1932

Abstract

Human infectious diseases are unique in that the discovery of their environmental trigger, the microbe, was sufficient to drive the development of extraordinarily effective principles and tools for their prevention or cure. This unique medical prowess has outpaced, and perhaps even hindered, the development of scientific progress of equal magnitude in the biological understanding of infectious diseases. Indeed, the hope kindled by the germ theory of disease was rapidly subdued by the infection enigma, in need of a host solution, when it was realized that most individuals infected with most infectious agents continue to do well. The root causes of disease and death in the unhappy few remained unclear. While canonical approaches in vitro (cellular microbiology), in vivo (animal models), and in natura (clinical studies) analyzed the consequences of infection with a microbe, considered to be the cause of disease, in cells, tissues, or organisms seen as a uniform host, alternative approaches searched for preexisting causes of disease, particularly human genetic and immunological determinants in populations of diverse individuals infected with a trigger microbe.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-092123-022855
2024-11-20
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-092123-022855.html?itemId=/content/journals/10.1146/annurev-micro-092123-022855&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abel L, Casanova J-L. 2024.. Human determinants of age-dependent patterns of death from infection. . Immunity 57::145765
    [Crossref] [Google Scholar]
  2. 2.
    Ahmed R, Oldstone MB, Palese P. 2007.. Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. . Nat. Immunol. 8::118893
    [Crossref] [Google Scholar]
  3. 3.
    Alcais A, Quintana-Murci L, Thaler DS, Schurr E, Abel L, Casanova J-L. 2010.. Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity?. Ann. N. Y. Acad. Sci. 1214::1833
    [Crossref] [Google Scholar]
  4. 4.
    Allen TM, Brehm MA, Bridges S, Ferguson S, Kumar P, et al. 2019.. Humanized immune system mouse models: progress, challenges and opportunities. . Nat. Immunol. 20::77074
    [Crossref] [Google Scholar]
  5. 5.
    Allison AC. 1954.. Protection afforded by sickle-cell trait against subtertian malarian infection. . Br. Med. J. 1::29094
    [Crossref] [Google Scholar]
  6. 6.
    Alotaibi F, Alharbi NK, Rosen LB, Asiri AY, Assiri AM, et al. 2023.. Type I interferon autoantibodies in hospitalized patients with Middle East respiratory syndrome and association with outcomes and treatment effect of interferon beta-1b in MIRACLE clinical trial. . Influenza Other Respir. Viruses 17::e13116
    [Crossref] [Google Scholar]
  7. 7.
    Antimicrob. Resist. Collab. 2022.. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. . Lancet 399::62955
    [Crossref] [Google Scholar]
  8. 8.
    Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, et al. 2021.. X-linked recessive TLR7 deficiency in ∼1% of men under 60 years old with life-threatening COVID-19. . Sci. Immunol. 6::eabl4348
    [Crossref] [Google Scholar]
  9. 9.
    Avery OT, Dubos R. 1930.. The specific action of a bacterial enzyme on pneumococci of type III. . Science 72::15152
    [Crossref] [Google Scholar]
  10. 10.
    Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, et al. 2023.. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. . J. Allergy Clin. Immunol. 152:(1):18294.e7
    [Crossref] [Google Scholar]
  11. 11.
    Bartenschlager R, Baumert TF, Bukh J, Houghton M, Lemon SM, et al. 2018.. Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: considerations for scientists and funding agencies. . Virus Res. 248::5362
    [Crossref] [Google Scholar]
  12. 12.
    Bartlett A, Padfield D, Lear L, Bendall R, Vos M. 2022.. A comprehensive list of bacterial pathogens infecting humans. . Microbiology 168:(12). https://doi.org/10.1099/mic.0.001269
    [Crossref] [Google Scholar]
  13. 13.
    Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, et al. 2021.. Autoantibodies neutralizing type I IFNs are present in ∼4% of uninfected individuals over 70 years old and account for ∼20% of COVID-19 deaths. . Sci. Immunol. 6::eabl4340
    [Crossref] [Google Scholar]
  14. 14.
    Bastard P, Michailidis E, Hoffmann H-H, Chbihi M, Le Voyer T, et al. 2021.. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. . J. Exp. Med. 218::e20202486
    [Crossref] [Google Scholar]
  15. 15.
    Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, et al. 2020.. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. . Science 370::eabd4585
    [Crossref] [Google Scholar]
  16. 16.
    Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova J-L. 2022.. Type I interferons and SARS-CoV-2: from cells to organisms. . Curr. Opin. Immunol. 74::17282
    [Crossref] [Google Scholar]
  17. 17.
    Bernard C. 1903.. Introduction à L'étude de la Médecine Expérimentale. Paris:: Libr. Delagrave. 368 pp.
    [Google Scholar]
  18. 18.
    Beutler B. 2016.. Innate immunity and the new forward genetics. . Best Pract. Res. Clin. Haematol. 29::37987
    [Crossref] [Google Scholar]
  19. 19.
    Boisson-Dupuis S, Bustamante J. 2021.. Mycobacterial diseases in patients with inborn errors of immunity. . Curr. Opin. Immunol. 72::26271
    [Crossref] [Google Scholar]
  20. 20.
    Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, et al. 2018.. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. . Sci. Immunol. 3::eaau8714
    [Crossref] [Google Scholar]
  21. 21.
    Bolze A, Mahlaoui N, Byun M, Turner B, Trede N, et al. 2013.. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. . Science 340::97678
    [Crossref] [Google Scholar]
  22. 22.
    Bruton OC. 1952.. Agammaglobulinemia. . Pediatrics 9::72228
    [Crossref] [Google Scholar]
  23. 23.
    Cairns J. 1997.. Matters of Life and Death: Perspectives on Public Health, Molecular Biology, Cancer, and the Prospects for the Human Race. Princeton, NJ:: Princeton Univ. Press. 257 pp.
    [Google Scholar]
  24. 24.
    Casanova J-L. 2023.. From second thoughts on the germ theory to a full-blown host theory. . PNAS 120::e2301186120
    [Crossref] [Google Scholar]
  25. 25.
    Casanova J-L, Abel L. 2005.. Inborn errors of immunity to infection: the rule rather than the exception. . J. Exp. Med. 202::197201
    [Crossref] [Google Scholar]
  26. 26.
    Casanova J-L, Abel L. 2013.. The genetic theory of infectious diseases: a brief history and selected illustrations. . Annu. Rev. Genom. Hum. Genet. 14::21543
    [Crossref] [Google Scholar]
  27. 27.
    Casanova J-L, Abel L. 2021.. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. . Annu. Rev. Pathol. Mech. Dis. 16::2350
    [Crossref] [Google Scholar]
  28. 28.
    Casanova J-L, Abel L. 2021.. Mechanisms of viral inflammation and disease in humans. . Science 374::108086
    [Crossref] [Google Scholar]
  29. 29.
    Casanova J-L, Abel L. 2022.. From rare disorders of immunity to common determinants of infection: following the mechanistic thread. . Cell 185::3086103
    [Crossref] [Google Scholar]
  30. 30.
    Casanova J-L, Anderson MS. 2023.. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. . J. Clin. Investig. 133::e166283
    [Crossref] [Google Scholar]
  31. 31.
    Casanova J-L, Conley ME, Seligman SJ, Abel L, Notarangelo LD. 2014.. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. . J. Exp. Med. 211::213749
    [Crossref] [Google Scholar]
  32. 32.
    Casanova J-L, Hammarström L. 2023.. Foreword to the English translation of Kostmann's Memoirs. . J. Clin. Immunol. 43::67174
    [Crossref] [Google Scholar]
  33. 33.
    Casanova J-L, MacMicking JD, Nathan CF. 2024.. Interferon-γ and infectious diseases: lessons and prospects. . Science 384::eadl2016
    [Crossref] [Google Scholar]
  34. 34.
    Casanova J-L, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. 2024.. The ouroboros of autoimmunity. . Nat. Immunol. 25::74354
    [Crossref] [Google Scholar]
  35. 35.
    Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, et al. 2015.. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. . Science 348::44853
    [Crossref] [Google Scholar]
  36. 36.
    COVID-19 Host Genet. Initiat. 2022.. A first update on mapping the human genetic architecture of COVID-19. . Nature 608::E110
    [Crossref] [Google Scholar]
  37. 37.
    Davis MM. 2020.. Systems immunology. . Curr. Opin. Immunol. 65::7982
    [Crossref] [Google Scholar]
  38. 38.
    Davis MM, Brodin P. 2018.. Rebooting human immunology. . Annu. Rev. Immunol. 36::84364
    [Crossref] [Google Scholar]
  39. 39.
    de Jong SJ, Créquer A, Matos I, Hum D, Gunasekharan V, et al. 2018.. The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. . J. Exp. Med. 215::2289310
    [Crossref] [Google Scholar]
  40. 40.
    De Kruif P. 1926.. Microbe Hunters. New York:: Harcourt. 363 pp.
    [Google Scholar]
  41. 41.
    Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE, et al. 2016.. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. . Sci. Transl. Med. 8::363ra149
    [Crossref] [Google Scholar]
  42. 42.
    Döffinger R, Helbert MR, Barcenas-Morales G, Yang K, Dupuis S, et al. 2004.. Autoantibodies to interferon-γ in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. . Clin. Infect. Dis. 38::e1014
    [Crossref] [Google Scholar]
  43. 43.
    Domagk G. 1935.. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. . Dtsch. Med. Wochenschr. 61::25053
    [Crossref] [Google Scholar]
  44. 44.
    Dupuis S, Döffinger R, Picard C, Fieschi C, Altare F, et al. 2000.. Human interferon-γ-mediated immunity is a genetically controlled continuous trait that determines the outcome of mycobacterial invasion. . Immunol. Rev. 178::12937
    [Crossref] [Google Scholar]
  45. 45.
    Editorial. 2017.. Stop neglecting fungi. . Nat. Microbiol. 2::17120. Erratum. Nat. Microbiol. 2::17123
    [Google Scholar]
  46. 46.
    Falkow S. 1988.. Molecular Koch's postulates applied to microbial pathogenicity. . Rev. Infect. Dis. 10:(Suppl. 2):S27476
    [Crossref] [Google Scholar]
  47. 47.
    Fleming A. 1929.. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. . Br. J. Exp. Pathol. 10::22636
    [Google Scholar]
  48. 48.
    Forlin R, James A, Brodin P. 2023.. Making human immune systems more interpretable through systems immunology. . Trends Immunol. 44:(8):57784
    [Crossref] [Google Scholar]
  49. 49.
    Forni D, Cagliani R, Clerici M, Sironi M. 2022.. Disease-causing human viruses: novelty and legacy. . Trends Microbiol. 30::123242
    [Crossref] [Google Scholar]
  50. 50.
    Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, et al. 2010.. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. . Nat. Genet. 42::111825
    [Crossref] [Google Scholar]
  51. 51.
    Garrod AE. 1931.. The Inborn Factors in Disease. Oxford, UK:: Clarendon Press
    [Google Scholar]
  52. 52.
    Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, et al. 2009.. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. . Nature 461::399401
    [Crossref] [Google Scholar]
  53. 53.
    Gervais A, Rovida F, Avanzini MA, Croce S, Marchal A, et al. 2023.. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in approximately 40% of patients. . J. Exp. Med. 220::e20230661
    [Crossref] [Google Scholar]
  54. 54.
    Getahun H, Gunneberg C, Granich R, Nunn P. 2010.. HIV infection–associated tuberculosis: the epidemiology and the response. . Clin. Infect. Dis. 50:(Suppl. 3):S2017
    [Crossref] [Google Scholar]
  55. 55.
    Giesecke J. 2002.. Modern Infectious Disease Epidemiology. London:: Arnold
    [Google Scholar]
  56. 56.
    Gitlin D. 1955.. Low resistance to infection: relationship to abnormalities in gamma globulin. . Bull. N. Y. Acad. Med. 31::35965
    [Google Scholar]
  57. 57.
    Gomes MC, Mostowy S. 2020.. The case for modeling human infection in zebrafish. . Trends Microbiol. 28::1018
    [Crossref] [Google Scholar]
  58. 58.
    Greenland S, Thomas DC. 1982.. On the need for the rare disease assumption in case-control studies. . Am. J. Epidemiol. 116::54753
    [Crossref] [Google Scholar]
  59. 59.
    Gros P, Casanova J-L. 2022.. Reconciling mouse and human immunology at the altar of genetics. . Annu. Rev. Immunol. 41::3971
    [Crossref] [Google Scholar]
  60. 60.
    Haldane JBS. 1932.. The Causes of Evolution. London:: Longmans, Green & Co. 234 pp.
    [Google Scholar]
  61. 61.
    Hoebe K, Beutler B. 2008.. Forward genetic analysis of TLR-signaling pathways: an evaluation. . Adv. Drug Deliv. Rev. 60::82429
    [Crossref] [Google Scholar]
  62. 62.
    Hoflich C, Sabat R, Rosseau S, Temmesfeld B, Slevogt H, et al. 2004.. Naturally occurring anti-IFN-γ autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. . Blood 103::67375
    [Crossref] [Google Scholar]
  63. 63.
    Hoste L, Roels L, Naesens L, Bosteels V, Vanhee S, et al. 2022.. TIM3+TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. . J. Exp. Med. 219::e20211381
    [Crossref] [Google Scholar]
  64. 64.
    Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW, et al. 2011.. The global distribution of the Duffy blood group. . Nat. Commun. 2::266
    [Crossref] [Google Scholar]
  65. 65.
    Isberg RR. 2008.. Lasker–Koshland Award to 21st century microbe master. . Cell 134::90710
    [Crossref] [Google Scholar]
  66. 66.
    Janeway CA, Apt L, Gitlin D. 1953.. Agammaglobulinemia. . Trans. Assoc. Am. Phys. 66::2002
    [Google Scholar]
  67. 67.
    Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, et al. 1996.. Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. . N. Engl. J. Med. 335::195661
    [Crossref] [Google Scholar]
  68. 68.
    Kallmann FJ, Reisner D. 1943.. Twin studies on the significance of genetic factors in tuberculosis. . Am. Rev. Tuberc. 47::54974
    [Google Scholar]
  69. 69.
    Kaslow RA, Carrington M, Apple R, Park L, Munoz A, et al. 1996.. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. . Nat. Med. 2::40511
    [Crossref] [Google Scholar]
  70. 70.
    Kerner G, Laval G, Patin E, Boisson-Dupuis S, Abel L, et al. 2021.. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. . Am. J. Hum. Genet. 108::51724
    [Crossref] [Google Scholar]
  71. 71.
    Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, et al. 2019.. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. . PNAS 116::1043034
    [Crossref] [Google Scholar]
  72. 72.
    Kim J, Koo B-K, Knoblich JA. 2020.. Human organoids: model systems for human biology and medicine. . Nat. Rev. Mol. Cell Biol. 21::57184
    [Crossref] [Google Scholar]
  73. 73.
    Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, et al. 2010.. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. . J. Exp. Med. 207::299308
    [Crossref] [Google Scholar]
  74. 74.
    Kitamura T, Tanaka N, Watanabe J, Uchida, Kanegasaki S, et al. 1999.. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. . J. Exp. Med. 190::87580
    [Crossref] [Google Scholar]
  75. 75.
    Köhler JR, Hube B, Puccia R, Casadevall A, Perfect JR. 2017.. Fungi that infect humans. . Microbiol. Spectr. 5:(3). https://doi.org/10.1128/microbiolspec.funk-0014-2016
    [Crossref] [Google Scholar]
  76. 76.
    Kostmann R. 1950.. Hereditär reticulos - en ny systemsjukdom. . Sven. Läkartdin. 47::2861
    [Google Scholar]
  77. 77.
    Kostmann R. 1956.. Infantile genetic agranulocytosis. . Acta Pediatr. Scand. 45::178
    [Crossref] [Google Scholar]
  78. 78.
    Kuhn TS. 1962.. The Structure of Scientific Revolutions. Chicago: Univ. Chicago Press. 172 pp.
    [Google Scholar]
  79. 79.
    Kwan CK, Ernst JD. 2011.. HIV and tuberculosis: a deadly human syndemic. . Clin. Microbiol. Rev. 24::35176
    [Crossref] [Google Scholar]
  80. 80.
    Lacourt A, Gramond C, Rolland P, Ducamp S, Audignon S, et al. 2014.. Occupational and non-occupational attributable risk of asbestos exposure for malignant pleural mesothelioma. . Thorax 69::53239
    [Crossref] [Google Scholar]
  81. 81.
    Lanas A, Chan FKL. 2017.. Peptic ulcer disease. . Lancet 390::61324
    [Crossref] [Google Scholar]
  82. 82.
    Lim HK, Huang SXL, Chen J, Kerner G, Gilliaux O, et al. 2019.. Severe influenza pneumonitis in children with inherited TLR3 deficiency. . J. Exp. Med. 216::203856
    [Crossref] [Google Scholar]
  83. 83.
    Lister J. 1867.. On the antiseptic principle in the practice of surgery. . Br. Med. J. 2::24648
    [Crossref] [Google Scholar]
  84. 84.
    López-Jiménez AT, Mostowy S. 2021.. Emerging technologies and infection models in cellular microbiology. . Nat. Commun. 12::6764
    [Crossref] [Google Scholar]
  85. 85.
    Malfertheiner P, Chan FKL, McColl KE. 2009.. Peptic ulcer disease. . Lancet 374::144961
    [Crossref] [Google Scholar]
  86. 86.
    Manry J, Bastard P, Gervais A, Le Voyer T, Rosain J, et al. 2022.. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. . PNAS 119::e2200413119
    [Crossref] [Google Scholar]
  87. 87.
    Marshall BJ, Warren JR. 1984.. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. . Lancet 1::131115
    [Crossref] [Google Scholar]
  88. 88.
    Masopust D, Sivula CP, Jameson SC. 2017.. Of mice, dirty mice, and men: using mice to understand human immunology. . J. Immunol. 199::38388
    [Crossref] [Google Scholar]
  89. 89.
    Mathison BA, Sapp SGH. 2021.. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. . Zookeys 1069::1313
    [Crossref] [Google Scholar]
  90. 90.
    Matuozzo D, Talouarn E, Marchal A, Manry J, Seeleuthner Y, et al. 2023.. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. . Genome Med. 15::22
    [Crossref] [Google Scholar]
  91. 91.
    Mayr E. 1961.. Cause and effect in biology. . Science 134::15016
    [Crossref] [Google Scholar]
  92. 92.
    Mayr E. 1988.. Toward a New Philosophy of Biology. Cambridge, MA:: Harvard Univ. Press. 564 pp.
    [Google Scholar]
  93. 93.
    Medetgul-Ernar K, Davis MM. 2022.. Standing on the shoulders of mice. . Immunity 55::134353
    [Crossref] [Google Scholar]
  94. 94.
    Merrell DS, Falkow S. 2004.. Frontal and stealth attack strategies in microbial pathogenesis. . Nature 430::25056
    [Crossref] [Google Scholar]
  95. 95.
    Metchnikoff E. 1933.. Trois Fondateurs de la Médecine Moderne: Pasteur, Lister, Koch. Paris:: Libr. Félix Alcan. 195 pp.
    [Google Scholar]
  96. 96.
    Metzger WG, Ehni H-J, Kremsner PG, Mordmüller BG. 2019.. Experimental infections in humans—historical and ethical reflections. . Trop. Med. Int. Health 24::138490
    [Crossref] [Google Scholar]
  97. 97.
    Meyer H, Ehmann R, Smith GL. 2020.. Smallpox in the post-eradication era. . Viruses 12::138
    [Crossref] [Google Scholar]
  98. 98.
    Mogensen KE, Daubas P, Gresser I, Sereni D, Varet B. 1981.. Patient with circulating antibodies to α-interferon. . Lancet 2::122728
    [Crossref] [Google Scholar]
  99. 99.
    Mollentze N, Babayan SA, Streicker DG. 2021.. Identifying and prioritizing potential human-infecting viruses from their genome sequences. . PLOS Biol. 19::e3001390
    [Crossref] [Google Scholar]
  100. 100.
    Moreews M, Le Gouge K, Khaldi-Plassart S, Pescarmona R, Mathieu A-L, et al. 2021.. Polyclonal expansion of TCR Vβ 21.3+ CD4+ and CD8+ T cells is a hallmark of multisystem inflammatory syndrome in children. . Sci. Immunol. 6::eabh1516
    [Crossref] [Google Scholar]
  101. 101.
    Natl. Res. Counc. 2011.. Reference Manual on Scientific Evidence. Washington, DC:: Natl. Acad. Press. , 3rd ed..
    [Google Scholar]
  102. 102.
    Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, et al. 1996.. A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. . N. Engl. J. Med. 335::194149
    [Crossref] [Google Scholar]
  103. 103.
    Nicolle C. 1933.. Les infections inapparentes. . Scientia 1933::181271
    [Google Scholar]
  104. 104.
    O'Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS, et al. 2021.. Age-specific mortality and immunity patterns of SARS-CoV-2. . Nature 590::14045
    [Crossref] [Google Scholar]
  105. 105.
    O'Keeffe LM, Taylor G, Huxley RR, Mitchell P, Woodward M, Peters SAE. 2018.. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. . BMJ Open 8::e021611
    [Crossref] [Google Scholar]
  106. 106.
    Papathanasiou P, Goodnow CC. 2005.. Connecting mammalian genome with phenome by ENU mouse mutagenesis: gene combinations specifying the immune system. . Annu. Rev. Genet. 39::24162
    [Crossref] [Google Scholar]
  107. 107.
    Pearl J, Mackenzie D. 2018.. The Book of Why: The New Science of Cause and Effect. London:: Allen Lane. 418 pp.
    [Google Scholar]
  108. 108.
    Pearson K. 1912.. Tuberculosis, Heredity and Environment. London:: Dulau and Co., Ltd
    [Google Scholar]
  109. 109.
    Polanyi M. 1962.. Personal Knowledge: Towards a Post-Critical Philosophy. Chicago:: Univ. Chicago Press. 428 pp.
    [Google Scholar]
  110. 110.
    Porritt RA, Paschold L, Rivas MN, Cheng MH, Yonker LM, et al. 2021.. HLA class I-associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. . J. Clin. Investig. 131::e146614
    [Crossref] [Google Scholar]
  111. 111.
    Pozzetto B, Mogensen KE, Tovey MG, Gresser I. 1984.. Characteristics of autoantibodies to human interferon in a patient with varicella-zoster disease. . J. Infect. Dis. 150::70713
    [Crossref] [Google Scholar]
  112. 112.
    Pradel E, Ewbank JJ. 2004.. Genetic models in pathogenesis. . Annu. Rev. Genet. 38::34763
    [Crossref] [Google Scholar]
  113. 113.
    Prestinaci F, Pezzotti P, Pantosti A. 2015.. Antimicrobial resistance: a global multifaceted phenomenon. . Pathog. Glob. Health 109::30918
    [Crossref] [Google Scholar]
  114. 114.
    Puel A, Bastard P, Bustamante J, Casanova J-L. 2022.. Human autoantibodies underlying infectious diseases. . J. Exp. Med. 219::e20211387
    [Crossref] [Google Scholar]
  115. 115.
    Puel A, Döffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, et al. 2010.. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. . J. Exp. Med. 207::29197
    [Crossref] [Google Scholar]
  116. 116.
    Puel A, Picard C, Lorrot M, Pons C, Chrabieh M, et al. 2008.. Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. . J. Immunol. 180::64754
    [Crossref] [Google Scholar]
  117. 117.
    Puffer R. 1944.. Familial Susceptibility to Tuberculosis: Its Importance as a Public Health Problem. Cambridge, MA:: Harvard Univ. Press. 106 pp.
    [Google Scholar]
  118. 118.
    Pulendran B, Davis MM. 2020.. The science and medicine of human immunology. . Science 369::eaay4014
    [Crossref] [Google Scholar]
  119. 119.
    Punatar AD, Kusne S, Blair JE, Seville MT, Vikram HR. 2012.. Opportunistic infections in patients with pulmonary alveolar proteinosis. . J. Infect. 65::17379
    [Crossref] [Google Scholar]
  120. 120.
    Quintana-Murci L. 2019.. Human immunology through the lens of evolutionary genetics. . Cell 177::18499
    [Crossref] [Google Scholar]
  121. 121.
    Ramaswamy A, Brodsky NN, Sumida TS, Comi M, Asashima H, et al. 2021.. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. . Immunity 54::108395.e7
    [Crossref] [Google Scholar]
  122. 122.
    Raoult D, Birg ML, La Scola B, Fournier PE, Enea M, et al. 2000.. Cultivation of the bacillus of Whipple's disease. . N. Engl. J. Med. 342::62025
    [Crossref] [Google Scholar]
  123. 123.
    Relich RF, Loeffelholz MJ. 2023.. Taxonomic changes for human viruses, 2020 to 2022. . J. Clin. Microbiol. 61::e0033722
    [Crossref] [Google Scholar]
  124. 124.
    Roestenberg M, Hoogerwerf M-A, Ferreira DM, Mordmüller B, Yazdanbakhsh M. 2018.. Experimental infection of human volunteers. . Lancet Infect. Dis. 18::e31222
    [Crossref] [Google Scholar]
  125. 125.
    Rokas A. 2022.. Evolution of the human pathogenic lifestyle in fungi. . Nat. Microbiol. 7::60719
    [Crossref] [Google Scholar]
  126. 126.
    Rottenberg ME, Carow B. 2014.. SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. . Semin. Immunol. 26::51832
    [Crossref] [Google Scholar]
  127. 127.
    Sacco K, Castagnoli R, Vakkilainen S, Liu C, Delmonte OM, et al. 2022.. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. . Nat. Med. 28::105062
    [Crossref] [Google Scholar]
  128. 128.
    Sakai T, Morimoto Y. 2022.. The history of infectious diseases and medicine. . Pathogens 11::1147
    [Crossref] [Google Scholar]
  129. 129.
    Sharma M, Leung D, Momenilandi M, Jones LCW, Pacillo L, et al. 2023.. Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease. . J. Exp. Med. 220::e20221755
    [Crossref] [Google Scholar]
  130. 130.
    Skamene E, Gros P, Forget A, Kongshavn PA, St. Charles C, Taylor BA. 1982.. Genetic regulation of resistance to intracellular pathogens. . Nature 297::5069
    [Crossref] [Google Scholar]
  131. 131.
    So M, Gill R, Falkow S. 1975.. The generation of a ColE1-Apr cloning vehicle which allows detection of inserted DNA. . Mol. Gen. Genet. 142::23949
    [Crossref] [Google Scholar]
  132. 132.
    Suratannon N, Ittiwut C, Dik WA, Ittiwut R, Meesilpavikkai K, et al. 2023.. A germline STAT6 gain-of-function variant is associated with early-onset allergies. . J. Allergy Clin. Immunol. 151::56571.e9
    [Crossref] [Google Scholar]
  133. 133.
    Takeuchi I, Yanagi K, Takada S, Uchiyama T, Igarashi A, et al. 2023.. STAT6 gain-of-function variant exacerbates multiple allergic symptoms. . J. Allergy Clin. Immunol. 151:(5):14029.e6
    [Crossref] [Google Scholar]
  134. 134.
    Tao L, Reese TA. 2017.. Making mouse models that reflect human immune responses. . Trends Immunol. 38::18193
    [Crossref] [Google Scholar]
  135. 135.
    Taylor SM, Parobek CM, Fairhurst RM. 2012.. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. . Lancet Infect. Dis. 12::45768
    [Crossref] [Google Scholar]
  136. 136.
    Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, et al. 2009.. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. . Nature 461::798801
    [Crossref] [Google Scholar]
  137. 137.
    Thorball CW, Fellay J, Borghesi A. 2021.. Immunological lessons from genome-wide association studies of infections. . Curr. Opin. Immunol. 72::8793
    [Crossref] [Google Scholar]
  138. 138.
    Timmins A. 2013.. Why was Kuhn's structure more successful than Polanyi's personal knowledge?. J. Int. Soc. Hist. Philos. Sci. 3::30617
    [Google Scholar]
  139. 139.
    Turnbull C, Sud A, Houlston RS. 2018.. Cancer genetics, precision prevention and a call to action. . Nat. Genet. 50::121218
    [Crossref] [Google Scholar]
  140. 140.
    Vallbracht A, Treuner J, Flehmig B, Joester K-E, Niethammer D. 1981.. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. . Nature 289::49697
    [Crossref] [Google Scholar]
  141. 141.
    Vidal SM, Malo D, Marquis JF, Gros P. 2008.. Forward genetic dissection of immunity to infection in the mouse. . Annu. Rev. Immunol. 26::81132
    [Crossref] [Google Scholar]
  142. 142.
    Vidal SM, Malo D, Vogan K, Skamene E, Gros P. 1993.. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. . Cell 73::46985
    [Crossref] [Google Scholar]
  143. 143.
    Warren JR, Marshall B. 1983.. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. . Lancet 1::127375
    [Google Scholar]
  144. 144.
    Webster LT. 1924.. Microbic virulence and host susceptibility in paratyphoid-enteritidis infection of white mice. IV. The effect of selective breeding on host resistance. . J. Exp. Med. 39::87986
    [Crossref] [Google Scholar]
  145. 145.
    Webster LT. 1933.. Inherited and acquired factors in resistance to infection. I. Development of resistant and susceptible lines of mice through selective breeding. . J. Exp. Med. 57::793817
    [Crossref] [Google Scholar]
  146. 146.
    Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ. 1998.. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. . Science 281::1058
    [Crossref] [Google Scholar]
  147. 147.
    Wikipedia. 2024.. List of human disease case fatality rates. . Wikipedia. https://en.wikipedia.org/wiki/List_of_human_disease_case_fatality_rates
    [Google Scholar]
  148. 148.
    WHO (World Health Organ.). 2023.. Global Tuberculosis Report 2023. Geneva:: WHO. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023
    [Google Scholar]
  149. 149.
    Wright S. 1921.. Correlation and causation. . J. Agric. Res. 20::55785
    [Google Scholar]
  150. 150.
    Zhang Q, Bastard P, Bolze A, Jouanguy E, Zhang SY, et al. 2020.. Life-threatening COVID-19: Defective interferons unleash excessive inflammation. . Med 1::1420
    [Crossref] [Google Scholar]
  151. 151.
    Zhang Q, Frange P, Blanche S, Casanova J-L. 2017.. Pathogenesis of infections in HIV-infected individuals: insights from primary immunodeficiencies. . Curr. Opin. Immunol. 48::12233
    [Crossref] [Google Scholar]
  152. 152.
    Zhang Q, Pizzorno A, Miorin L, Bastard P, Gervais A, et al. 2022.. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. . J. Exp. Med. 219::e20220514
    [Crossref] [Google Scholar]
  153. 153.
    Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, et al. 2007.. TLR3 deficiency in patients with herpes simplex encephalitis. . Science 317::152227
    [Crossref] [Google Scholar]
  154. 154.
    Zhang SY, Jouanguy E, Zhang Q, Abel L, Puel A, Casanova J-L. 2019.. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. . Curr. Opin. Immunol. 59::88100
    [Crossref] [Google Scholar]
  155. 155.
    Zhu N, Zhang D, Wang W, Li X, Yang B, et al. 2020.. A novel coronavirus from patients with pneumonia in China, 2019. . N. Engl. J. Med. 382::72733
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-092123-022855
Loading
/content/journals/10.1146/annurev-micro-092123-022855
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error