The cultivation of bacteria is highly biased toward a few phylogenetic groups. Many of the currently underexplored bacterial lineages likely have novel biosynthetic pathways and unknown biochemical features. New cultivation concepts have been developed based on an improved understanding of the ecology of previously not-cultured bacteria. Particularly successful were improved media that mimic the natural types and concentrations of substrates and nutrients, high-throughput cultivation techniques, and approaches that exploit biofilm formation and bacterial interactions. Metagenomics and single-cell genomics can reveal unknown metabolic features of not-yet-cultured bacteria and, if complemented by culture-independent physiological analyses, will help to target functional novelty more efficiently. However, numerous novel types of bacteria that were initially enriched subsequently escaped isolation. Future cultivation work will therefore need to focus on improved subcultivation, purification, and preservation techniques to recover and utilize a larger fraction of microbial diversity.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ackermann M. 1.  2015. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13:497–508 [Google Scholar]
  2. Azam F, Malfatti F. 2.  2007. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5:782–91 [Google Scholar]
  3. Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D. 3.  et al. 2010. Enigmatic, ultrasmall, uncultivated Archaea. PNAS 107:8806–11 [Google Scholar]
  4. Bartscht K, Cypionka H, Overmann J. 4.  1999. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol. Ecol. 28:249–59 [Google Scholar]
  5. Basler BL, Losick R. 5.  2006. Bacterially speaking. Cell 125:237–46 [Google Scholar]
  6. Belnap CP, Pan C, VerBerkmoes NC, Power ME, Samatova NF. 6.  et al. 2010. Cultivation and quantitative proteomic analyses of acidophilic microbial communities. ISME J 4:520–30 [Google Scholar]
  7. Bernard L, Schäfer H, Joux F, Courties C, Muyzer G, Lebaron P. 7.  2000. Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquat. Microb. Ecol. 23:1–11 [Google Scholar]
  8. Bollmann A, Lewis K, Epstein S. 8.  2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol. 73:6386–90 [Google Scholar]
  9. Bomar L, Maltz M, Colston S, Graf J. 9.  2011. Directed culturing of microorganisms using metatranscriptomics. mBio 2:e00012–11 [Google Scholar]
  10. Bremer H, Dennis PP. 10.  1996. Modulation of chemical composition and other parameters of the cell by growth rate. Escherichia coli and Salmonella: Cellular and Molecular Biology 2 FC Neidhardt 1553–69 Washington, DC: ASM, 2nd ed.. [Google Scholar]
  11. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ. 11.  et al. 2015. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523:208–11 [Google Scholar]
  12. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA. 12.  et al. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–46 [Google Scholar]
  13. Bruns A, Cypionka H, Overmann J. 13.  2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 68:3978–87 [Google Scholar]
  14. Bruns A, Hoffelner H, Overmann J. 14.  2003. A novel approach for high throughput assays and the isolation of planktonic bacteria. FEMS Microbiol. Ecol. 45:161–71 [Google Scholar]
  15. Bruns A, Nübel U, Cypionka H, Overmann J. 15.  2003. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 69:1980–89 [Google Scholar]
  16. Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS. 16.  2012. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl. Environ. Microbiol. 78:3221–28 [Google Scholar]
  17. Bull MJ, Plummer NT. 17.  2014. Part 1: The human gut microbiome in health and disease. Integr. Med. 13:17–22 [Google Scholar]
  18. Button DK, Schut F, Quong P, Martin R, Robertson BR. 18.  1993. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59:881–91 [Google Scholar]
  19. Calcott PH, Calvert TJ. 19.  1981. Characterization of 3′:5′cyclic AMP phosphodiesterase in Klebsiella aerogenes and its role in substrate accelerated death. J. Gen. Microbiol. 122:313–21 [Google Scholar]
  20. Camarinha-Silva A, Jáuregui R, Chaves-Moreno D, Oxley APA, Schaumburg F. 20.  et al. 2014. Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ. Microbiol. 16:2939–52 [Google Scholar]
  21. Carini P, Steindler L, Beszteri S, Giovannoni SJ. 21.  2013. Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J 7:592–602 [Google Scholar]
  22. Cho J-C, Giovannoni SJ. 22.  2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70:432–40 [Google Scholar]
  23. Choi J, Yang F, Stepanauskas R, Cardenas E, Garoutte A. 23.  et al. 2017. Strategies to improve reference databases for soil microbiomes. ISME J 11:829–34 [Google Scholar]
  24. Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T. 24.  2015. Reconstructing each cell's genome within complex microbial communities—dream or reality?. Front. Microbiol. 5:771 [Google Scholar]
  25. Connon SA, Giovannoni SJ. 25.  2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68:3878–85 [Google Scholar]
  26. Cottrell MT, Kirchman DL. 26.  2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66:1692–97 [Google Scholar]
  27. Curtis TP, Sloan WT, Scannell JW. 27.  2002. Estimating prokaryotic diversity and its limits. PNAS 99:10494–99 [Google Scholar]
  28. Davis KE, Joseph SJ, Janssen PH. 28.  2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71:826–34 [Google Scholar]
  29. Dedysh SN. 29.  2011. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front. Microbiol. 2:184 [Google Scholar]
  30. D'Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E. 30.  et al. 2010. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17:254–64 [Google Scholar]
  31. Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA. 31.  et al. 2012. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–99 [Google Scholar]
  32. Eguchi M, Nishikawa T, MacDonald K, Cavicchioli R, Gottschal JC, Kjelleberg S. 32.  1996. Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl. Environ. Microbiol. 62:1287–94 [Google Scholar]
  33. Eichorst SA, Strasse F, Woyke T, Schintlmeister A, Wagner M, Woebken D. 33.  2015. Advancements in the application of NanoSIMS and Raman microspectrometry to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. 91:fiv106 [Google Scholar]
  34. Epstein SS. 34.  2009. Microbial awakenings. Nature 457:1083 [Google Scholar]
  35. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S. 35.  et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–48 [Google Scholar]
  36. Felske A, Wolterink A, van Lis R, de Vos WM, Akkermans ADL. 36.  1999. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 30:137–45 [Google Scholar]
  37. Fenchel T. 37.  2002. Microbial behavior in a heterogenous world. Science 296:1068–71 [Google Scholar]
  38. Ferrari BC, Binnerup SJ, Gillings M. 38.  2005. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71:8714–20 [Google Scholar]
  39. Fodor AA, de Santis TZ, Wylie KM, Badger JH, Ye Y. 39.  et al. 2012. The “most wanted” taxa from the human microbiome for whole genome sequencing. PLOS ONE 7:e41294 [Google Scholar]
  40. Foesel BU, Geppert A, Rhode M, Overmann J. 40.  2014. Parviterribacterkavangonensis gen. nov., sp. nov. and Parviterribacter multiflagellatus sp. nov., novel members of Parviterribacteraceae fam. nov. within the order Solirubrobacterales, and emended descriptions of the classes Thermoleophilia and Rubrobacteria and their orders and families. Int. J. Syst. Evol. Microbiol. 66:652–65 [Google Scholar]
  41. Foesel BU, Nägele V, Naether A, Wüst PK, Weinert PK. 41.  et al. 2014. Determinants of Acidobacteria activity in German grassland and forest soils. Environ. Microbiol. 16:658–75 [Google Scholar]
  42. Foesel BU, Rohde M, Overmann J. 42.  2013. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil—the first described species of Acidobacteria subdivision 4. Syst. Appl. Microbiol. 36:82–89 [Google Scholar]
  43. Fröstl JM, Overmann J. 43.  1998. Physiology and tactic response of the phototrophic consortium “Chlorochromatium aggregatum.”. Arch. Microbiol. 169:129–35 [Google Scholar]
  44. Geissinger O, Herlemann DPR, Mörschel E, Maier UG, Brune A. 44.  2009. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl. Environ. Microbiol. 75:2831–40 [Google Scholar]
  45. Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. 45.  2013. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci. Rep. 3:2471 [Google Scholar]
  46. Gich F, Janys MA, König M, Overmann J. 46.  2012. Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environ. Microbiol. 14:2984–97 [Google Scholar]
  47. Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J. 47.  2005. Specific detection, isolation and characterization of selected, previously uncultured members of freshwater bacterioplankton. Appl. Environ. Microbiol. 71:5908–19 [Google Scholar]
  48. Giebel HA, Kalhoefer D, Gahl-Janssen R, Choo YJ, Lee K. 48.  et al. 2013. Planktomarina temperata gen. nov., sp. nov., belonging to the globally distributed RCA cluster of the marine Roseobacter clade, isolated from the German Wadden Sea. Int. J. Syst. Evol. Microbiol. 63:4207–17 [Google Scholar]
  49. Gifford SM, Sharma S, Booth M, Moran MA. 49.  2013. Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J 7:281–98 [Google Scholar]
  50. Giovannoni S, Stingl U. 50.  2007. The importance of culturing bacterioplankton in the ‘omics’ age. Nat. Rev. Microbiol. 5:820–26 [Google Scholar]
  51. Glaeser J, Overmann J. 51.  1999. Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light adsorption properties. Arch. Microbiol. 171:405–16 [Google Scholar]
  52. Grünberger A, Probst C, Helfrich S, Nanda A, Stute B. 52.  et al. 2015. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. Cytometry A 87:1101–15 [Google Scholar]
  53. Guan LL, Onuki H, Kamino K. 53.  2000. Bacterial growth stimulation with exogenous siderophore and synthetic N-acyl homoserine lactone autoinducers under iron-limited and low-nutrient conditions. Appl. Environ. Microbiol. 66:2797–803 [Google Scholar]
  54. Hahn MW. 54.  2003. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl. Environ. Microbiol. 69:5248–54 [Google Scholar]
  55. Hahn MW. 55.  2009. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int. J. Syst. Evol. Mic robiol. 59:112–17 [Google Scholar]
  56. Hahn MW, Schmidt J, Taipale SJ, Doolittle WF, Koll U. 56.  2014. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int. J. Syst. Evol. Microbiol. 64:3254–62 [Google Scholar]
  57. Hahn MW, Stadler P, Wu QL, Pöckl M. 57.  2004. The filtration-acclimatization method for isolation of an important fraction of not readily cultivable bacteria. J. Microbiol. Methods 57:379–90 [Google Scholar]
  58. Hahnke RL, Bennke CM, Fuchs BM, Mann AJ, Rhiel E. 58.  et al. 2015. Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea. Environ. Microbiol. 17:3515–26 [Google Scholar]
  59. Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD. 59.  et al. 2008. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. PNAS 105:5555–60 [Google Scholar]
  60. Huang S, Vieira S, Bunk B, Riedel T, Spröer C, Overmann J. 60.  2016. First complete genome sequence of a subdivision 6 Acidobacterium strain. Genome Announc 4:e00469–16 [Google Scholar]
  61. Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H. 61.  et al. 2007. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9:1878–89 [Google Scholar]
  62. Huber KJ, Geppert AM, Wanner G, Föesel BU, Wüst PK, Overmann J. 62.  2016. The first representative of the globally widespread subdivision 6 Acidobacteria, Vicinamibacter silvestris, gen. nov., sp. nov., isolated from subtropical savannah soil. Int. J. Syst. Evol. Microbiol. 66:2971–79 [Google Scholar]
  63. Huber KJ, Wüst PK, Rohde M, Overmann J, Foesel BU. 63.  2014. Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel species of Acidobacteria subdivision 4 isolated from semiarid savanna soil. Int. J. Syst. Evol. Microbiol. 64:1866–75 [Google Scholar]
  64. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ. 64.  et al. 2016. A new view of the tree of life. Nat. Microbiol. 1:16048 [Google Scholar]
  65. Huisman GW, Siegele DA, Zambrano MM, Kolter R. 65.  1996. Morphological and physiological changes during stationary phase. Escherichia coli and Salmonella: Cellular and Molecular Biology 2 FC Neidhardt 1672–82 Washington, DC: ASM. , 2nd ed.. [Google Scholar]
  66. Hütz A, Schubert K, Overmann J. 66.  2011. Thalassospira sp. isolated from the oligotrophic Eastern Mediterranean Sea exhibits chemotaxis toward inorganic phosphate during starvation. Appl. Environ. Microbiol. 77:4412–21 [Google Scholar]
  67. Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A. 67.  et al. 2007. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. PNAS 104:18217–22 [Google Scholar]
  68. Janssen PH, Schuhmann A, Mörschel E, Rainey FA. 68.  1997. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl. Environ. Microbiol. 63:1382–88 [Google Scholar]
  69. Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M. 69.  2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68:2391–96 [Google Scholar]
  70. Jeske O, Jogler M, Petersen J, Sikorski J, Jogler C. 70.  2013. From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules. Antonie Van Leeuwenhoek 104:551–67 [Google Scholar]
  71. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH. 71.  2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69:7210–15 [Google Scholar]
  72. Judger BE, Ertan H, Bohl S, Lee M, Marquis CP, Manefield M. 72.  2016. Organohalide respiring bacteria and reductive dehalogenases: key tolls in organohalide bioremediation. Front. Microbiol. 7:249 [Google Scholar]
  73. Kaeberlein T, Lewis K, Epstein SS. 73.  2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–29 [Google Scholar]
  74. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D'Hondt S. 74.  2012. Global distribution of microbial abundance and biomass in subseafloor sediment. PNAS 109:16213–16 [Google Scholar]
  75. Kenters N, Henderson G, Jeyanathan J, Kittelmann S, Janssen PH. 75.  2011. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. J. Microbiol. Methods 84:52–60 [Google Scholar]
  76. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. 76.  2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–46 [Google Scholar]
  77. Kuznetsov SI, Dubinina GA, Lapteva NA. 77.  1979. Biology of oligotrophic bacteria. Annu. Rev. Microbiol. 33:377–87 [Google Scholar]
  78. Lage OM, Bodonso J. 78.  2012. Bringing Planctomycetes into pure culture. Front. Microbiol. 3:405 [Google Scholar]
  79. Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B, Raoult D. 79.  2015. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 28:237–64 [Google Scholar]
  80. Lagier J-C, Khelaifia S, Tidjani Alou M, Ndongo S. 80.  et al. 2016. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1:16203 [Google Scholar]
  81. Lagkouvardos I, Pukall R, Abt B, Foesel B, Meier-Kolthoff J. 81.  et al. 2016. A mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat. Microbiol. 1:16131 [Google Scholar]
  82. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S. 82.  et al. 2009. The genomic basis of trophic strategy in marine bacteria. PNAS 106:15527–33 [Google Scholar]
  83. Lindahl V. 83.  1996. Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival. J. Microbiol. Methods 25:279–86 [Google Scholar]
  84. Liu Z, Müller J, Li T, Alvey RM, Vogl K. 84.  et al. 2013. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum”. Genome Biol 14:R127 [Google Scholar]
  85. Lopez-de-Victoria G, Lovell CR. 85.  1993. Chemotaxis of Azospirillum species to aromatic compounds. Appl. Environ. Microbiol. 59:2951–55 [Google Scholar]
  86. Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N. 86.  et al. 2007. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. PNAS 104:11889–94 [Google Scholar]
  87. Marschall E, Jogler M, Henssge U, Overmann J. 87.  2010. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ. Microbiol. 12:1348–62 [Google Scholar]
  88. Marshall KT, Morris RM. 88.  2013. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. ISME J 7:452–55 [Google Scholar]
  89. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. 89.  2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–79 [Google Scholar]
  90. Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB. 90.  et al. 2006. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol. Microbiol. 59:84–98 [Google Scholar]
  91. Nett M, Erol Ö, Kehraus S, Köck M, Krick A. 91.  et al. 2006. Siphonazole, an unusual metabolite from Herpetosiphon sp. Angew. Chem Int. Ed. 45:3863–67 [Google Scholar]
  92. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A. 92.  et al. 2010. Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76:2445–50 [Google Scholar]
  93. Nielsen HB, Almeida M, Sierakowska Juncker A, Rasmussen S, Li J. 93.  et al. 2014. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32:822–28 [Google Scholar]
  94. Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA. 94.  et al. 2016. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J 10:273–86 [Google Scholar]
  95. Omsland A, Sager J, Nair V, Sturdevant DE, Hackstadt T. 95.  2012. Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium. PNAS 109:19781–85 [Google Scholar]
  96. Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT. 96.  2002. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68:4795–802 [Google Scholar]
  97. Ouverney CC, Fuhrman JA. 97.  1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65:1746–52 [Google Scholar]
  98. Overmann J. 98.  2005. Chemotaxis and behavioral physiology of not-yet-cultivated microbes. Methods Enzymol 397:133–47 [Google Scholar]
  99. Overmann J. 99.  2006. Molecular Basis of Symbiosis: Progress in Molecular Subcellular Biology Berlin: Springer-Verlag
  100. Overmann J. 100.  2013. Principles of enrichment, isolation, cultivation, and preservation of bacteria. The Prokaryotes: Prokaryotic Biology and Symbiotic Associations E Rosenberg, EF DeLong, E Stackebrandt, S Lory, F Thompson 149–207 New York: Springer. , 4th ed.. [Google Scholar]
  101. Overmann J. 101.  2015. Significance and future role of microbial resource centers. Syst. Appl. Microbiol. 38:258–65 [Google Scholar]
  102. Overmann J, Lepleux C. 102.  2016. Marine Bacteria and Archaea: diversity, adaptations, and culturability. The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential LJ Stal, MS Cretoiu 21–55 Cham, Switz.: Springer [Google Scholar]
  103. Pagnier I, Yutin N, Croce O, Makarova KS, Wolf YI. 103.  et al. 2015. Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biol. Direct 10:13 [Google Scholar]
  104. Pankratov TA, Dedysh SN. 104.  2010. Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int. J. Syst. Evol. Microbiol. 60:2951–59 [Google Scholar]
  105. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ, Overmann J. 105.  2015. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst. Appl. Microbiol. 38:534–44 [Google Scholar]
  106. Permentier HP, Neerken S, Overmann J, Amesz J. 106.  2001. A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40:5573–78 [Google Scholar]
  107. Pernthaler A, Pernthaler J, Schattenhofer M, Amann R. 107.  2002. Identification of DNA-synthesizing bacterial cells in coastal North Sea plankton. Appl. Environ. Microbiol. 68:5728–36 [Google Scholar]
  108. Poindexter JS. 108.  1981. Oligotrophy: feast and famine existence. Advances in Microbial Ecology 5 M Alexander 63–89 New York: Plenum [Google Scholar]
  109. Quaiser A, Ochsenreiter T, Lanz C, Schuster SC, Treusch AH. 109.  et al. 2003. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol. Microbiol. 50:563–75 [Google Scholar]
  110. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. 110.  2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–33 [Google Scholar]
  111. Raynaud X, Nunan N. 111.  2014. Spatial ecology of bacteria at the microscale in soil. PLOS ONE 9:e87217 [Google Scholar]
  112. Renesto P, Crapoulet N, Ogata H, La Scola B, Vestris G. 112.  et al. 2003. Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362:447–49 [Google Scholar]
  113. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ. 113.  et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–37 [Google Scholar]
  114. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AK. 114.  et al. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–90 [Google Scholar]
  115. Sait M, Hugenholtz P, Janssen PH. 115.  2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4:654–66 [Google Scholar]
  116. Schink B, Friedrich M. 116.  2000. Phosphite oxidation by sulphate reduction. Nature 406:37 [Google Scholar]
  117. Schink B, Stams AJM. 117.  2006. Syntrophism among prokaryotes. The Prokaryotes 2 Ecophysiology and Biochemistry M Dworkin, S Falkow, E Rosenberg, KH Schleifer, E Stackebrandt 309–35 New York: Springer, 3rd ed..
  118. Schlesner H. 118.  1994. The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Syst. Appl. Microbiol. 17:135–45 [Google Scholar]
  119. Schut F, Gottschal JC, Prins RA. 119.  1997. Isolation and characterisation of the marine ultramicrobacterium Sphingomonas sp. strain RB2256. FEMS Microbiol. Rev. 20:363–69 [Google Scholar]
  120. Seng P, Abat C, Rolain JM, Colson P, Lagier J-C. 120.  et al. 2013. Identification of rare pathogenic bacteria in a clinical laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 51:2182–94 [Google Scholar]
  121. Siegl A, Kamke J, Hochmuth T, Piel J, Richter M. 121.  et al. 2011. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70 [Google Scholar]
  122. 122. SILVA rRNA Database Proj. 2016. SILVA SSU Ref NR 99 128 dataset Release Number 128, Sep. 2016 Bremen, Ger.: Max Plank Inst. Mar. Microbiol., Jacobs Univ https://www.arb-silva.de/projects/ssu-ref-nr/
  123. Singh S, Eldin C, Kowalczewska M, Raoult D. 123.  2013. Axenic culture of fastidious and intracellular bacteria. Trends Microbiol 21:92–99 [Google Scholar]
  124. Stephens RS, Kalman S, Lammerl C, Fan J, Marathe R. 124.  et al. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–59 [Google Scholar]
  125. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S. 125.  et al. 2008. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ. Microbiol. 10:2030–41 [Google Scholar]
  126. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K. 126.  et al. 2015. Structure and function of the global ocean microbiome. Science 348:1261359 [Google Scholar]
  127. Suzuki MT, Rappe MS, Haimberger ZW, Winfield H, Adair N. 127.  et al. 1997. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63:983–89 [Google Scholar]
  128. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T. 128.  et al. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–300 [Google Scholar]
  129. Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M. 129.  et al. 2013. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. PNAS 110:11463–68 [Google Scholar]
  130. Teeling H, Fuchs BM, Becher D, Klocknow C, Gardebrecht A. 130.  et al. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–11 [Google Scholar]
  131. Temperton B, Giovannoni S. 131.  2012. Metagenomics: microbial diversity through a scratched lens. Curr. Opin. Microbiol. 15:605–12 [Google Scholar]
  132. Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. 132.  2008. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–44 [Google Scholar]
  133. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D. 133.  et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74 [Google Scholar]
  134. Vieira S, Luckner M, Wanner G, Overmann J. 134.  2017. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int. J. Syst. Evol. Microbiol. 67:51408–-14 [Google Scholar]
  135. Wagner M. 135.  2009. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63:411–29 [Google Scholar]
  136. Wasmund K, Schreiber L, Lloyd KG, Petersen DG, Schramm A. 136.  et al. 2013. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J. 8:383–97 [Google Scholar]
  137. Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ. 137.  et al. 2014. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58–62 [Google Scholar]
  138. Wright JJ, Mewis K, Hanson NW, Konwar KM, Maas KR, Hallam SJ. 138.  2014. Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. ISME J 8:455–68 [Google Scholar]
  139. Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S. 139.  et al. 2016. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat. Commun. 7:12115 [Google Scholar]
  140. Wüst PK, Foesel BU, Geppert A, Huber KJ, Luckner M. 140.  et al. 2016. Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savanna soil and description of the novel family Pyrinomonadaceae. Int. J. Syst. Evol. Microbiol. 66:3355–66 [Google Scholar]
  141. Wüst PK, Nacke H, Kaiser K, Marhan S, Sikorski J. 141.  et al. 2016. Estimates of soil bacterial ribosome content and diversity are significantly affected by the nucleic acid extraction method employed. Appl. Environ. Microbiol. 82:2595–607 [Google Scholar]
  142. Yin Q, Fu B, Li B, Shi X, Inagaki F, Zhang X-H. 142.  2013. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre. PLOS ONE 8:e55148 [Google Scholar]
  143. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ. 143.  et al. 2007. The Sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLOS Biol 5:e16 [Google Scholar]
  144. Young P. 144.  1997. Major microbial diversity initiative recommended. ASM News 63:417–21 [Google Scholar]
  145. Youssef NH, Blainey PC, Quake SR, Elshahed MS. 145.  2011. Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). Appl. Environ. Microbiol. 77:7804–14 [Google Scholar]
  146. Zaburannyi N, Bunk B, Maier J, Overmann J, Müller R. 146.  2016. Genome analysis of the fruiting body-forming myxobacterium Chondromyces crocatus reveals high potential for natural product biosynthesis. Appl. Environ. Microbiol. 82:1945–57 [Google Scholar]
  147. Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ. 147.  et al. 2002. Cultivating the uncultured. PNAS 99:15681–86 [Google Scholar]
  148. ZoBell CE. 148.  1941. Studies on marine bacteria. J. Mar. Res. 4:42–75 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error