The enterococci are an ancient genus that evolved along with the tree of life. These intrinsically rugged bacteria are highly adapted members of the intestinal consortia of a range of hosts that spans the animal kingdom. Enterococci are also leading opportunistic hospital pathogens, causing infections that are often resistant to treatment with most antibiotics. Despite the importance of enterococci as hospital pathogens, the vast majority live outside of humans, and nearly all of their evolutionary history took place before the appearance of modern humans. Because hospital infections represent evolutionary end points, traits that exacerbate human infection are unlikely to have evolved for that purpose. However, clusters of traits have converged in specific lineages that are well adapted to colonize the antibiotic-perturbed gastrointestinal tracts of patients and that thrive in the hospital environment. Here we discuss these traits in an evolutionary context, as well as how comparative genomics is providing new insights into the evolution of the enterococci.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acar J, Casewell M, Freeman J, Friis C, Goossens H. 1.  2000. Avoparcin and virginiamycin as animal growth promoters: a plea for science in decision-making. Clin. Microbiol. Infect. 6:477–82 [Google Scholar]
  2. Arias CA, Murray BE. 2.  2012. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10:266–78 [Google Scholar]
  3. Bager F, Aarestrup FM, Madsen M, Wegener HC. 3.  1999. Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microb. Drug Resist. 5:53–56 [Google Scholar]
  4. Bates J. 4.  1997. Epidemiology of vancomycin-resistant enterococci in the community and the relevance of farm animals to human infection. J. Hosp. Infect. 37:89–101 [Google Scholar]
  5. Benveniste R, Davies J. 5.  1973. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA 70:2276–80 [Google Scholar]
  6. Bleiweis AS, Zimmerman LN. 6.  1964. Properties of proteinase from Streptococcus faecalis var. Liquefaciens.. J. Bacteriol. 88:653–59 [Google Scholar]
  7. Brock TD, Peacher B, Pierson D. 7.  1963. Survey of the bacteriocines of enterococci. J. Bacteriol. 86:702–7 [Google Scholar]
  8. Broderick NA, Raffa KF, Goodman RM, Handelsman J. 8.  2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70:293–300 [Google Scholar]
  9. Brown SP, Cornforth DM, Mideo N. 9.  2012. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 20:336–42 [Google Scholar]
  10. Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. 10.  2012. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 76:685–706 [Google Scholar]
  11. Casadevall A, Pirofski L. 11.  2001. Host-pathogen interactions: the attributes of virulence. J. Infect. Dis. 184:337–44 [Google Scholar]
  12. Cattoir V, Leclercq R. 12.  2013. Twenty-five years of shared life with vancomycin-resistant enterococci: Is it time to divorce?. J. Antimicrob. Chemother. 68:731–42 [Google Scholar]
  13. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC. 13.  et al. 2003. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348:1342–47 [Google Scholar]
  14. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM. 14.  et al. 1993. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 37:2474–77 [Google Scholar]
  15. Chuang ON, Schlievert PM, Wells CL, Manias DA, Tripp TJ, Dunny GM. 15.  2009. Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect. Immun. 77:539–48 [Google Scholar]
  16. Chuang-Smith ON, Wells CL, Henry-Stanley MJ, Dunny GM. 16.  2010. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS ONE 5:e15798 [Google Scholar]
  17. Clewell DB, Weaver KE. 17.  1989. Sex pheromones and plasmid transfer in Enterococcus faecalis. Plasmid 21:175–84 [Google Scholar]
  18. Coque TM, Tomayko JF, Ricke SC, Okhyusen PC, Murray BE. 18.  1996. Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States. Antimicrob. Agents Chemother. 40:2605–9 [Google Scholar]
  19. Cox CR, Coburn PS, Gilmore MS. 19.  2005. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci. 6:77–84 [Google Scholar]
  20. Cox CR, Gilmore MS. 20.  2007. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75:1565–76 [Google Scholar]
  21. Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G. 21.  et al. 2004. Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J. Med. Microbiol. 53:13–20 [Google Scholar]
  22. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. 22.  et al. 2013. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63 [Google Scholar]
  23. Davies J. 23.  1990. What are antibiotics? Archaic functions for modern activities. Mol. Microbiol. 4:1227–32 [Google Scholar]
  24. Davies J, Davies D. 24.  2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74:417–33 [Google Scholar]
  25. D’Costa VM, King CE, Kalan L, Morar M, Sung WW. 25.  et al. 2011. Antibiotic resistance is ancient. Nature 477:457–61 [Google Scholar]
  26. D’Costa VM, McGrann KM, Hughes DW, Wright GD. 26.  2006. Sampling the antibiotic resistome. Science 311:374–77 [Google Scholar]
  27. Desmarais TR, Solo-Gabriele HM, Palmer CJ. 27.  2002. Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl. Environ. Microbiol. 68:1165–72 [Google Scholar]
  28. Devriese LA, Ieven M, Goossens H, Vandamme P, Pot B. 28.  et al. 1996. Presence of vancomycin-resistant enterococci in farm and pet animals. Antimicrob. Agents Chemother. 40:2285–87 [Google Scholar]
  29. Drummond AJ, Suchard MA, Xie D, Rambaut A. 29.  2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29:1969–73 [Google Scholar]
  30. Dunny GM. 30.  1990. Genetic functions and cell-cell interactions in the pheromone-inducible plasmid transfer system of Enterococcus faecalis. Mol. Microbiol. 4:689–96 [Google Scholar]
  31. Dunny GM, Leonard BA, Hedberg PJ. 31.  1995. Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J. Bacteriol. 177:871–76 [Google Scholar]
  32. Edwards EJ, Osborne CP, Stromberg CA, Smith SA, Bond WJ. 32.  et al. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–91 [Google Scholar]
  33. Fisher K, Phillips C. 33.  2009. The ecology, epidemiology and virulence of Enterococcus. Microbiology 155:1749–57 [Google Scholar]
  34. Foucault ML, Courvalin P, Grillot-Courvalin C. 34.  2009. Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53:2354–59 [Google Scholar]
  35. Frieden TR, Munsiff SS, Low DE, Willey BM, Williams G. 35.  et al. 1993. Emergence of vancomycin-resistant enterococci in New York City. Lancet 342:76–79 [Google Scholar]
  36. Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV. 36.  et al. 2001. A simple model host for identifying gram-positive virulence factors. Proc. Natl. Acad. Sci. USA 98:10892–97 [Google Scholar]
  37. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ. 37.  et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–59 [Google Scholar]
  38. Gilmore MS. 38.  2002. The molecular basis of antibiotic resistance: where Newton meets Darwin. Int. J. Med. Microbiol. 292:65 [Google Scholar]
  39. Gilmore MS, Lebreton F, van Schaik W. 39.  2013. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr. Opin. Microbiol. 16:10–16 [Google Scholar]
  40. Giraffa G. 40.  2003. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88:215–22 [Google Scholar]
  41. Greenfield TJ, Ehli E, Kirshenmann T, Franch T, Gerdes K, Weaver KE. 41.  2000. The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol. Microbiol. 37:652–60 [Google Scholar]
  42. Hancock LE, Gilmore MS. 42.  2002. The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. Proc. Natl. Acad. Sci. USA 99:1574–79 [Google Scholar]
  43. Hartke A, Giard JC, Laplace JM, Auffray Y. 43.  1998. Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl. Environ. Microbiol. 64:4238–45 [Google Scholar]
  44. Hartke A, Lemarinier S, Pichereau V, Auffray Y. 44.  2002. Survival of Enterococcus faecalis in seawater microcosms is limited in the presence of bacterivorous zooflagellates. Curr. Microbiol. 44:329–35 [Google Scholar]
  45. Ike Y, Clewell DB. 45.  1984. Genetic analysis of the pAD1 pheromone response in Streptococcus faecalis, using transposon Tn917 as an insertional mutagen. J. Bacteriol. 158:777–83 [Google Scholar]
  46. Ike Y, Hashimoto H, Clewell DB. 46.  1984. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect. Immun. 45:528–30 [Google Scholar]
  47. Ike Y, Hashimoto H, Clewell DB. 47.  1987. High incidence of hemolysin production by Enterococcus (Streptococcus) faecalis strains associated with human parenteral infections. J. Clin. Microbiol. 25:1524–28 [Google Scholar]
  48. 48. Inst. Med 2010. Antibiotic Resistance: Implications for Global Health and Novel Intervention Strategies: Workshop Summary. Washington, DC: Natl. Acad. [Google Scholar]
  49. Jett BD, Huycke MM, Gilmore MS. 49.  1994. Virulence of enterococci. Clin. Microbiol. Rev. 7:462–78 [Google Scholar]
  50. Jett BD, Jensen HG, Nordquist RE, Gilmore MS. 50.  1992. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect. Immun. 60:2445–52 [Google Scholar]
  51. 51. Jt. Expert Advis. Comm. Antibiot. Resist. (JETACAR) 1999. The Use of Antibiotics in Food-Producing Animals: Antibiotic-Resistant Bacteria in Animals and Humans Canberra, Aust: Commonw. Aust. [Google Scholar]
  52. Kaplan H, Hill K, Lancaster J, Hurtado AM. 52.  2000. A theory of human life history evolution: diet, intelligence, and longevity. Evol. Anthropol. 9:156–85 [Google Scholar]
  53. Kempf I, Hellard G, Perrin-Guyomard A, Gicquel-Bruneau M, Sanders P, Leclercq R. 53.  2008. Prevalence of high-level vancomycin-resistant enterococci in French broilers and pigs. Int. J. Antimicrob. Agents 32:463–64 [Google Scholar]
  54. Kim EB, Marco ML. 54.  2014. Nonclinical and clinical Enterococcus faecium strains, but not Enterococcus faecalis strains, have distinct structural and functional genomic features. Appl. Environ. Microbiol. 80:154–65 [Google Scholar]
  55. Kos VN, Desjardins CA, Griggs A, Cerqueira G, van Tonder A. 55.  et al. 2012. Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with methicillin-resistant S. aureus hospital-acquired infection in the United States. mBio 3:e00112 [Google Scholar]
  56. Kreft B, Marre R, Schramm U, Wirth R. 56.  1992. Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect. Immun. 60:25–30 [Google Scholar]
  57. Kubinak JL, Potts WK. 57.  2013. Host resistance influences patterns of experimental viral adaptation and virulence evolution. Virulence 4:410–18 [Google Scholar]
  58. Lawley TD, Walker AW. 58.  2013. Intestinal colonization resistance. Immunology 138:1–11 [Google Scholar]
  59. Leavis H, Top J, Shankar N, Borgen K, Bonten M. 59.  et al. 2004. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J. Bacteriol. 186:672–82 [Google Scholar]
  60. Leavis HL, Bonten MJ, Willems RJ. 60.  2006. Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr. Opin. Microbiol. 9:454–60 [Google Scholar]
  61. Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A. 61.  et al. 2013. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. mBio 4:e00534 [Google Scholar]
  62. Leclercq R, Derlot E, Duval J, Courvalin P. 62.  1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319:157–61 [Google Scholar]
  63. Levy SB. 63.  2002. The Antibiotic Paradox: How the Misuse of Antibiotics Destroys Their Curative Power Cambridge, MA: Perseus [Google Scholar]
  64. Levy SB, Marshall B. 64.  2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10:S122–29 [Google Scholar]
  65. Ludwig W, Seewaldt E, Kilpper-Balz R, Schleifer KH, Magrum L. 65.  et al. 1985. The phylogenetic position of Streptococcus and Enterococcus. J. Gen. Microbiol. 131:543–51 [Google Scholar]
  66. MacCallum WG, Hastings TW. 66.  1899. A case of acute endocarditis caused by Micrococcus zymogenes (Nov. spec.), with a description of the microorganism. J. Exp. Med. 4:521–34 [Google Scholar]
  67. Makinen PL, Clewell DB, An F, Makinen KK. 67.  1989. Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (“gelatinase”) from Streptococcus faecalis (strain 0G1-10). J. Biol. Chem. 264:3325–34 [Google Scholar]
  68. Manson JM, Hancock LE, Gilmore MS. 68.  2010. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proc. Natl. Acad. Sci. USA 107:12269–74 [Google Scholar]
  69. Manson JM, Rauch M, Gilmore MS. 69.  2008. The commensal microbiology of the gastrointestinal tract. Adv. Exp. Med. Biol. 635:15–28 [Google Scholar]
  70. Maraccini PA, Ferguson DM, Boehm AB. 70.  2012. Diurnal variation in Enterococcus species composition in polluted ocean water and a potential role for the enterococcal carotenoid in protection against photoinactivation. Appl. Environ. Microbiol. 78:305–10 [Google Scholar]
  71. Martin JD, Mundt JO. 71.  1972. Enterococci in insects. Appl. Microbiol. 24:575–80 [Google Scholar]
  72. Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH. 72.  et al. 2011. From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio 2:e00065–11 [Google Scholar]
  73. Mayr E. 73.  1947. Ecological factors in speciation. Evolution 1:263–88 [Google Scholar]
  74. McBride SM, Fischetti VA, Leblanc DJ, Moellering RC Jr, Gilmore MS. 74.  2007. Genetic diversity among Enterococcus faecalis. PLoS ONE 2:e582 [Google Scholar]
  75. McGavin MH, Krajewska-Pietrasik D, Rydén C, Höök M. 75.  1993. Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect. Immun. 61:2479–85 [Google Scholar]
  76. Michaux C, Martini C, Shioya K, Ahmed Lecheheb S, Budin-Verneuil A. 76.  et al. 2012. CspR, a cold shock RNA-binding protein involved in the long-term survival and the virulence of Enterococcus faecalis. J. Bacteriol. 194:6900–8 [Google Scholar]
  77. Mundt JO. 77.  1963. Occurrence of enterococci in animals in a wild environment. Appl. Microbiol. 11:136–40 [Google Scholar]
  78. Mundt JO. 78.  1963. Occurrence of enterococci on plants in a wild environment. Appl. Microbiol. 11:141–44 [Google Scholar]
  79. Mundy LM, Sahm DF, Gilmore M. 79.  2000. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 13:513–22 [Google Scholar]
  80. Murray BE. 80.  1990. The life and times of the enterococcus. Clin. Microbiol. Rev. 3:46–65 [Google Scholar]
  81. Murray BE. 81.  1998. Diversity among multidrug-resistant enterococci. Emerg. Infect. Dis. 4:37–47 [Google Scholar]
  82. Nallapareddy SR, Qin X, Weinstock GM, Hook M, Murray BE. 82.  2000. Enterococcus faecalis adhesin, Ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect. Immun. 68:5218–24 [Google Scholar]
  83. Nallapareddy SR, Singh KV, Duh RW, Weinstock GM, Murray BE. 83.  2000. Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of Ace during human infections. Infect. Immun. 68:5210–7 [Google Scholar]
  84. Niven CF, Sherman JM. 84.  1944. Nutrition of the enterococci. J. Bacteriol. 47:335–42 [Google Scholar]
  85. Noble CJ. 85.  1978. Carriage of group D streptococci in the human bowel. J. Clin. Pathol. 31:1182–86 [Google Scholar]
  86. Olmsted SB, Dunny GM, Erlandsen SL, Wells CL. 86.  1994. A plasmid-encoded surface protein on Enterococcus faecalis augments its internalization by cultured intestinal epithelial cells. J. Infect. Dis. 170:1549–56 [Google Scholar]
  87. Palmer KL, Gilmore MS. 87.  2010. Multidrug-resistant enterococci lack CRISPR-cas. mBio 1:e00227–10 [Google Scholar]
  88. Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J. 88.  et al. 2012. Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio 3:e00318–11 [Google Scholar]
  89. Palmer KL, Kos VN, Gilmore MS. 89.  2010. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 13:632–39 [Google Scholar]
  90. Parte AC. 90.  2014. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42:D613–16 [Google Scholar]
  91. Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R. 91.  et al. 2003. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–74 [Google Scholar]
  92. Pinkston KL, Gao P, Diaz-Garcia D, Sillanpää J, Nallapareddy SR. 92.  et al. 2011. The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. J. Bacteriol. 193:4317–25 [Google Scholar]
  93. Purnell SE, Ebdon JE, Taylor HD. 93.  2011. Bacteriophage lysis of Enterococcus host strains: a tool for microbial source tracking?. Environ. Sci. Technol. 45:10699–705 [Google Scholar]
  94. Rana NF, Sauvageot N, Laplace JM, Bao Y, Nes I. 94.  et al. 2013. Redox balance via lactate dehydrogenase is important for multiple stress resistance and virulence in Enterococcus faecalis. Infect. Immun. 81:2662–68 [Google Scholar]
  95. Rendu W, Beauval C, Crevecoeur I, Bayle P, Balzeau A. 95.  et al. 2013. Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints. Proc. Natl. Acad. Sci. USA 111:81–86 [Google Scholar]
  96. Rich RL, Kreikemeyer B, Owens RT, LaBrenz S, Narayana SV. 96.  et al. 1999. Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J. Biol. Chem. 274:26939–45 [Google Scholar]
  97. Rigottier-Gois L, Alberti A, Houel A, Taly JF, Palcy P. 97.  et al. 2011. Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. PLoS ONE 6:e29023 [Google Scholar]
  98. Rippere K, Patel R, Uhl JR, Piper KE, Steckelberg JM. 98.  et al. 1998. DNA sequence resembling vanA and vanB in the vancomycin-resistant biopesticide Bacillus popilliae. J. Infect. Dis. 178:584–88 [Google Scholar]
  99. Roux A, Payne SM, Gilmore MS. 99.  2009. Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 6:115–24 [Google Scholar]
  100. Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR. 100.  et al. 2006. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J. Clin. Microbiol. 44:2220–28 [Google Scholar]
  101. Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R. 101.  et al. 1989. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 33:1588–91 [Google Scholar]
  102. Schleifer KH, Kilpper-Balz R. 102.  1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int. J. Syst. Bacteriol. 34:31–34 [Google Scholar]
  103. Seipke RF, Kaltenpoth M, Hutchings MI. 103.  2012. Streptomyces as symbionts: an emerging and widespread theme?. FEMS Microbiol. Rev. 36:862–76 [Google Scholar]
  104. Shankar N, Baghdayan AS, Gilmore MS. 104.  2002. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–50 [Google Scholar]
  105. Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS. 105.  1999. Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect. Immun. 67:193–200 [Google Scholar]
  106. Sherman JM. 106.  1937. The streptococci. Bacteriol. Rev. 1:3–97 [Google Scholar]
  107. Sherman JM. 107.  1938. The enterococci and related streptococci. J. Bacteriol. 35:81–93 [Google Scholar]
  108. Silverman J, Thal LA, Perri MB, Bostic G, Zervos MJ. 108.  1998. Epidemiologic evaluation of antimicrobial resistance in community-acquired enterococci. J. Clin. Microbiol. 36:830–32 [Google Scholar]
  109. Singh KV, Nallapareddy SR, Sillanpää J, Murray BE. 109.  2010. Importance of the collagen adhesin Ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathog. 6:e1000716 [Google Scholar]
  110. Sinton LW, Braithwaite RR, Hall CH, Mackenzie ML. 110.  2007. Survival of indicator and pathogenic bacteria in bovine feces on pasture. Appl. Environ. Microbiol. 73:7917–25 [Google Scholar]
  111. Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ. 111.  2002. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl. Environ. Microbiol. 68:1122–31 [Google Scholar]
  112. Solheim M, Brekke MC, Snipen LG, Willems RJ, Nes IF, Brede DA. 112.  2011. Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol. 11:3 [Google Scholar]
  113. Stamatakis A. 113.  2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–90 [Google Scholar]
  114. Sussmuth SD, Muscholl-Silberhorn A, Wirth R, Susa M, Marre R, Rozdzinski E. 114.  2000. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect. Immun. 68:4900–6 [Google Scholar]
  115. Tang W, van der Donk WA. 115.  2013. The sequence of the enterococcal cytolysin imparts unusual lanthionine stereochemistry. Nat. Chem. Biol. 9:157–59 [Google Scholar]
  116. Thal LA, Chow JW, Mahayni R, Bonilla H, Perri MB. 116.  et al. 1995. Characterization of antimicrobial resistance in enterococci of animal origin. Antimicrob. Agents Chemother. 39:2112–15 [Google Scholar]
  117. Thiercelin ME. 117.  1899. Sur un diplocoque saprophyte de l’intestin susceptible de devenir pathogen. C. R. Soc. Biol. 5:269–71 [Google Scholar]
  118. Thrall PH, Burdon JJ. 118.  2003. Evolution of virulence in a plant host-pathogen metapopulation. Science 299:1735–37 [Google Scholar]
  119. Todd EW. 119.  1934. A comparative serological study of streptolysins derived from human and from animal infections, with notes on pneumococcal hemolysin, tetanolysin, and staphylococcus toxin. J. Pathol. Bacteriol. 39:299–321 [Google Scholar]
  120. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C. 120.  et al. 2001. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67:4538–45 [Google Scholar]
  121. Tung H, Guss B, Hellman U, Persson L, Rubin K, Ryden C. 121.  2000. A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family. Biochem. J. 345:Part 3611–19 [Google Scholar]
  122. Uttley AH, Collins CH, Naidoo J, George RC. 122.  1988. Vancomycin-resistant enterococci. Lancet 331:57–58 [Google Scholar]
  123. Van Tyne D, Martin MJ, Gilmore MS. 123.  2013. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins 5:895–911 [Google Scholar]
  124. Vollaard EJ, Clasener HA. 124.  1994. Colonization resistance. Antimicrob. Agents Chemother. 38:409–14 [Google Scholar]
  125. Wegener HC. 125.  1998. Historical yearly usage of glycopeptides for animals and humans: the American-European paradox revisited. Antimicrob. Agents Chemother. 42:3049 [Google Scholar]
  126. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK. 126.  et al. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–71 [Google Scholar]
  127. Wells CL, Moore EA, Hoag JA, Hirt H, Dunny GM, Erlandsen SL. 127.  2000. Inducible expression of Enterococcus faecalis aggregation substance surface protein facilitates bacterial internalization by cultured enterocytes. Infect. Immun. 68:7190–94 [Google Scholar]
  128. Welton LA, Thal LA, Perri MB, Donabedian S, McMahon J. 128.  et al. 1998. Antimicrobial resistance in enterococci isolated from Turkey flocks fed virginiamycin. Antimicrob. Agents Chemother. 42:705–8 [Google Scholar]
  129. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W. 129.  et al. 2008. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro. Surveill. 13:19046 [Google Scholar]
  130. Whitman WB, Coleman DC, Wiebe WJ. 130.  1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:6578–83 [Google Scholar]
  131. Willems RJ, Homan W, Top J, van Santen-Verheuvel M, Tribe D. 131.  et al. 2001. Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet 357:853–55 [Google Scholar]
  132. Willey JM, van der Donk WA. 132.  2007. Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 61:477–501 [Google Scholar]
  133. Williamson R, al-Obeid S, Shlaes JH, Goldstein FW, Shlaes DM. 133.  1989. Inducible resistance to vancomycin in Enterococcus faecium D366. J. Infect. Dis. 159:1095–104 [Google Scholar]
  134. Yamahara KM, Walters SP, Boehm AB. 134.  2009. Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting. Appl. Environ. Microbiol. 75:1517–24 [Google Scholar]
  135. Zhang X, Top J, de Been M, Bierschenk D, Rogers M. 135.  et al. 2013. Identification of a genetic determinant in clinical Enterococcus faecium strains that contributes to intestinal colonization during antibiotic treatment. J. Infect. Dis. 207:1780–86 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error