
  35. 35.
    Degola F, Spadola G, Forgia M, Turina M, Dramis L, et al. 2021.. Aspergillus goes viral: ecological insights from the geographical distribution of the mycovirome within an Aspergillus flavus population and its possible correlation with aflatoxin biosynthesis. . J. Fungi 7::833
    [Crossref] [Google Scholar]
  36. 36.
    Deng F, Xu R, Boland GJ. 2003.. Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. . Phytopathology 93::140714
    [Crossref] [Google Scholar]
  37. 37.
    Deng Y, Zhou K, Wu M, Zhang J, Yang L, et al. 2022.. Viral cross-class transmission results in disease of a phytopathogenic fungus. . ISME J. 16::276374
    [Crossref] [Google Scholar]
  38. 38.
    Dong K, Xu C, Kotta-Loizou I, Jiang J, Lv R, et al. 2023.. Novel viroid-like RNAs naturally infect a filamentous fungus. . Adv. Sci. 10::e2204308
    [Crossref] [Google Scholar]
  39. 39.
    Double ML, Jarosz AM, Fulbright DW, Davelos Baines A, MacDonald WL. 2018.. Evaluation of two decades of Cryphonectria parasitica hypovirus introduction in an American chestnut stand in Wisconsin. . Phytopathology 108::70210
    [Crossref] [Google Scholar]
  40. 40.
    Double ML, Nuss DL, Rittenour WR, Holásková I, Short DPG, et al. 2017.. Long-term field study of transgenic hypovirulent strains of Cryphonectria parasitica in a forest setting. . Forest Pathol. 47::e12367
    [Crossref] [Google Scholar]
  41. 41.
    Drenkhan T, Kasanen R, Vainio EJ. 2016.. Phlebiopsis gigantea and associated viruses survive passing through the digestive tract of Hylobius abietis. . Biocontrol Sci. Technol. 26::32030
    [Crossref] [Google Scholar]
  42. 42.
    Ejmal MA, Holland DJ, MacDiarmid RM, Pearson MN. 2018.. The effect of Aspergillus thermomutatus chrysovirus 1 on the biology of three Aspergillus species. . Viruses 10::539
    [Crossref] [Google Scholar]
  43. 43.
    Elwan EA, Rabie M, Aleem EEA, Fattouh FA, Kagda MS, Zaghloul HAH. 2023.. Exploring virus presence in field-collected potato leaf samples using RNA sequencing. . J. Genet. Eng. Biotechnol. 21::106
    [Crossref] [Google Scholar]
  44. 44.
    Eusebio-Cope A, Sun L, Tanaka T, Chiba S, Kasahara S, Suzuki N. 2015.. The chestnut blight fungus for studies on virus/host and virus/virus interactions: from a natural to a model host. . Virology 477::16475
    [Crossref] [Google Scholar]
  45. 45.
    Ezawa T, Silvestri A, Maruyama H, Tawaraya K, Suzuki M, et al. 2023.. Structurally distinct mitoviruses: Are they an ancestral lineage of the Mitoviridae exclusive to arbuscular mycorrhizal fungi (Glomeromycotina)?. mBio 14::e0024023
    [Crossref] [Google Scholar]
  46. 46.
    Feng C, Feng J, Wang Z, Pedersen C, Wang X, et al. 2021.. Identification of the viral determinant of hypovirulence and host range in Sclerotiniaceae of a genomovirus reconstructed from the plant metagenome. . J. Virol. 95::e0026421
    [Crossref] [Google Scholar]
  47. 47.
    Feschotte C, Gilbert C. 2012.. Endogenous viruses: insights into viral evolution and impact on host biology. . Nat. Rev. Genet. 13::28396
    [Crossref] [Google Scholar]
  48. 48.
    Forgia M, Chiapello M, Daghino S, Pacifico D, Crucitti D, et al. 2022.. Three new clades of putative viral RNA-dependent RNA polymerases with rare or unique catalytic triads discovered in libraries of ORFans from powdery mildews and the yeast of oenological interest Starmerella bacillaris. . Virus Evol. 8::veac038
    [Crossref] [Google Scholar]
  49. 49.
    Forgia M, Navarro B, Daghino S, Cervera A, Gisel A, et al. 2023.. Hybrids of RNA viruses and viroid-like elements replicate in fungi. . Nat. Commun. 14::2591
    [Crossref] [Google Scholar]
  50. 50.
    Fu M, Qu Z, Pierre-Pierre N, Jiang D, Souza FL, et al. 2024.. Exploring the mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 as a biocontrol agent of white mold caused by Sclerotinia sclerotiorum. . Plant Dis. 108:(3):62434
    [Crossref] [Google Scholar]
  51. 51.
    Gallot-Lavallée L, Blanc G. 2017.. A glimpse of nucleo-cytoplasmic large DNA virus biodiversity through the eukaryotic genomics window. . Viruses 9::17
    [Crossref] [Google Scholar]
  52. 52.
    García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL, Jacquat AG, Dambolena JS. 2019.. Mycoviruses in biological control: from basic research to field implementation. . Phytopathology 109::182839
    [Crossref] [Google Scholar]
  53. 53.
    Ghabrial SA. 1998.. Origin, adaptation and evolutionary pathways of fungal viruses. . Virus Genes 16::11931
    [Crossref] [Google Scholar]
  54. 54.
    Gong Z, Zhang Y, Han G-Z. 2020.. Molecular fossils reveal ancient associations of dsDNA viruses with several phyla of fungi. . Virus Evol. 6::veaa008
    [Crossref] [Google Scholar]
  55. 55.
    Guinto T, Balendres MA. 2023.. Current knowledge on mycoviruses associated with mycorrhizal fungi. . Arch. Phytopathol. Plant Prot. 56::76186
    [Crossref] [Google Scholar]
  56. 56.
    Guo J, Zhang P, Wu N, Liu W, Liu Y, et al. 2024.. Transfection of entomopathogenic Metarhizium species with a mycovirus confers hypervirulence against two lepidopteran pests. . PNAS 121::e2320572121
    [Crossref] [Google Scholar]
  57. 57.
    Hai D, Li J, Jiang D, Cheng J, Fu Y, et al. 2024.. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. . Nat. Commun. 15::4748
    [Crossref] [Google Scholar]
  58. 58.
    Herrero Asensio N, Sánchez Márquez S, Zabalgogeazcoa I. 2012.. Mycovirus effect on the endophytic establishment of the entomopathogenic fungus Tolypocladium cylindrosporum in tomato and bean plants. . BioControl 58::22532
    [Crossref] [Google Scholar]
  59. 59.
    Hitch TCA, Edwards JE, Gilbert RA. 2019.. Metatranscriptomics reveals mycoviral populations in the ovine rumen. . FEMS Microbiol. Lett. 366::fnz161
    [Crossref] [Google Scholar]
  60. 60.
    Hollings M. 1962.. Viruses associated with a die-back disease of cultivated mushroom. . Nature 196::96265
    [Crossref] [Google Scholar]
  61. 61.
    Howitt RLJ, Beever RE, Pearson MN, Forster RLS. 2001.. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant ‘potex-like’ viruses. . J. Gen. Virol. 82:(Part 1):6778
    [Crossref] [Google Scholar]
  62. 62.
    Howitt RLJ, Beever RE, Pearson MN, Forster RLS. 2006.. Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant ‘potex-like’ viruses. . Arch. Virol. 151::56379
    [Crossref] [Google Scholar]
  63. 63.
    Hyde KD, Jeewon R, Chen Y-J, Bhunjun CS, Calabon MS, et al. 2020.. The numbers of fungi: Is the descriptive curve flattening?. Fungal Divers. 103::21971
    [Crossref] [Google Scholar]
  64. 64.
    Hyder R, Pennanen T, Hamberg L, Vainio EJ, Piri T, Hantula J. 2013.. Two viruses of Heterobasidion confer beneficial, cryptic or detrimental effects to their hosts in different situations. . Fungal Ecol. 6::38796
    [Crossref] [Google Scholar]
  65. 65.
    Ikeda K, Inoue K, Kida C, Uwamori T, Sasaki A, et al. 2013.. Potentiation of mycovirus transmission by zinc compounds via attenuation of heterogenic incompatibility in Rosellinia necatrix. . Appl. Environ. Microbiol. 79::368491
    [Crossref] [Google Scholar]
  66. 66.
    Jia J, Fu Y, Jiang D, Mu F, Cheng J, et al. 2021.. Interannual dynamics, diversity and evolution of the virome in Sclerotinia sclerotiorum from a single crop field. . Virus Evol. 7::veab032
    [Crossref] [Google Scholar]
  67. 67.
    Jia J, Jiang D, Xie J. 2024.. Viruses shuttle between fungi and plants. . Trends Microbiol. 32:(7):62021
    [Crossref] [Google Scholar]
  68. 68.
    Jia J, Mu F, Fu Y, Cheng J, Lin Y, et al. 2022.. A capsidless virus is trans-encapsidated by a bisegmented botybirnavirus. . J. Virol. 96::e0029622
    [Crossref] [Google Scholar]
  69. 69.
    Jiang Y, Yang B, Liu X, Tian X, Wang Q, et al. 2022.. A satellite dsRNA attenuates the induction of helper virus-mediated symptoms in Aspergillus flavus. . Front. Microbiol. 13::895844
    [Crossref] [Google Scholar]
  70. 70.
    Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, et al. 2015.. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. . Fungal Divers. 73::172
    [Crossref] [Google Scholar]
  71. 71.
    Kanematsu S, Sasaki A, Onoue M, Oikawa Y, Ito T. 2010.. Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles. . Phytopathology 100::92230
    [Crossref] [Google Scholar]
  72. 72.
    Kang Q, Ning S, Sui L, Lu Y, Zhao Y, et al. 2023.. Transcriptomic analysis of entomopathogenic fungus Beauveria bassiana infected by a hypervirulent polymycovirus BbPmV-4. . Fungal Biol. 127::95867
    [Crossref] [Google Scholar]
  73. 73.
    Kanhayuwa L, Kotta-Loizou I, Özkan S, Gunning AP, Coutts RHA. 2015.. A novel mycovirus from Aspergillus fumigatus contains four unique dsRNAs as its genome and is infectious as dsRNA. . PNAS 112::91005
    [Crossref] [Google Scholar]
  74. 74.
    Khalifa ME, MacDiarmid RM. 2019.. A novel totivirus naturally occurring in two different fungal genera. . Front. Microbiol. 10::2318
    [Crossref] [Google Scholar]
  75. 75.
    Khan HA, Nerva L, Bhatti MF. 2023.. The good, the bad and the cryptic: the multifaceted roles of mycoviruses and their potential applications for a sustainable agriculture. . Virology 585::25969
    [Crossref] [Google Scholar]
  76. 76.
    Kondo H, Botella L, Suzuki N. 2022.. Mycovirus diversity and evolution revealed/inferred from recent studies. . Annu. Rev. Phytopathol. 60::30736
    [Crossref] [Google Scholar]
  77. 77.
    Kondo H, Chiba S, Toyoda K, Suzuki N. 2013.. Evidence for negative-strand RNA virus infection in fungi. . Virology 435::2019
    [Crossref] [Google Scholar]
  78. 78.
    Koonin EV, Dolja VV, Krupovic M. 2022.. The logic of virus evolution. . Cell Host Microbe 30::91729
    [Crossref] [Google Scholar]
  79. 79.
    Kotta-Loizou I. 2021.. Mycoviruses and their role in fungal pathogenesis. . Curr. Opin. Microbiol. 63::1018
    [Crossref] [Google Scholar]
  80. 80.
    Kotta-Loizou I, Coutts RHA. 2017.. Mycoviruses in Aspergilli: a comprehensive review. . Front. Microbiol. 8::1699
    [Crossref] [Google Scholar]
  81. 81.
    Kotta-Loizou I, Coutts RHA. 2017.. Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence. . PLOS Pathog. 13::e1006183
    [Crossref] [Google Scholar]
  82. 82.
    Krupovic M, Dolja VV, Koonin EV. 2019.. Origin of viruses: primordial replicators recruiting capsids from hosts. . Nat. Rev. Microbiol. 17::44958
    [Crossref] [Google Scholar]
  83. 83.
    Lau SKP, Lo GCS, Chow FWN, Fan RYY, Cai JJ, et al. 2018.. Novel partitivirus enhances virulence of and causes aberrant gene expression in Talaromyces marneffei. . mBio 9::e00947-18
    [Crossref] [Google Scholar]
  84. 84.
    Lee SH, Yun SH, Chun J, Kim DH. 2017.. Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF028. . Arch. Virol. 162::107377
    [Crossref] [Google Scholar]
  85. 85.
    Li B, Cao Y, Ji Z, Zhang J, Meng X, et al. 2022.. Coinfection of two mycoviruses confers hypovirulence and reduces the production of mycotoxin alternariol in Alternaria alternata f. sp. mali. . Front. Microbiol. 13::910712
    [Crossref] [Google Scholar]
  86. 86.
    Li K, Liu D, Pan X, Yan S, Song J, et al. 2022.. Deoxynivalenol biosynthesis in Fusarium pseudograminearum significantly repressed by a megabirnavirus. . Toxins 14::503
    [Crossref] [Google Scholar]
  87. 87.
    Li P, Wang S, Zhang L, Qiu D, Zhou X, Guo L. 2020.. A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions. . Sci. Adv. 6::eaay9634
    [Crossref] [Google Scholar]
  88. 88.
    Li P, Zhang H, Chen X, Qiu D, Guo L. 2015.. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. . Virology 481::15160
    [Crossref] [Google Scholar]
  89. 89.
    Li Y, Lyu R, Hai D, Jia J, Jiang D, et al. 2022.. Two novel rhabdoviruses related to hypervirulence in a phytopathogenic fungus. . J. Virol. 96::e0001222
    [Crossref] [Google Scholar]
  90. 90.
    Lindberg GD. 1959.. A transmissible disease of Helminthosporium victoriae. . Phytopathology 49::2932
    [Google Scholar]
  91. 91.
    Liu C, Li M, Redda ET, Mei J, Zhang J, et al. 2019.. A novel double-stranded RNA mycovirus isolated from Trichoderma harzianum. . Virol. J. 16::113
    [Crossref] [Google Scholar]
  92. 92.
    Liu H, Fu Y, Jiang D, Li G, Xie J, et al. 2010.. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. . J. Virol. 84::1187687
    [Crossref] [Google Scholar]
  93. 93.
    Liu H, Fu Y, Li B, Yu X, Xie J, et al. 2011.. Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes. . BMC Evol. Biol. 11::276
    [Crossref] [Google Scholar]
  94. 94.
    Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, et al. 2012.. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. . BMC Evol. Biol. 12::91
    [Crossref] [Google Scholar]
  95. 95.
    Liu H, Zhang Y, Liu Y, Xiao J, Huang Z, et al. 2023.. Virome analysis of an ectomycorrhizal fungus Suillus luteus revealing potential evolutionary implications. . Front. Cell. Infect. Microbiol. 13::1229859
    [Crossref] [Google Scholar]
  96. 96.
    Liu L, Cheng J, Fu Y, Liu H, Jiang D, Xie J. 2017.. New insights into reovirus evolution: implications from a newly characterized mycoreovirus. . J. Gen. Virol. 98::113241
    [Crossref] [Google Scholar]
  97. 97.
    Liu S, Xie J, Cheng J, Li B, Chen T, et al. 2016.. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector. . PNAS 113::128038
    [Crossref] [Google Scholar]
  98. 98.
    Maachi A, Alfonso P, Legarda EG, Wu B, Elena SF. 2023.. Evidence for gene transfer between mycoviruses and their host: Curvulaviridae as a case study. . bioRxiv 2023.07.20.549826. https://doi.org/10.1101/2023.07.20.549826
  99. 99.
    Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. 2007.. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. . Science 315::51315
    [Crossref] [Google Scholar]
  100. 100.
    Marzano S-YL, Domier LL. 2016.. Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. . Virus Res. 213::33242
    [Crossref] [Google Scholar]
  101. 101.
    Marzano S-YL, Nelson BD, Ajayi-Oyetunde O, Bradley CA, Hughes TJ, et al. 2016.. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. . J. Virol. 90::684663
    [Crossref] [Google Scholar]
  102. 102.
    Mascia T, Vucurovic A, Minutillo SA, Nigro F, Labarile R, et al. 2019.. Infection of Colletotrichum acutatum and Phytophthora infestans by taxonomically different plant viruses. . Eur. J. Plant Pathol. 153::100117
    [Crossref] [Google Scholar]
  103. 103.
    Medd NC, Fellous S, Waldron FM, Xuéreb A, Nakai M, et al. 2018.. The virome of Drosophila suzukii, an invasive pest of soft fruit. . Virus Evol. 4::vey009
    [Crossref] [Google Scholar]
  104. 104.
    Melzer MJ, Bidochka MJ. 1998.. Diversity of double-stranded RNA viruses within populations of entomopathogenic fungi and potential implications for fungal growth and virulence. . Mycologia 90::58694
    [Crossref] [Google Scholar]
  105. 105.
    Mifsud JCO, Gallagher RV, Holmes EC, Geoghegan JL. 2022.. Transcriptome mining expands knowledge of RNA viruses across the plant kingdom. . J. Virol. 96::e0026022
    [Crossref] [Google Scholar]
  106. 106.
    Milgroom MG, Cortesi P. 2004.. Biological control of chestnut blight with hypovirulence: a critical analysis. . Annu. Rev. Phytopathol. 42::31138
    [Crossref] [Google Scholar]
  107. 107.
    Mu F, Li B, Cheng S, Jia J, Jiang D, et al. 2021.. Nine viruses from eight lineages exhibiting new evolutionary modes that co-infect a hypovirulent phytopathogenic fungus. . PLOS Pathog. 17::e1009823
    [Crossref] [Google Scholar]
  108. 108.
    Mu F, Xie J, Cheng S, You MP, Barbetti MJ, et al. 2018.. Virome characterization of a collection of Sclerotinia sclerotiorum from Australia. . Front. Microbiol. 8::2540
    [Crossref] [Google Scholar]
  109. 109.
    Myers JM, Schulz F, Rahimlou S, Amses KR, Simmons DR, et al. 2024.. Large DNA viruses in early diverging fungal genomes are relics of past and present infections. . bioRxiv 2024.01.04.574182. https://doi.org/10.1101/2024.01.04.574182
  110. 110.
    Nagy PD, Pogany J. 2006.. Yeast as a model host to dissect functions of viral and host factors in tombusvirus replication. . Virology 344::21120
    [Crossref] [Google Scholar]
  111. 111.
    Nazik H, Kotta-Loizou I, Sass G, Coutts RHA, Stevens DA. 2021.. Virus infection of Aspergillus fumigatus compromises the fungus in intermicrobial competition. . Viruses 13::686
    [Crossref] [Google Scholar]
  112. 112.
    Neri U, Wolf YI, Roux S, Camargo AP, Lee B, et al. 2022.. Expansion of the global RNA virome reveals diverse clades of bacteriophages. . Cell 185::402337.e18
    [Crossref] [Google Scholar]
  113. 113.
    Nerva L, Chitarra W, Siciliano I, Gaiotti F, Ciuffo M, et al. 2019.. Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. . Environ. Microbiol. 21::195768
    [Crossref] [Google Scholar]
  114. 114.
    Nerva L, Ciuffo M, Vallino M, Margaria P, Varese GC, et al. 2016.. Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. . Virus Res. 219::2238
    [Crossref] [Google Scholar]
  115. 115.
    Nerva L, Forgia M, Ciuffo M, Chitarra W, Chiapello M, et al. 2019.. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. . Virus Res. 273::197737
    [Crossref] [Google Scholar]
  116. 116.
    Nerva L, Silvestri A, Ciuffo M, Palmano S, Varese GC, Turina M. 2017.. Transmission of Penicillium aurantiogriseum partiti-like virus 1 to a new fungal host (Cryphonectria parasitica) confers higher resistance to salinity and reveals adaptive genomic changes. . Environ. Microbiol. 19::448092
    [Crossref] [Google Scholar]
  117. 117.
    Nerva L, Turina M, Zanzotto A, Gardiman M, Gaiotti F, et al. 2019.. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. . Environ. Microbiol. 21::2886904
    [Crossref] [Google Scholar]
  118. 118.
    Ni X-B, Cui X-M, Liu J-Y, Ye R-Z, Wu Y-Q, et al. 2023.. Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. . Nat. Microbiol. 8::16273
    [Crossref] [Google Scholar]
  119. 119.
    Nibert ML, Debat HJ, Manny AR, Grigoriev IV, De Fine Licht HH. 2019.. Mitovirus and mitochondrial coding sequences from basal fungus Entomophthora muscae. . Viruses 11::351
    [Crossref] [Google Scholar]
  120. 120.
    Nibert ML, Vong M, Fugate KK, Debat HJ. 2018.. Evidence for contemporary plant mitoviruses. . Virology 518::1424
    [Crossref] [Google Scholar]
  121. 121.
    Nuzzo F, Moine A, Nerva L, Pagliarani C, Perrone I, et al. 2022.. Grapevine virome and production of healthy plants by somatic embryogenesis. . Microb. Biotechnol. 15::135773
    [Crossref] [Google Scholar]
  122. 122.
    Okada R, Ichinose S, Takeshita K, Urayama SI, Fukuhara T, et al. 2018.. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: down-regulation of host growth and up-regulation of host plant pathogenicity. . Virology 519::2332
    [Crossref] [Google Scholar]
  123. 123.
    Osaki H, Sasaki A, Nomiyama K, Tomioka K. 2016.. Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. . Virus Genes 52::83547
    [Crossref] [Google Scholar]
  124. 124.
    Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, et al. 2023.. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. . Virus Evol. 9::vead042
    [Crossref] [Google Scholar]
  125. 125.
    Park M, Cho Y-J, Kim D, Yang C-S, Lee Shi M, et al. 2020.. A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. . mBio 11::e01521-20
    [Google Scholar]
  126. 126.
    Petrzik K, Sarkisova T, Stary J, Koloniuk I, Hrabakova L, Kubesova O. 2016.. Molecular characterization of a new monopartite dsRNA mycovirus from mycorrhizal Thelephora terrestris (Ehrh.) and its detection in soil oribatid mites (Acari: Oribatida). . Virology 489::1219
    [Crossref] [Google Scholar]
  127. 127.
    Pettersson JHO, Shi M, Eden J-S, Holmes EC, Hesson JC. 2019.. Meta-transcriptomic comparison of the RNA viromes of the mosquito vectors Culex pipiens and Culex torrentium in Northern Europe. . Viruses 11::1033
    [Crossref] [Google Scholar]
  128. 128.
    Porquier A, Tisserant C, Salinas F, Glassl C, Wange L, et al. 2021.. Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea. . Genome Biol. 22::225
    [Crossref] [Google Scholar]
  129. 129.
    Qu Z, Fu Y, Lin Y, Zhao Z, Zhang X, et al. 2021.. Transcriptional responses of Sclerotinia sclerotiorum to the infection by SsHADV-1. . J. Fungi 7::493
    [Crossref] [Google Scholar]
  130. 130.
    Roossinck MJ. 2019.. Evolutionary and ecological links between plant and fungal viruses. . New Phytol. 221::8692
    [Crossref] [Google Scholar]
  131. 131.
    Ruiz-Padilla A, Rodríguez-Romero J, Gómez-Cid I, Pacifico D, Ayllón MA. 2021.. Novel mycoviruses discovered in the mycovirome of a necrotrophic fungus. . mBio 12::e0370520
    [Crossref] [Google Scholar]
  132. 132.
    Sahin E, Keskin E, Akata I. 2021.. Novel and diverse mycoviruses co-inhabiting the hypogeous ectomycorrhizal fungus Picoa juniperi. . Virology 552::1019
    [Crossref] [Google Scholar]
  133. 133.
    Sasaki A, Nakamura H, Suzuki N, Kanematsu S. 2016.. Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix. . Virus Res. 219::7382
    [Crossref] [Google Scholar]
  134. 134.
    Sass G, Kotta-Loizou I, Martinez M, Larwood DJ, Stevens DA. 2023.. Polymycovirus infection sensitizes Aspergillus fumigatus for antifungal effects of nikkomycin Z. . Viruses 15::197
    [Crossref] [Google Scholar]
  135. 135.
    Sato Y, Hisano S, Suzuki N. 2023.. Exploration of the yadokari/yadonushi nature of YkV3 and RnMBV3 in the original host and a model filamentous fungus. . Virus Res. 334::199155
    [Crossref] [Google Scholar]
  136. 136.
    Sato Y, Shamsi W, Jamal A, Bhatti MF, Kondo H, Suzuki N. 2020.. Hadaka virus 1: a capsidless eleven-segmented positive-sense single-stranded RNA virus from a phytopathogenic fungus, Fusarium oxysporum. . mBio 11::e00450-20
    [Google Scholar]
  137. 137.
    Sato Y, Suzuki N. 2023.. Continued mycovirus discovery expanding our understanding of virus lifestyles, symptom expression, and host defense. . Curr. Opin. Microbiol. 75::102337
    [Crossref] [Google Scholar]
  138. 138.
    Schoebel CN, Zoller S, Rigling D. 2014.. Detection and genetic characterisation of a novel mycovirus in Hymenoscyphus fraxineus, the causal agent of ash dieback. . Infect. Genet. Evol. 28::7886
    [Crossref] [Google Scholar]
  139. 139.
    Shapira R, Choi GH, Nuss DL. 1991.. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. . EMBO J. 10::73139
    [Crossref] [Google Scholar]
  140. 140.
    Shi N, Hu F, Wang P, Zhang Y, Zhu Q, et al. 2021.. Molecular characterization of two dsRNAs that could correspond to the genome of a new mycovirus that infects the entomopathogenic fungus Beauveria bassiana. . Arch. Virol. 166::323337
    [Crossref] [Google Scholar]
  141. 141.
    Sinden JW, Hauser E. 1950.. Report on two new mushroom diseases. . Mushroom Sci. 1::96100
    [Google Scholar]
  142. 142.
    Stauder CM, Nuss DL, Zhang D-X, Double ML, MacDonald WL, et al. 2019.. Enhanced hypovirus transmission by engineered super donor strains of the chestnut blight fungus, Cryphonectria parasitica, into a natural population of strains exhibiting diverse vegetative compatibility genotypes. . Virology 528::16
    [Crossref] [Google Scholar]
  143. 143.
    Sun L, Nuss DL, Suzuki N. 2006.. Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. . J. Gen. Virol. 87:(Part 12):370314
    [Crossref] [Google Scholar]
  144. 144.
    Sutela S, Forgia M, Vainio EJ, Chiapello M, Daghino S, et al. 2020.. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. . Virus Evol. 6::veaa076
    [Crossref] [Google Scholar]
  145. 145.
    Tanaka T, Sun L, Tsutani K, Suzuki N. 2011.. Rearrangements of mycoreovirus 1 S1, S2 and S3 induced by the multifunctional protein p29 encoded by the prototypic hypovirus Cryphonectria hypovirus 1 strain EP713. . J. Gen. Virol. 92:(Part 8):194959
    [Crossref] [Google Scholar]
  146. 146.
    Telengech P, Hyodo K, Ichikawa H, Kuwata R, Kondo H, Suzuki N. 2024.. Replication of single viruses across the kingdoms, Fungi, Plantae, and Animalia. . PNAS 121::e2318150121
    [Crossref] [Google Scholar]
  147. 147.
    Thapa V, Roossinck MJ. 2019.. Determinants of coinfection in the mycoviruses. . Front. Cell. Infect. Microbiol. 9::169
    [Crossref] [Google Scholar]
  148. 148.
    Thapa V, Turner GG, Hafenstein S, Overton BE, Vanderwolf KJ, Roossinck MJ. 2016.. Using a novel partitivirus in Pseudogymnoascus destructans to understand the epidemiology of white-nose syndrome. . PLOS Pathog. 12::e1006076
    [Crossref] [Google Scholar]
  149. 149.
    Thapa V, Turner GG, Roossinck MJ. 2021.. Phylogeographic analysis of Pseudogymnoascus destructans partitivirus-pa explains the spread dynamics of white-nose syndrome in North America. . PLOS Pathog. 17::e1009236
    [Crossref] [Google Scholar]
  150. 150.
    Urayama S-I, Fukudome A, Hirai M, Okumura T, Nishimura Y, et al. 2024.. Double-stranded RNA sequencing reveals distinct riboviruses associated with thermoacidophilic bacteria from hot springs in Japan. . Nat. Microbiol. 9::51423
    [Crossref] [Google Scholar]
  151. 151.
    Vainio EJ, Jurvansuu J, Hyder R, Kashif M, Piri T, et al. 2018.. Heterobasidion partitivirus 13 mediates severe growth debilitation and major alterations in the gene expression of a fungal forest pathogen. . J. Virol. 92::e01744-17
    [Crossref] [Google Scholar]
  152. 152.
    Vainio EJ, Muller MM, Korhonen K, Piri T, Hantula J. 2015.. Viruses accumulate in aging infection centers of a fungal forest pathogen. . ISME J. 9::497507
    [Crossref] [Google Scholar]
  153. 153.
    van de Sande WWJ, Vonk AG. 2019.. Mycovirus therapy for invasive pulmonary aspergillosis?. Med. Mycol. 57::S17988
    [Crossref] [Google Scholar]
  154. 154.
    Varsani A, Krupovic M. 2021.. Family Genomoviridae: 2021 taxonomy update. . Arch. Virol. 166::291126
    [Crossref] [Google Scholar]
  155. 155.
    Vinogradova S, Porotikova E, Navrotskaya E, Galbacs ZN, Massart S, Varallyay E. 2023.. The first virome of a Russian vineyard. . Plants 12::3292
    [Crossref] [Google Scholar]
  156. 156.
    Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, et al. 2022.. Going viral: virus-based biological control agents for plant protection. . Annu. Rev. Phytopathol. 60::2142
    [Crossref] [Google Scholar]
  157. 157.
    Wang P, Yang G, Lu H, Huang B. 2023.. Infection with a novel polymycovirus enhances growth, conidiation and sensitivity to UV-B irradiation of the entomopathogenic fungus Metarhizium anisopliae. . Front. Microbiol. 14::1214133
    [Crossref] [Google Scholar]
  158. 158.
    Wang P, Yang G, Shi N, Huang B. 2020.. Molecular characterization of a new partitivirus, MbPV1, isolated from the entomopathogenic fungus Metarhizium brunneum in China. . Arch. Virol. 165::76569
    [Crossref] [Google Scholar]
  159. 159.
    Wang P, Yang G, Shi N, Huang B. 2021.. A novel gammapartitivirus from the entomopathogenic fungus Metarhizium brunneum. . Arch. Virol. 166::97781
    [Crossref] [Google Scholar]
  160. 160.
    Wang P, Yang G, Shi N, Huang B. 2022.. Molecular characterization of a novel double-stranded RNA virus infecting the entomopathogenic fungus Metarhizium brunneum. . Arch. Microbiol. 204::606
    [Crossref] [Google Scholar]
  161. 161.
    Wang P, Yang G, Shi N, Zhao C, Hu F, et al. 2023.. A novel partitivirus orchestrates conidiation, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus. . PLOS Pathog. 19::e1011397
    [Crossref] [Google Scholar]
  162. 162.
    Wang Q, Lyu X, Cheng J, Fu Y, Lin Y, et al. 2022.. Codon usage provides insights into the adaptive evolution of mycoviruses in their associated fungi host. . Int. J. Mol. Sci. 23:(13):7441
    [Crossref] [Google Scholar]
  163. 163.
    Wang X, Kotta-Loizou I, Han Z, Deng H, Hong N, et al. 2024.. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum resistance against fungal diseases. . Mol. Plant 17:(6):95571
    [Crossref] [Google Scholar]
  164. 164.
    Wei S, Bian R, Andika IB, Niu E, Liu Q, et al. 2019.. Symptomatic plant viroid infections in phytopathogenic fungi. . PNAS 116::1304250
    [Crossref] [Google Scholar]
  165. 165.
    Wu M, Zhang L, Li G, Jiang D, Ghabrial SA. 2010.. Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. . Virology 406::11726
    [Crossref] [Google Scholar]
  166. 166.
    Wu R, Bottos EM, Danna VG, Stegen JC, Jansson J K, Davison MR. 2022.. RNA viruses linked to eukaryotic hosts in thawed permafrost. . mSystems 7::e0058222
    [Crossref] [Google Scholar]
  167. 167.
    Wu S, Cheng J, Fu Y, Chen T, Jiang D, et al. 2017.. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses. . PLOS Pathog. 13::e1006234
    [Crossref] [Google Scholar]
  168. 168.
    Xiao X, Cheng J, Tang J, Fu Y, Jiang D, et al. 2014.. A novel partitivirus that confers hypovirulence on plant pathogenic fungi. . J. Virol. 88::1012033
    [Crossref] [Google Scholar]
  169. 169.
    Xie J, Wei D, Jiang D, Fu Y, Li G, et al. 2006.. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. . J. Gen. Virol. 87:(Part 1):24149
    [Crossref] [Google Scholar]
  170. 170.
    Xu ZY, Wu SS, Liu LJ, Cheng J, et al. 2015.. A mitovirus related to plant mitochondrial gene confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum. . Virus Res. 197::12736
    [Crossref] [Google Scholar]
  171. 171.
    Yang S, Dai R, Salaipeth L, Huang L, Liu J, et al. 2021.. Infection of two heterologous mycoviruses reduces the virulence of Valsa mali, a fungal agent of apple valsa canker disease. . Front. Microbiol. 12::659210
    [Crossref] [Google Scholar]
  172. 172.
    Ye T, Lu ZB, Li H, Duan J, et al. 2023.. Characterization of a fungal virus representing a novel genus in the family Alphaflexiviridae. . Viruses 15:(2):339
    [Crossref] [Google Scholar]
  173. 173.
    You J, Zhou K, Liu X, Wu M, Yang L, et al. 2019.. Defective RNA of a novel mycovirus with high transmissibility detrimental to biocontrol properties of Trichoderma spp. . Microorganisms 7::507
    [Crossref] [Google Scholar]
  174. 174.
    Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, et al. 2010.. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. . PNAS 107::838792
    [Crossref] [Google Scholar]
  175. 175.
    Yu X, Li B, Fu Y, Xie J, Cheng J, et al. 2013.. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. . PNAS 110::145257
    [Crossref] [Google Scholar]
  176. 176.
    Zhang D-X, Nuss DL. 2016.. Engineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes. . PNAS 113::206267
    [Crossref] [Google Scholar]
  177. 177.
    Zhang H, Xie J, Fu Y, Cheng J, Qu Z, et al. 2020.. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement. . Mol. Plant 13::142033
    [Crossref] [Google Scholar]
  178. 178.
    Zhang L, Wang S, Ruan S, Nzabanita C, Wang Y, Guo L. 2023.. A mycovirus VIGS vector confers hypovirulence to a plant pathogenic fungus to control wheat FHB. . Adv. Sci. 10::e2302606
    [Crossref] [Google Scholar]
  179. 179.
    Zhang R, Hisano S, Tani A, Kondo H, Kanematsu S, Suzuki N. 2016.. A capsidless ssRNA virus hosted by an unrelated dsRNA virus. . Nat. Microbiol. 1::15001
    [Crossref] [Google Scholar]
  180. 180.
    Zhao H, Zhang R, Wu J, Meng L, Okazaki Y, et al. 2023.. A 1.5-Mb continuous endogenous viral region in the arbuscular mycorrhizal fungus Rhizophagus irregularis. . Virus Evol. 9::vead064
    [Crossref] [Google Scholar]
  181. 181.
    Zhao Y-J, Shirouzu T, Chiba Y, Hosaka K, Moriyama H, et al. 2023.. Identification of novel RNA mycoviruses from wild mushroom isolates in Japan. . Virus Res. 325::199045
    [Crossref] [Google Scholar]
  182. 182.
    Zhou L, Li X, Kotta-Loizou I, Dong K, Li S, et al. 2021.. A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. . ISME J. 15::1893906
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041522-105358
Loading
/content/journals/10.1146/annurev-micro-041522-105358
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error