1932

Abstract

Polarized growth is critical for the development and maintenance of diverse organisms and tissues but particularly so in fungi, where nutrient uptake, communication, and reproduction all rely on cell asymmetries. To achieve polarized growth, fungi spatially organize both their cytosol and cortical membranes. Septins, a family of GTP-binding proteins, are key regulators of spatial compartmentalization in fungi and other eukaryotes. Septins form higher-order structures on fungal plasma membranes and are thought to contribute to the generation of cell asymmetries by acting as molecular scaffolds and forming diffusional barriers. Here we discuss the links between septins and polarized growth and consider molecular models for how septins contribute to cellular asymmetry in fungi.

[Erratum, Closure]

An erratum has been published for this article:
Septins and Generation of Asymmetries in Fungal Cells
Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091014-104250
2015-10-15
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/annurev-micro-091014-104250.html?itemId=/content/journals/10.1146/annurev-micro-091014-104250&mimeType=html&fmt=ahah

Literature Cited

  1. Alvarez-Tabarés I, Pérez-Martín J. 1.  2010. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence. PLOS ONE 5:9e12933 [Google Scholar]
  2. An H, Morrell JL, Jennings JL, Link AJ, Gould KL. 2.  2004. Requirements of fission yeast septins for complex formation, localization, and function. Mol. Biol. Cell 15:125551–64 [Google Scholar]
  3. Anker JF, Gladfelter AS. 3.  2011. Axl2 integrates polarity establishment, maintenance, and environmental stress response in the filamentous fungus Ashbya gossypii. Eukaryot. Cell 10:121679–93 [Google Scholar]
  4. Barral Y, Mermall V, Mooseker MS, Snyder M. 4.  2000. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5:5841–51 [Google Scholar]
  5. Berepiki A, Read ND. 5.  2013. Septins are important for cell polarity, septation and asexual spore formation in Neurospora crassa and show different patterns of localisation at germ tube tips. PLOS ONE 8:5E63843 [Google Scholar]
  6. Berlin A, Paoletti A, Chang F. 6.  2003. Mid2p stabilizes septin rings during cytokinesis in fission yeast. J. Cell Biol. 160:71083–92 [Google Scholar]
  7. Bertin A, McMurray MA, Grob P, Park S-S, Garcia G III. 7.  et al. 2008. Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. PNAS 105:248274–79 [Google Scholar]
  8. Bertin A, McMurray MA, Pierson J, Thai L, McDonald KL. 8.  et al. 2012. Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae. Mol. Biol. Cell 23:3423–32 [Google Scholar]
  9. Bertin A, McMurray MA, Thai L, Garcia G III, Votin V. 9.  et al. 2010. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J. Mol. Biol. 404:4711–31 [Google Scholar]
  10. Bertin A, Nogales E. 10.  2012. Septin filament organization in Saccharomyces cerevisiae. Commun. Integr. Biol. 5:5503–5 [Google Scholar]
  11. Bi E, Park H-O. 11.  2012. Cell polarization and cytokinesis in budding yeast. Genetics 191:2347–87 [Google Scholar]
  12. Boyce KJ, Chang H, D'Souza CA, Kronstad JW. 12.  2005. An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize. Eukaryot. Cell 4:122044–56 [Google Scholar]
  13. Bridges AA, Gladfelter AS. 13.  2014. Fungal pathogens are platforms for discovering novel and conserved septin properties. Curr. Opin. Microbiol. 20:42–48 [Google Scholar]
  14. Bridges AA, Zhang H, Mehta SB, Occhipinti P, Tani T, Gladfelter AS. 14.  2014. Septin assemblies form by diffusion-driven annealing on membranes. PNAS 111:62146–51 [Google Scholar]
  15. Byers B, Goetsch L. 15.  1976. A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol. 69:3717–21 [Google Scholar]
  16. Cao L, Ding X, Yu W, Yang X, Shen S, Yu L. 16.  2007. Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Lett. 581:285526–32 [Google Scholar]
  17. Carrasco S, Tobias M. 17.  2011. STIM Proteins and the endoplasmic reticulum-plasma membrane junctions. Annu. Rev. Biochem. 80:973–1000 [Google Scholar]
  18. Castillon GA, Adames NR, Rosello CH, Seidel HS, Longtine MS. 18.  et al. 2003. Septins have a dual role in controlling mitotic exit in budding yeast. Curr. Biol. 13:8654–58 [Google Scholar]
  19. Caviston JP, Longtine MS, Pringle JR, Bi E. 19.  2003. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell 14:104051–66 [Google Scholar]
  20. Chant J, Pringle JR. 20.  1995. Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J. Cell Biol. 129:3751–65 [Google Scholar]
  21. Chao JT, Wong AKO, Tavassoli S, Young BP, Chruscicki A. 21.  et al. 2014. Polarization of the endoplasmic reticulum by ER-septin tethering. Cell 158:3620–32 [Google Scholar]
  22. Chen C, Wirth A, Ponimaskin E. 22.  2012. Cdc42: an important regulator of neuronal morphology. Int. J. Biochem. Cell Biol. 44:3447–51 [Google Scholar]
  23. Cherfils J, Zeghouf M. 23.  2013. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93:1269–309 [Google Scholar]
  24. Christova Y, James P, Mackie A, Cooper TG, Jones R. 24.  2004. Molecular diffusion in sperm plasma membranes during epididymal maturation. Mol. Cell Endocrinol. 216:1–241–46 [Google Scholar]
  25. Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Frei SB. 25.  et al. 2014. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. eLife 3:e01883 [Google Scholar]
  26. Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E. 26.  et al. 2012. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:60881590–95 [Google Scholar]
  27. Das A, Slaughter BD, Unruh JR, Bradford WD, Alexander R. 27.  et al. 2012. Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nat. Cell Biol. 14:3304–10 [Google Scholar]
  28. DeMay BS, Bai X, Howard L, Occhipinti P, Meseroll RA. 28.  et al. 2011. Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals. J. Cell Biol. 193:61065–81 [Google Scholar]
  29. DeMay BS, Meseroll RA, Occhipinti P, Gladfelter AS. 29.  2009. Regulation of distinct septin rings in a single cell by Elm1p and Gin4p kinases. Mol. Biol. Cell 20:82311–26 [Google Scholar]
  30. DeMay BS, Noda N, Gladfelter AS, Oldenbourg R. 30.  2011. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophys. J. 101:4985–94 [Google Scholar]
  31. Devaux PF. 31.  1991. Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30:51163–73 [Google Scholar]
  32. Dobbelaere J, Barral Y. 32.  2004. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305:5682393–96 [Google Scholar]
  33. Dobbelaere J, Gentry MS, Hallberg RL, Barral Y. 33.  2003. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4:3345–57 [Google Scholar]
  34. Egelhofer TA, Villén J, McCusker D, Gygi SP, Kellogg DR. 34.  2008. The septins function in G1 pathways that influence the pattern of cell growth in budding yeast. PLOS ONE 3:4e2022 [Google Scholar]
  35. Eluère R, Varlet I, Bernadac A, Simon M-N. 35.  2012. Cdk and the anillin homolog Bud4 define a new pathway regulating septin organization in yeast. Cell Cycle 11:1151–58 [Google Scholar]
  36. Estey MP, Di Ciano-Oliveira C, Froese CD, Bejide MT, Trimble WS. 36.  2010. Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J. Cell Biol. 191:4741–49 [Google Scholar]
  37. Fadeel B, Xue D. 37.  2009. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. 44:5264–77 [Google Scholar]
  38. Ficarro SB, McCleland ML, Stukenberg PT. 38.  2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature 20:3301–5 [Google Scholar]
  39. Field CM, Al-Awar O, Rosenblatt J, Wong ML, Alberts B, Mitchison TJ. 39.  1996. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133:3605–16 [Google Scholar]
  40. Finger FP, Novick P. 40.  1997. Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell 8:4647–62 [Google Scholar]
  41. Finnigan GC, Takagi J, Cho C, Thorner T. 40a.  2015. Comprehensive genetic analysis of paralogous terminal septin subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200:3841–61 [Google Scholar]
  42. Flescher EG, Madden K, Snyder M. 41.  1993. Components required for cytokinesis are important for bud site selection in yeast. J. Cell Biol. 122:2373–86 [Google Scholar]
  43. Ford SK, Pringle JR. 42.  1991. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site. Dev. Genet. 12:4281–92 [Google Scholar]
  44. Frazier JA, Wong ML, Longtine MS, Pringle JR, Mann M. 43.  et al. 1998. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143:3737–49 [Google Scholar]
  45. Gale C, Gerami-Nejad M, McClellan M, Vandoninck S, Longtine MS, Berman J. 44.  2001. Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells. Mol. Biol. Cell 12:113538–49 [Google Scholar]
  46. Gale CA, Leonard MD, Finley KR, Christensen L, McClellan M. 45.  et al. 2009. SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae. Microbiology 155:Part 123847–59 [Google Scholar]
  47. Gao X-D, Sperber LM, Kane SA, Tong Z, Tong AHY. 46.  et al. 2007. Sequential and distinct roles of the cadherin domain-containing protein Axl2p in cell polarization in yeast cell cycle. Mol. Biol. Cell 18:72542–60 [Google Scholar]
  48. Garcia G III, Bertin A, Li Z, Song Y, McMurray MA. 47.  et al. 2011. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J. Cell Biol. 195:6993–1004 [Google Scholar]
  49. Garrenton LS, Stefan CJ, McMurray MA, Emr SD, Thorner J. 48.  2010. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. PNAS 107:2611805–10 [Google Scholar]
  50. Gilden JK, Peck S, Chen Y-CM, Krummel MF. 49.  2012. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J. Cell Biol. 196:1103–14 [Google Scholar]
  51. Gladfelter AS. 50.  2006. Control of filamentous fungal cell shape by septins and formins. Nat. Rev. Microbiol. 4:223–29 [Google Scholar]
  52. Gladfelter AS, Bose I, Zyla TR, Bardes ESG, Lew DJ. 51.  2002. Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J. Cell Biol. 156:2315–26 [Google Scholar]
  53. Gladfelter AS, Kozubowski L, Zyla TR, Lew DJ. 52.  2005. Interplay between septin organization, cell cycle and cell shape in yeast. J. Cell Sci. 118:Part 81617–28 [Google Scholar]
  54. Gladfelter AS, Moskow JJ, Zyla TR, Lew DJ. 53.  2001. Isolation and characterization of effector-loop mutants of CDC42 in yeast. Mol. Biol. Cell 12:51239–55 [Google Scholar]
  55. Gladfelter AS, Pringle JR, Lew DJ. 54.  2001. The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 4:6681–89 [Google Scholar]
  56. Gladfelter AS, Zyla TR, Lew DJ. 55.  2004. Genetic interactions among regulators of septin organization. Eukaryot. Cell 3:4847–54 [Google Scholar]
  57. Golebiewska U, Kay JG, Masters T, Grinstein S, Im W. 56.  et al. 2011. Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages. Mol. Biol. Cell 22:183498–507 [Google Scholar]
  58. González-Novo A, Correa-Bordes J, Labrador L, Sánchez M, de Aldana CRV, Jimenez AJ. 57.  2008. Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Mol. Biol. Cell 19:41509–18 [Google Scholar]
  59. Gordesky SE, Marinetti GV. 58.  1973. The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem. Biophys. Res. Commun. 50:41027–31 [Google Scholar]
  60. Haarer BK, Pringle JR. 59.  1987. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol. Cell. Biol. 7:103678–87 [Google Scholar]
  61. Hartwell LH. 60.  1971. Genetic control of the cell division cycle in yeast: IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69:2265–76 [Google Scholar]
  62. Helfer H, Gladfelter AS. 61.  2006. AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells. Mol. Biol. Cell 17:104494–512 [Google Scholar]
  63. Hernández-Rodríguez Y, Hastings S, Momany M. 62.  2012. The septin AspB in Aspergillus nidulans forms bars and filaments and plays roles in growth emergence and conidiation. Eukaryot. Cell 11:3311–23 [Google Scholar]
  64. Hernández-Rodríguez Y, Masuo S, Johnson D, Orlando R, Smith A. 63.  et al. 2014. Distinct septin heteropolymers co-exist during multicellular development in the filamentous fungus Aspergillus nidulans. PLOS ONE 9:3e92819 [Google Scholar]
  65. Iwase M, Luo J, Nagaraj S, Longtine MS, Kim HB. 64.  et al. 2006. Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site. Mol. Biol. Cell 17:31110–25 [Google Scholar]
  66. John CM, Hite RK, Weirich CS, Fitzgerald DJ, Jawhari H. 65.  et al. 2007. The Caenorhabditis elegans septin complex is nonpolar. EMBO J. 26:143296–307 [Google Scholar]
  67. Justa-Schuch D, Heilig Y, Richthammer C, Seiler S. 66.  2010. Septum formation is regulated by the RHO4-specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Mol. Microbiol. 76:1220–35 [Google Scholar]
  68. Juvvadi PR, Belina D, Soderblom EJ. 67.  2013. Filamentous fungal-specific septin AspE is phosphorylated in vivo and interacts with actin, tubulin and other septins in the human pathogen Aspergillus fumigatus. Biochem. Biophys. Res. Commun. 431:3547–53 [Google Scholar]
  69. Juvvadi PR, Fortwendel JR, Rogg LE. 68.  2011. Differential localization patterns of septins during growth of the human fungal pathogen Aspergillus fumigatus reveal novel functions. Biochem. Biophys. Res. Commun. 405:2238–43 [Google Scholar]
  70. Kang PJ, Angerman E, Jung C-H, Jung CH, Park H-O. 69.  2012. Bud4 mediates the cell-type-specific assembly of the axial landmark in budding yeast. J. Cell Sci. 125:Part 163840–49 [Google Scholar]
  71. Kang PJ, Hood-DeGrenier JK, Park H-O. 70.  2013. Coupling of septins to the axial landmark by Bud4 in budding yeast. J. Cell Sci. 126:Part 51218–26 [Google Scholar]
  72. Kelley JB, Dixit G, Sheetz JB, Venkatapurapu SP, Elston TC, Dohlman HG. 71.  2015. RGS proteins and septins cooperate to promote chemotropism by regulating polar cap mobility. Curr. Biol. 25:3275–85 [Google Scholar]
  73. Kim HB, Haarer BK, Pringle JR. 72.  1991. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol. 112:4535–44 [Google Scholar]
  74. Kim MS, Froese CD, Estey MP, Trimble WS. 73.  2011. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J. Cell Biol. 195:5815–26 [Google Scholar]
  75. King K, Jin M, Lew D. 74.  2012. Roles of Hsl1p and Hsl7p in Swe1p degradation: beyond septin tethering. Eukaryot. Cell 11:121496–502 [Google Scholar]
  76. King K, Kang H, Jin M, Lew D, Lew DJ. 75.  2013. Feedback control of Swe1p degradation in the yeast morphogenesis checkpoint. Mol. Biol. Cell 24:7914–22 [Google Scholar]
  77. Kozubowski L, Heitman J. 76.  2010. Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol. Microbiol. 75:3658–75 [Google Scholar]
  78. Kusch J, Meyer A, Snyder M, Barral Y. 77.  2002. Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev. 16:131627–39 [Google Scholar]
  79. Kwitny S, Klaus AV, Hunnicutt GR. 78.  2010. The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol. Reprod. 82:4669–78 [Google Scholar]
  80. Lew DJ, Reed SI. 79.  1995. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol. 129:3739–49 [Google Scholar]
  81. Li L, Zhang C, Konopka JB. 80.  2012. A Candida albicans temperature-sensitive cdc12-6 mutant identifies roles for septins in selection of sites of germ tube formation and hyphal morphogenesis. Eukaryot. Cell 11:101210–18 [Google Scholar]
  82. Lingwood D, Simons K. 81.  2010. Lipid rafts as a membrane-organizing principle. Science 327:596146–50 [Google Scholar]
  83. Longtine MS, DeMarini DJ, Valencik ML, Al-Awar OS, Fares H. 82.  et al. 1996. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 8:1106–19 [Google Scholar]
  84. Longtine MS, Theesfeld CL, McMillan JN, Weaver E, Pringle JR, Lew DJ. 83.  2000. Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:114049–61 [Google Scholar]
  85. Luedeke C, Frei SB, Sbalzarini I, Schwarz H, Spang A, Barral Y. 84.  2005. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J. Cell Biol. 169:6897–908 [Google Scholar]
  86. McMurray MA, Thorner J. 85.  2009. Septins: molecular partitioning and the generation of cellular asymmetry. Cell Div. 4:18 [Google Scholar]
  87. Merlini L, Fraschini R, Boettcher B, Barral Y, Lucchini G, Piatti S. 86.  2012. Budding yeast Dma proteins control septin dynamics and the spindle position checkpoint by promoting the recruitment of the Elm1 kinase to the bud neck. PLOS Genet. 8:4e1002670 [Google Scholar]
  88. Meseroll RA, Howard L, Gladfelter AS. 87.  2012. Septin ring size scaling and dynamics require the coiled-coil region of Shs1p. Mol. Biol. Cell 23:173391–406 [Google Scholar]
  89. Meseroll RA, Occhipinti P, Gladfelter AS. 88.  2013. Septin phosphorylation and coiled-coil domains function in cell and septin ring morphology in the filamentous fungus Ashbya gossypii. Eukaryot. Cell 12:2182–93 [Google Scholar]
  90. Mitchell L, Lau A, Lambert JP, Zhou H, Fong Y. 89.  2011. Regulation of septin dynamics by the Saccharomyces cerevisiae lysine acetyltransferase NuA4. PLOS ONE 6:10e25336 [Google Scholar]
  91. Momany M, Zhao J, Lindsey R, Westfall PJ. 90.  2001. Characterization of the Aspergillus nidulans septin (asp) gene family. Genetics 157:3969–77 [Google Scholar]
  92. Moore JK, Chudalayandi P, Heil-Chapdelaine RA, Cooper JA. 91.  2010. The spindle position checkpoint is coordinated by the Elm1 kinase. J. Cell Biol. 191:3493–503 [Google Scholar]
  93. Mortensen EM, McDonald H, Yates J III, Kellogg DR. 92.  2002. Cell cycle-dependent assembly of a Gin4-septin complex. Mol. Biol. Cell 13:62091–105 [Google Scholar]
  94. Okada S, Leda M, Hanna J, Savage NS, Bi E, Goryachev AB. 93.  2013. Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev. Cell 26:2148–61 [ Erratum] [Google Scholar]
  95. Ong K, Wloka C, Okada S, Svitkina T, Bi E. 94.  2014. Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle. Nat. Commun. 5:5698 [Google Scholar]
  96. Onishi M, Koga T, Hirata A, Nakamura T, Asakawa H. 95.  et al. 2010. Role of septins in the orientation of forespore membrane extension during sporulation in fission yeast. Mol. Cell. Biol. 30:82057–74 [Google Scholar]
  97. Orlando K, Sun X, Zhang J, Lu T, Yokomizo L. 96.  et al. 2011. Exo-endocytic trafficking and the septin-based diffusion barrier are required for the maintenance of Cdc42p polarization during budding yeast asymmetric growth. Mol. Biol. Cell 22:5624–33 [Google Scholar]
  98. Pringle JR, Bi E, Harkins HA, Zahner JE, De Virgilio C. 97.  et al. 1995. Establishment of cell polarity in yeast. Cold Spring Harb. Symp. Quant. Biol. 60:729–44 [Google Scholar]
  99. Rodal AA, Kozubowski L, Goode BL, Drubin DG, Hartwig JH. 98.  2005. Actin and septin ultrastructures at the budding yeast cell cortex. Mol. Biol. Cell 16:1372–84 [Google Scholar]
  100. Rodriguez YH. 99.  2011. Characterization of the Aspergillus nidulans septin AspB and its interactions PhD Thesis, Univ. Ga., Athens [Google Scholar]
  101. Roelants FM, Su BM, Wulffen von J, Ramachandran S, Sartorel E. 100.  et al. 2015. Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry. J. Cell Biol. 208:3299–311 [Google Scholar]
  102. Roper M, Simonin A, Hickey PC, Leeder A, Glass NL. 101.  2013. Nuclear dynamics in a fungal chimera. PNAS 110:3212875–80 [Google Scholar]
  103. Ryder LS, Dagdas YF, Mentlak TA, Kershaw MJ, Thornton CR. 102.  et al. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. PNAS 110:83179–84 [Google Scholar]
  104. Sadian Y, Gatsogiannis C, Patasi C, Hofnagel O, Goody RS. 103.  et al. 2013. The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation. eLife 2:e01085 [Google Scholar]
  105. Saito K, Fujimura-Kamada K, Hanamatsu H, Kato U, Umeda M. 104.  et al. 2007. Transbilayer phospholipid flipping regulates Cdc42p signaling during polarized cell growth via Rga GTPase-activating proteins. Dev. Cell 13:5743–51 [Google Scholar]
  106. Sanders SL, Herskowitz I. 105.  1996. The BUD4 protein of yeast, required for axial budding, is localized to the mother/BUD neck in a cell cycle-dependent manner. J. Cell Biol. 134:2413–27 [Google Scholar]
  107. Saunders DGO, Dagdas YF, Talbot NJ. 106.  2010. Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Plant Cell 22:72417–28 [Google Scholar]
  108. Schneider C, Grois J, Renz C, Gronemeyer T, Johnsson N. 107.  2013. Septin rings act as a template for myosin higher-order structures and inhibit redundant polarity establishment. J. Cell Sci. 126:Part 153390–400 [Google Scholar]
  109. Sellin ME, Stenmark S, Gullberg M. 108.  2012. Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers. Mol. Biol. Cell 23:214242–55 [Google Scholar]
  110. Sellin ME, Stenmark S, Gullberg M. 109.  2014. Cell type-specific expression of SEPT3-homology subgroup members controls the subunit number of heteromeric septin complexes. Mol. Biol. Cell 25:101594–607 [Google Scholar]
  111. Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B. 110.  2013. An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 499:7457238–42 [Google Scholar]
  112. Shioya T, Nakamura H, Ishii N, Takahashi N, Sakamoto Y. 111.  et al. 2013. The Coprinopsis cinerea septin Cc.Cdc3 is involved in stipe cell elongation. Fungal Genet. Biol. 58–59:80–90 [Google Scholar]
  113. Si H, Rittenour WR, Xu K, Nicksarlian M, Calvo AM, Harris SD. 112.  2012. Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Mol. Microbiol. 85:2252–70 [Google Scholar]
  114. Sinha I, Wang Y-M, Philp R, Li C-R, Yap WH, Wang Y. 113.  2007. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev. Cell 13:3421–32 [Google Scholar]
  115. Sirajuddin M, Farkasovsky M, Hauer F, Kühlmann D. 114.  2007. Structural insight into filament formation by mammalian septins. Nature 449:7160311–15 [Google Scholar]
  116. Sudbery PE. 115.  2001. The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol. Microbiol. 41:119–31 [Google Scholar]
  117. Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD. 116.  2000. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290:5490341–44 [Google Scholar]
  118. Tang CS, Reed SI. 117.  2002. Phosphorylation of the septin Cdc3 in G1 by the Cdc28 kinase is essential for efficient septin ring disassembly. Cell Cycle 1:142–49 [Google Scholar]
  119. Tartakoff AM, Aylyarov I, Jaiswal P. 118.  2013. Septin-containing barriers control the differential inheritance of cytoplasmic elements. Cell Rep. 3:1223–36 [Google Scholar]
  120. TerBush DR, Maurice T, Roth D, Novick P. 119.  1996. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15:236483–94 [Google Scholar]
  121. Theesfeld CL, Zyla TR, Bardes EGS, Lew DJ. 120.  2003. A monitor for bud emergence in the yeast morphogenesis checkpoint. Mol. Biol. Cell 14:83280–91 [Google Scholar]
  122. Tong Z, Gao X-D, Howell AS, Bose I, Lew DJ, Bi E. 121.  2007. Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition. J. Cell Biol. 179:71375–84 [Google Scholar]
  123. Trimble WS, Grinstein S. 122.  2015. Barriers to the free diffusion of proteins and lipids in the plasma membrane. J. Cell Biol. 208:3259–71 [Google Scholar]
  124. Vargas-Muñiz JM, Renshaw H, Richards AD. 123.  2015. The Aspergillus fumigatus septins play pleiotropic roles in septation, conidiation, and cell wall stress, but are dispensable for virulence. Fungal Genet. Biol. 81:41–51 [Google Scholar]
  125. Vrabioiu AM, Mitchison TJ. 124.  2006. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443:7110466–69 [Google Scholar]
  126. Warenda AJ, Kauffman S, Sherrill TP, Becker JM, Konopka JB. 125.  2003. Candida albicans septin mutants are defective for invasive growth and virulence. Infect. Immun. 71:74045–51 [Google Scholar]
  127. Warenda AJ, Konopka JB. 126.  2002. Septin function in Candida albicans morphogenesis. Mol. Biol. Cell 13:82732–46 [Google Scholar]
  128. Westfall PJ, Momany M. 127.  2002. Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development. Mol. Biol. Cell 13:1110–18 [Google Scholar]
  129. Wightman R, Bates S, Amornrrattanapan P, Sudbery P. 128.  2004. In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J. Cell Biol. 164:4581–91 [Google Scholar]
  130. Wloka C, Nishihama R, Onishi M, Oh Y, Hanna J. 129.  et al. 2011. Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast. Biol. Chem. 392:8–9813–29 [Google Scholar]
  131. Wolf W, Kilic A, Schrul B, Lorenz H, Schwappach B, Seedorf M. 130.  2012. Yeast Ist2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome-free membrane microcompartment. PLOS ONE 7:7e39703 [Google Scholar]
  132. Wu H, Guo J, Zhou Y-T, Gao X-D. 131.  2015. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud-site selection in budding yeast. Eukaryot. Cell 14:3241–51 [Google Scholar]
  133. Wu J-Q, Ye Y, Wang N, Pollard TD, Pringle JR. 132.  2010. Cooperation between the septins and the actomyosin ring and role of a cell-integrity pathway during cell division in fission yeast. Genetics 186:3897–915 [Google Scholar]
  134. Zhang J, Kong C, Xie H, McPherson PS, Grinstein S, Trimble WS. 133.  1999. Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr. Biol. 9:241458–67 [Google Scholar]
/content/journals/10.1146/annurev-micro-091014-104250
Loading
/content/journals/10.1146/annurev-micro-091014-104250
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error