The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as , , and . This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abdelrahman Y, Ouellette SP, Belland RJ, Cox JV. 1.  2016. Polarized cell division of Chlamydia trachomatis. PLOS Pathog. 12:e1005822 [Google Scholar]
  2. Adams DW, Wu LJ, Errington J. 2.  2015. Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J 34:491–501 [Google Scholar]
  3. Angert ER. 3.  2005. Alternatives to binary fission in bacteria. Nat. Rev. Microbiol. 3:214–24 [Google Scholar]
  4. Angert ER, Clements KD. 4.  2004. Initiation of intracellular offspring in Epulopiscium. Mol. Microbiol. 51:827–35 [Google Scholar]
  5. Angert ER, Clements KD, Pace NR. 5.  1993. The largest bacterium. Nature 362:239–41 [Google Scholar]
  6. Baek JH, Chattoraj DK. 6.  2014. Chromosome I controls chromosome II replication in Vibrio cholerae. PLOS Genet. 10:e1004184 [Google Scholar]
  7. Bailey MW, Bisicchia P, Warren BT, Sherratt DJ, Mannik J. 7.  2014. Evidence for divisome localization mechanisms independent of the Min system and SlmA in Escherichia coli. PLOS Genet. 10:e1004504 [Google Scholar]
  8. Balaban M, Hendrixson DR. 8.  2011. Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLOS Pathog. 7:e1002420 [Google Scholar]
  9. Bendezu FO, Hale CA, Bernhardt TG, de Boer PA. 9.  2009. RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J 28:193–204 [Google Scholar]
  10. Bernander R, Ettema TJ. 10.  2010. FtsZ-less cell division in archaea and bacteria. Curr. Opin. Microbiol. 13:747–52 [Google Scholar]
  11. Bhattacharya D, Kumar A, Panda D. 11.  2017. WhmD promotes the assembly of Mycobacterium smegmatis FtsZ: a possible role of WhmD in bacterial cell division. Int. J. Biol. Macromol. 95:582–91 [Google Scholar]
  12. Boersma MJ, Kuru E, Rittichier JT, VanNieuwenhze MS, Brun YV, Winkler ME. 12.  2015. Minimal peptidoglycan (PG) turnover in wild-type and PG hydrolase and cell division mutants of Streptococcus pneumoniae D39 growing planktonically and in host-relevant biofilms. J. Bacteriol. 197:3472–85 [Google Scholar]
  13. Bottomley AL, Kabli AF, Hurd AF, Turner RD, Garcia-Lara J, Foster SJ. 13.  2014. Staphylococcus aureus DivIB is a peptidoglycan-binding protein that is required for a morphological checkpoint in cell division. Mol. Microbiol. 94:1041–64 [Google Scholar]
  14. Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M. 14.  et al. 2008. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134:945–55 [Google Scholar]
  15. Brown PJ, de Pedro MA, Kysela DT, Van der Henst C, Kim J. 15.  et al. 2012. Polar growth in the alphaproteobacterial order Rhizobiales. PNAS 109:1697–701 [Google Scholar]
  16. Buckley AM, Jukes C, Candlish D, Irvine JJ, Spencer J. 16.  et al. 2016. Lighting up Clostridium difficile: reporting gene expression using fluorescent Lov domains. Sci. Rep. 6:23463 [Google Scholar]
  17. Bulgheresi S. 17.  2016. Bacterial cell biology outside the streetlight. Environ. Microbiol. 18:2305–18 [Google Scholar]
  18. Burnham JC, Hashimoto T, Conti SF. 18.  1970. Ultrastructure and cell division of a facultatively parasitic strain of Bdellovibrio bacteriovorus. J. Bacteriol. 101:997–1004 [Google Scholar]
  19. Buss J, Coltharp C, Shtengel G, Yang X, Hess H, Xiao J. 19.  2015. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics. PLOS Genet 11:e1005128 [Google Scholar]
  20. Butan C, Hartnell LM, Fenton AK, Bliss D, Sockett RE. 20.  et al. 2011. Spiral architecture of the nucleoid in Bdellovibrio bacteriovorus. J. Bacteriol. 193:1341–50 [Google Scholar]
  21. Camberg JL, Hoskins JR, Wickner S. 21.  2009. ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics. PNAS 106:10614–19 [Google Scholar]
  22. Cameron TA, Zupan JR, Zambryski PC. 22.  2015. The essential features and modes of bacterial polar growth. Trends Microbiol 23:347–53 [Google Scholar]
  23. Celler K, Koning RI, Willemse J, Koster AJ, van Wezel GP. 23.  2016. Cross-membranes orchestrate compartmentalization and morphogenesis in Streptomyces. Nat. Commun. 7:ncomms11836 [Google Scholar]
  24. Cho H, Bernhardt TG. 24.  2013. Identification of the SlmA active site responsible for blocking bacterial cytokinetic ring assembly over the chromosome. PLOS Genet 9:e1003304 [Google Scholar]
  25. Das N, Dai J, Hung I, Rajagopalan MR, Zhou HX, Cross TA. 25.  2015. Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. PNAS 112:E119–26 [Google Scholar]
  26. Datta P, Dasgupta A, Singh AK, Mukherjee P, Kundu M, Basu J. 26.  2006. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol. Microbiol. 62:1655–73 [Google Scholar]
  27. Del Sol R, Mullins JG, Grantcharova N, Flardh K, Dyson P. 27.  2006. Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J. Bacteriol. 188:1540–50 [Google Scholar]
  28. Di Ventura B, Knecht B, Andreas H, Godinez WJ, Fritsche M. 28.  et al. 2013. Chromosome segregation by the Escherichia coli Min system. Mol. Syst. Biol. 9:686 [Google Scholar]
  29. Ditkowski B, Holmes N, Rydzak J, Donczew M, Bezulska M. 29.  et al. 2013. Dynamic interplay of ParA with the polarity protein, Scy, coordinates the growth with chromosome segregation in Streptomyces coelicolor. Open Biol. 3:130006 [Google Scholar]
  30. Donczew M, Mackiewicz P, Wrobel A, Flardh K, Zakrzewska-Czerwinska J, Jakimowicz D. 30.  2016. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation. Open Biol 6:150263 [Google Scholar]
  31. Donovan C, Schauss A, Kramer R, Bramkamp M. 31.  2013. Chromosome segregation impacts on cell growth and division site selection in Corynebacterium glutamicum. PLOS ONE 8:e55078 [Google Scholar]
  32. Donovan C, Schwaiger A, Kramer R, Bramkamp M. 32.  2010. Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum. J. Bacteriol. 192:3441–51 [Google Scholar]
  33. Dori-Bachash M, Dassa B, Pietrokovski S, Jurkevitch E. 33.  2008. Proteome-based comparative analyses of growth stages reveal new cell cycle-dependent functions in the predatory bacterium Bdellovibrio bacteriovorus. Appl. Environ. Microbiol. 74:7152–62 [Google Scholar]
  34. Du S, Lutkenhaus J. 34.  2012. MipZ: one for the pole, two for the DNA. Mol. Cell 46:239–40 [Google Scholar]
  35. Du S, Lutkenhaus J. 35.  2014. SlmA antagonism of FtsZ assembly employs a two-pronged mechanism like MinCD. PLOS Genet 10:e1004460 [Google Scholar]
  36. Dziadek J, Rutherford SA, Madiraju MV, Atkinson MA, Rajagopalan M. 36.  2003. Conditional expression of Mycobacterium smegmatis ftsZ, an essential cell division gene. Microbiology 149:1593–603 [Google Scholar]
  37. Dziedzic R, Kiran M, Plocinski P, Ziolkiewicz M, Brzostek A. 37.  et al. 2010. Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PLOS ONE 5:e11058 [Google Scholar]
  38. Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C. 38.  2008. A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134:956–68 [Google Scholar]
  39. Egan ES, Fogel MA, Waldor MK. 39.  2005. Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol. Microbiol. 56:1129–38 [Google Scholar]
  40. Eksztejn M, Varon M. 40.  1977. Elongation and cell division in Bdellovibrio bacteriovorus. Arch. Microbiol. 114:175–81 [Google Scholar]
  41. England K, Crew R, Slayden RA. 41.  2011. Mycobacterium tuberculosis septum site determining protein, Ssd encoded by rv3660c, promotes filamentation and elicits an alternative metabolic and dormancy stress response. BMC Microbiol 11:79 [Google Scholar]
  42. Erickson HP, Anderson DE, Osawa M. 42.  2010. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74:504–28 [Google Scholar]
  43. Erickson HP, Osawa M. 43.  2010. Cell division without FtsZ—a variety of redundant mechanisms. Mol. Microbiol. 78:267–70 [Google Scholar]
  44. Errington J. 44.  2013. L-form bacteria, cell walls and the origins of life. Open Biol 3:120143 [Google Scholar]
  45. Eswaramoorthy P, Erb ML, Gregory JA, Silverman J, Pogliano K. 45.  et al. 2011. Cellular architecture mediates DivIVA ultrastructure and regulates Min activity in Bacillus subtilis. mBio 2:e00257–11 [Google Scholar]
  46. Fenton AK, Kanna M, Woods RD, Aizawa SI, Sockett RE. 46.  2010. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J. Bacteriol. 192:6329–35 [Google Scholar]
  47. Fenton AK, Lambert C, Wagstaff PC, Sockett RE. 47.  2010. Manipulating each MreB of Bdellovibrio bacteriovorus gives diverse morphological and predatory phenotypes. J. Bacteriol. 192:1299–311 [Google Scholar]
  48. Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C. 48.  et al. 2014. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:259–62 [Google Scholar]
  49. Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C. 49.  et al. 2014. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLOS Genet 10:e1004275 [Google Scholar]
  50. Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA. 50.  2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11:671–83 [Google Scholar]
  51. Galli E, Poidevin M, Le Bars R, Desfontaines JM, Muresan L. 51.  et al. 2016. Cell division licensing in the multi-chromosomal Vibrio cholerae bacterium. Nat. Microbiol. 1:16094 [Google Scholar]
  52. Garcia PS, Simorre JP, Brochier-Armanet C, Grangeasse C. 52.  2016. Cell division of Streptococcus pneumoniae: Think positive! Curr. Opin. Microbiol. 34:18–23 [Google Scholar]
  53. Goley ED, Iniesta AA, Shapiro L. 53.  2007. Cell cycle regulation in Caulobacter: location, location, location. J. Cell Sci. 120:3501–7 [Google Scholar]
  54. Gomez JE, Bishai WR. 54.  2000. whmD is an essential mycobacterial gene required for proper septation and cell division. PNAS 97:8554–59 [Google Scholar]
  55. Grangeon R, Zupan JR, Anderson-Furgeson J, Zambryski PC. 55.  2015. PopZ identifies the new pole, and PodJ identifies the old pole during polar growth in Agrobacterium tumefaciens. PNAS 112:11666–71 [Google Scholar]
  56. Gregory JA, Becker EC, Pogliano K. 56.  2008. Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes Dev 22:3475–88 [Google Scholar]
  57. Haeusser DP, Lee AH, Weart RB, Levin PA. 57.  2009. ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity. J. Bacteriol. 191:1986–91 [Google Scholar]
  58. Haeusser DP, Margolin W. 58.  2016. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat. Rev. Microbiol. 14:305–19 [Google Scholar]
  59. Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM. 59.  et al. 2008. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321:1673–75 [Google Scholar]
  60. Hett EC, Rubin EJ. 60.  2008. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 72:126–56 [Google Scholar]
  61. Holeckova N, Doubravova L, Massidda O, Molle V, Buriankova K. 61.  et al. 2014. LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. mBio 6:e01700–14 [Google Scholar]
  62. Holmes NA, Walshaw J, Leggett RM, Thibessard A, Dalton KA. 62.  et al. 2013. Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces. PNAS 110:E397–406 [Google Scholar]
  63. Howell M, Brown PJ. 63.  2016. Building the bacterial cell wall at the pole. Curr. Opin. Microbiol. 34:53–59 [Google Scholar]
  64. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ. 64.  et al. 2016. A new view of the tree of life. Nat. Microbiol. 1:16048 [Google Scholar]
  65. Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH. 65.  2006. Bacterial birth scar proteins mark future flagellum assembly site. Cell 124:1025–37 [Google Scholar]
  66. Jacquier N, Frandi A, Pillonel T, Viollier PH, Greub G. 66.  2014. Cell wall precursors are required to organize the chlamydial division septum. Nat. Commun. 5:3578 [Google Scholar]
  67. Jha JK, Baek JH, Venkova-Canova T, Chattoraj DK. 67.  2012. Chromosome dynamics in multichromosome bacteria. Biochim. Biophys. Acta 1819:826–29 [Google Scholar]
  68. Jiang C, Caccamo PD, Brun YV. 68.  2015. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights. BioEssays 37:413–25 [Google Scholar]
  69. Jorge AM, Hoiczyk E, Gomes JP, Pinho MG. 69.  2011. EzrA contributes to the regulation of cell size in Staphylococcus aureus. PLOS ONE 6:e27542 [Google Scholar]
  70. Jutras BL, Scott M, Parry B, Biboy J, Gray J. 70.  et al. 2016. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells. PNAS 113:9162–70 [Google Scholar]
  71. Kazmierczak BI, Hendrixson DR. 71.  2013. Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Mol. Microbiol. 88:655–63 [Google Scholar]
  72. Kemege KE, Hickey JM, Barta ML, Wickstrum J, Balwalli N. 72.  et al. 2015. Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB. Mol. Microbiol. 95:365–82 [Google Scholar]
  73. Kiekebusch D, Michie KA, Essen LO, Lowe J, Thanbichler M. 73.  2012. Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol. Cell 46:245–59 [Google Scholar]
  74. Kieser KJ, Rubin EJ. 74.  2014. How sisters grow apart: mycobacterial growth and division. Nat. Rev. Microbiol. 12:550–62 [Google Scholar]
  75. Kiran M, Maloney E, Lofton H, Chauhan A, Jensen R. 75.  et al. 2009. Mycobacterium tuberculosis ftsZ expression and minimal promoter activity. Tuberculosis 89:Suppl. 1S60–64 [Google Scholar]
  76. Kloosterman TG, Lenarcic R, Willis CR, Roberts DM, Hamoen LW. 76.  et al. 2016. Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis. Mol. Microbiol. 101:333–50 [Google Scholar]
  77. Kois-Ostrowska A, Strzalka A, Lipietta N, Tilley E, Zakrzewska-Czerwinska J. 77.  et al. 2016. Unique function of the bacterial chromosome segregation machinery in apically growing Streptomyces—targeting the chromosome to new hyphal tubes and its anchorage at the tips. PLOS Genet 12:e1006488 [Google Scholar]
  78. Konar M, Alam MS, Arora C, Agrawal P. 78.  2012. WhiB2/Rv3260c, a cell division-associated protein of Mycobacterium tuberculosis H37Rv, has properties of a chaperone. FEBS J 279:2781–92 [Google Scholar]
  79. Koyama T, Yamada M, Matsuhashi M. 79.  1977. Formation of regular packets of Staphylococcus aureus cells. J. Bacteriol. 129:1518–23 [Google Scholar]
  80. Lam H, Schofield WB, Jacobs-Wagner C. 80.  2006. A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124:1011–23 [Google Scholar]
  81. Lara B, Rico AI, Petruzzelli S, Santona A, Dumas J. 81.  et al. 2005. Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol. Microbiol. 55:699–711 [Google Scholar]
  82. Lasker K, Mann TH, Shapiro L. 82.  2016. An intracellular compass spatially coordinates cell cycle modules in Caulobacter crescentus. Curr. Opin. Microbiol. 33:131–39 [Google Scholar]
  83. Lee KC, Webb RI, Fuerst JA. 83.  2009. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization. BMC Cell Biol 10:4 [Google Scholar]
  84. Lefevre CT, Bennet M, Klumpp S, Faivre D. 84.  2015. Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity. mBio 6:e02286 [Google Scholar]
  85. Leisch N, Pende N, Weber PM, Gruber-Vodicka HR, Verheul J. 85.  et al. 2016. Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra. Nat. Microbiol. 2:16182 [Google Scholar]
  86. Leisch N, Verheul J, Heindl NR, Gruber-Vodicka HR, Pende N. 86.  et al. 2012. Growth in width and FtsZ ring longitudinal positioning in a gammaproteobacterial symbiont. Curr. Biol. 22:R831–32 [Google Scholar]
  87. Levin PA, Kurtser IG, Grossman AD. 87.  1999. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. PNAS 96:9642–47 [Google Scholar]
  88. Liechti G, Kuru E, Packiam M, Hsu YP, Tekkam S. 88.  et al. 2016. Pathogenic Chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by MreB, for cell division. PLOS Pathog 12:e1005590 [Google Scholar]
  89. Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV. 89.  et al. 2014. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507–10 [Google Scholar]
  90. Lutkenhaus J, Pichoff S, Du S. 90.  2012. Bacterial cytokinesis: from Z ring to divisome. Cytoskeleton 69:778–90 [Google Scholar]
  91. MacCready JS, Schossau J, Osteryoung KW, Ducat DC. 91.  2017. Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria. Mol. Microbiol. 103:483–503 [Google Scholar]
  92. Makroczyova J, Jamroskovic J, Krascsenitsova E, Labajova N, Barak I. 92.  2016. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis. Microbiol. Open 5:387–401 [Google Scholar]
  93. Mannik J, Castillo DE, Yang D, Siopsis G, Mannik J. 93.  2016. The role of MatP, ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli. Nucleic Acids Res 44:1216–26 [Google Scholar]
  94. McCormick JR, Su EP, Driks A, Losick R. 94.  1994. Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol 14:243–54 [Google Scholar]
  95. Meier EL, Goley ED. 95.  2014. Form and function of the bacterial cytokinetic ring. Curr. Opin. Cell Biol. 26:19–27 [Google Scholar]
  96. Monahan LG, Harry EJ. 96.  2016. You are what you eat: metabolic control of bacterial division. Trends Microbiol 24:181–89 [Google Scholar]
  97. Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC. 97.  et al. 2015. Cell shape dynamics during the staphylococcal cell cycle. Nat. Commun. 6:8055 [Google Scholar]
  98. Moulder JW. 98.  1993. Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan?. Infect. Agents Dis. 2:87–99 [Google Scholar]
  99. Mura A, Fadda D, Perez AJ, Danforth ML, Musu D. 99.  et al. 2016. Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae. J. Bacteriol. 199:e00608–16 [Google Scholar]
  100. Ouellette SP, Rueden KJ, AbdelRahman YM, Cox JV, Belland RJ. 100.  2015. Identification and partial characterization of potential Ftsl and Ftsq homologs of Chlamydia. Front. Microbiol. 6:1264 [Google Scholar]
  101. Packiam M, Weinrick B, Jacobs WR Jr., Maurelli AT. 101.  2015. Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. PNAS 112:11660–65 [Google Scholar]
  102. Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M. 102.  et al. 2016. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2:16195 [Google Scholar]
  103. Pilhofer M, Aistleitner K, Biboy J, Gray J, Kuru E. 103.  et al. 2013. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat. Commun. 4:2856 [Google Scholar]
  104. Pinho MG, Errington J. 104.  2003. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol. Microbiol. 50:871–81 [Google Scholar]
  105. Pinho MG, Errington J. 105.  2004. A divIVA null mutant of Staphylococcus aureus undergoes normal cell division. FEMS Microbiol. Lett 240:145–49 [Google Scholar]
  106. Pinho MG, Kjos M, Veening JW. 106.  2013. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat. Rev. Microbiol. 11:601–14 [Google Scholar]
  107. Plocinski P, Ziolkiewicz M, Kiran M, Vadrevu SI, Nguyen HB. 107.  et al. 2011. Characterization of CrgA, a new partner of the Mycobacterium tuberculosis peptidoglycan polymerization complexes. J. Bacteriol. 193:3246–56 [Google Scholar]
  108. Poindexter JS. 108.  1978. Selection for nonbuoyant morphological mutants of Caulobacter crescentus. J. Bacteriol. 135:1141–45 [Google Scholar]
  109. Ramachandran R, Jha J, Chattoraj DK. 109.  2014. Chromosome segregation in Vibrio cholerae. J. Mol. Microbiol. Biotechnol. 24:360–70 [Google Scholar]
  110. Ramachandran R, Jha J, Paulsson J, Chattoraj D. 110.  2017. Random versus cell cycle-regulated replication initiation in bacteria: insights from studying Vibrio cholerae chromosome 2. Microbiol. Mol. Biol. Rev. 81:e00033–16 [Google Scholar]
  111. Ramond E, Maclachlan C, Clerc-Rosset S, Knott GW, Lemaitre B. 111.  2016. Cell division by longitudinal scission in the insect endosymbiont Spiroplasma poulsonii. mBio 7:e00881–16 [Google Scholar]
  112. Randich AM, Brun YV. 112.  2015. Molecular mechanisms for the evolution of bacterial morphologies and growth modes. Front. Microbiol. 6:580 [Google Scholar]
  113. Ransom EM, Ellermeier CD, Weiss DS. 113.  2015. Use of mCherry red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile. Appl. Environ. Microbiol. 81:1652–60 [Google Scholar]
  114. Ransom EM, Williams KB, Weiss DS, Ellermeier CD. 114.  2014. Identification and characterization of a gene cluster required for proper rod shape, cell division, and pathogenesis in Clostridium difficile. J. Bacteriol. 196:2290–300 [Google Scholar]
  115. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C. 115.  et al. 2004. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–92 [Google Scholar]
  116. Rivas-Marin E, Canosa I, Devos DP. 116.  2016. Evolutionary cell biology of division mode in the bacterial Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. Front. Microbiol. 7:1964 [Google Scholar]
  117. Rodrigues CD, Harry EJ. 117.  2012. The Min system and nucleoid occlusion are not required for identifying the division site in Bacillus subtilis but ensure its efficient utilization. PLOS Genet 8:e1002561 [Google Scholar]
  118. Rowlett VW, Margolin W. 118.  2015. The Min system and other nucleoid-independent regulators of Z ring positioning. Front. Microbiol. 6:478 [Google Scholar]
  119. Sharma AK, Arora D, Singh LK, Gangwal A, Sajid A. 119.  et al. 2016. Serine/threonine protein phosphatase PstP of Mycobacterium tuberculosis is necessary for accurate cell division and survival of pathogen. J. Biol. Chem. 291:24215–30 [Google Scholar]
  120. Shigematsu M, Umeda A, Fujimoto S, Amako K. 120.  1998. Spirochaete-like swimming mode of Campylobacter jejuni in a viscous environment. J. Med. Microbiol 47:521–26 [Google Scholar]
  121. Sieger B, Schubert K, Donovan C, Bramkamp M. 121.  2013. The lipid II flippase RodA determines morphology and growth in Corynebacterium glutamicum. Mol. Microbiol. 90:966–82 [Google Scholar]
  122. Sockett RE. 122.  2009. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu. Rev. Microbiol. 63:523–39 [Google Scholar]
  123. Son SH, Lee HH. 123.  2013. The N-terminal domain of EzrA binds to the C terminus of FtsZ to inhibit Staphylococcus aureus FtsZ polymerization. Biochem. Biophys. Res. Commun. 433:108–14 [Google Scholar]
  124. Steele VR, Bottomley AL, Garcia-Lara J, Kasturiarachchi J, Foster SJ. 124.  2011. Multiple essential roles for EzrA in cell division of Staphylococcus aureus. Mol. Microbiol. 80:542–55 [Google Scholar]
  125. Sugimoto S, Yamanaka K, Nishikori S, Miyagi A, Ando T, Ogura T. 125.  2010. AAA+ chaperone ClpX regulates dynamics of prokaryotic cytoskeletal protein FtsZ. J. Biol. Chem. 285:6648–57 [Google Scholar]
  126. Sureka K, Hossain T, Mukherjee P, Chatterjee P, Datta P. 126.  et al. 2010. Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division. PLOS ONE 5:e8590 [Google Scholar]
  127. Szymanski CM, King M, Haardt M, Armstrong GD. 127.  1995. Campylobacter jejuni motility and invasion of Caco-2 cells. Infect. Immun. 63:4295–300 [Google Scholar]
  128. Tavares AC, Fernandes PB, Carballido-Lopez R, Pinho MG. 128.  2015. MreC and MreD proteins are not required for growth of Staphylococcus aureus. PLOS ONE 10:e0140523 [Google Scholar]
  129. Thakur M, Chakraborti PK. 129.  2006. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J. Biol. Chem. 281:40107–13 [Google Scholar]
  130. Thanbichler M, Shapiro L. 130.  2006. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126:147–62 [Google Scholar]
  131. Treuner-Lange A, Aguiluz K, van der Does C, Gomez-Santos N, Harms A. 131.  et al. 2013. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. Mol. Microbiol. 87:235–53 [Google Scholar]
  132. Tsang MJ, Bernhardt TG. 132.  2015. Guiding divisome assembly and controlling its activity. Curr. Opin. Microbiol. 24:60–65 [Google Scholar]
  133. Turner RD, Ratcliffe EC, Wheeler R, Golestanian R, Hobbs JK, Foster SJ. 133.  2010. Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat. Commun. 1:26 [Google Scholar]
  134. Tzagoloff H, Novick R. 134.  1977. Geometry of cell division in Staphylococcus aureus. J. Bacteriol. 129:343–50 [Google Scholar]
  135. Vadrevu IS, Lofton H, Sarva K, Blasczyk E, Plocinska R. 135.  et al. 2011. ChiZ levels modulate cell division process in mycobacteria. Tuberculosis 91:Suppl. 1S128–35 [Google Scholar]
  136. Val ME, Marbouty M, de Lemos Martins F, Kennedy SP, Kemble H. 136.  et al. 2016. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. Sci. Adv. 2:e1501914 [Google Scholar]
  137. van Baarle S, Bramkamp M. 137.  2010. The MinCDJ system in Bacillus subtilis prevents minicell formation by promoting divisome disassembly. PLOS ONE 5:e9850 [Google Scholar]
  138. Veiga H, Jorge AM, Pinho MG. 138.  2011. Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division. Mol. Microbiol. 80:1366–80 [Google Scholar]
  139. Ward RJ, Clements KD, Choat JH, Angert ER. 139.  2009. Cytology of terminally differentiated Epulopiscium mother cells. DNA Cell Biol 28:57–64 [Google Scholar]
  140. Weart RB, Nakano S, Lane BE, Zuber P, Levin PA. 140.  2005. The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol. Microbiol. 57:238–49 [Google Scholar]
  141. Willemse J, Borst JW, de Waal E, Bisseling T, van Wezel GP. 141.  2011. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25:89–99 [Google Scholar]
  142. Wu LJ, Errington J. 142.  2011. Nucleoid occlusion and bacterial cell division. Nat. Rev. Microbiol. 10:8–12 [Google Scholar]
  143. Xiao J, Goley ED. 143.  2016. Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Curr. Opin. Microbiol. 34:90–96 [Google Scholar]
  144. Yague P, Willemse J, Koning RI, Rioseras B, Lopez-Garcia MT. 144.  et al. 2016. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae. Nat. Commun. 7:12467 [Google Scholar]
  145. Zhang L, Willemse J, Claessen D, van Wezel GP. 145.  2016. SepG coordinates sporulation-specific cell division and nucleoid organization in Streptomyces coelicolor. Open Biol 6:150164 [Google Scholar]
  146. Zhou X, Halladin DK, Rojas ER, Koslover EF, Lee TK. 146.  et al. 2015. Bacterial division: Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science 348:574–78 [Google Scholar]
  147. Zupan JR, Cameron TA, Anderson-Furgeson J, Zambryski PC. 147.  2013. Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens. PNAS 110:9060–65 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error