1932

Abstract

A unique class of multimeric proteins made of covalently linked subunits known as pili, or fimbriae, are assembled and displayed on the gram-positive bacterial cell surface by a conserved transpeptidase enzyme named pilus-specific sortase. Sortase-assembled pili are produced by a wide range of gram-positive commensal and pathogenic bacteria inhabiting diverse niches such as the human oral cavity, gut, urogenital tract, and skin. These surface appendages serve many functions, including as molecular adhesins, immuno-modulators, and virulence determinants, that significantly contribute to both the commensal and pathogenic attributes of producer microbes. Intensive genetic, biochemical, physiological, and structural studies have been devoted to unveiling the assembly mechanism and functions, as well as the utility of these proteins in vaccine development and other biotechnological applications. We provide a comprehensive review of these topics and discuss the current status and future prospects of the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-112123-100908
2024-11-20
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-112123-100908.html?itemId=/content/journals/10.1146/annurev-micro-112123-100908&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbot EL, Smith WD, Siou GP, Chiriboga C, Smith RJ, et al. 2007.. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. . Cell Microbiol. 9::182233
    [Crossref] [Google Scholar]
  2. 2.
    Acebo P, Herranz C, Espenberger LB, Gómez-Sanz A, Terrón MC, et al. 2021.. A small non-coding RNA modulates expression of pilus-1 type in Streptococcus pneumoniae. . Microorganisms 9::1883
    [Crossref] [Google Scholar]
  3. 3.
    Al Mamun AAM, Wu C, Chang C, Sanchez BC, Das A, Ton-That H. 2022.. A cell wall–anchored glycoprotein confers resistance to cation stress in Actinomyces oris biofilms. . Mol. Oral. Microbiol. 37::20617
    [Crossref] [Google Scholar]
  4. 4.
    Angelov A, Bergen P, Nadler F, Hornburg P, Lichev A, et al. 2015.. Novel Flp pilus biogenesis–dependent natural transformation. . Front. Microbiol. 6::84
    [Crossref] [Google Scholar]
  5. 5.
    Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, et al. 2006.. A pneumococcal pilus influences virulence and host inflammatory responses. . PNAS 103::285762
    [Crossref] [Google Scholar]
  6. 6.
    Basset A, Herd M, Daly R, Dove SL, Malley R. 2017.. The pneumococcal type 1 pilus genes are thermoregulated and are repressed by a member of the Snf2 protein family. . J. Bacteriol. 199::e00078
    [Crossref] [Google Scholar]
  7. 7.
    Becherelli M, Manetti AG, Buccato S, Viciani E, Ciucchi L, et al. 2012.. The ancillary protein 1 of Streptococcus pyogenes FCT-1 pili mediates cell adhesion and biofilm formation through heterophilic as well as homophilic interactions. . Mol. Microbiol. 83::103547
    [Crossref] [Google Scholar]
  8. 8.
    Bentley ML, Gaweska H, Kielec JM, McCafferty DG. 2007.. Engineering the substrate specificity of Staphylococcus aureus sortase A. The β6/β7 loop from SrtB confers NPQTN recognition to SrtA. . J. Biol. Chem. 282::657181
    [Crossref] [Google Scholar]
  9. 9.
    Bhat AH, Nguyen MT, Das A, Ton-That H. 2021.. Anchoring surface proteins to the bacterial cell wall by sortase enzymes: how it started and what we know now. . Curr. Opin. Microbiol. 60::7379
    [Crossref] [Google Scholar]
  10. 10.
    Bourgogne A, Singh KV, Fox KA, Pflughoeft KJ, Murray BE, Garsin DA. 2007.. EbpR is important for biofilm formation by activating expression of the endocarditis and biofilm-associated pilus operon (ebpABC) of Enterococcus faecalis OG1RF. . J. Bacteriol. 189::649093
    [Crossref] [Google Scholar]
  11. 11.
    Bourgogne A, Thomson LC, Murray BE. 2010.. Bicarbonate enhances expression of the endocarditis and biofilm associated pilus locus, ebpR-ebpABC, in Enterococcus faecalis. . BMC Microbiol. 10::17
    [Crossref] [Google Scholar]
  12. 12.
    Brennan MJ, Cisar JO, Vatter AE, Sandberg AL. 1984.. Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells. . Infect. Immun. 46::45964
    [Crossref] [Google Scholar]
  13. 13.
    Brinton CC Jr. 1965.. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. . Trans. N. Y. Acad. Sci. 27::100354
    [Crossref] [Google Scholar]
  14. 14.
    Brinton CC Jr., Buzzell A, Lauffer MA. 1954.. Electrophoresis and phage susceptibility studies on a filament-producing variant of the E. coli B bacterium. . Biochim. Biophys. Acta 15::53342
    [Crossref] [Google Scholar]
  15. 15.
    Budzik JM, Marraffini LA, Schneewind O. 2007.. Assembly of pili on the surface of Bacillus cereus vegetative cells. . Mol. Microbiol. 66::495510
    [Crossref] [Google Scholar]
  16. 16.
    Calfee G, Danger JL, Jain I, Miller EW, Sarkar P, et al. 2018.. Identification and characterization of serotype-specific variation in group A Streptococcus pilus expression. . Infect. Immun. 86::e00792
    [Crossref] [Google Scholar]
  17. 17.
    Chang C, Amer BR, Osipiuk J, McConnell SA, Huang IH, et al. 2018.. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking. . PNAS 115::E547786
    [Google Scholar]
  18. 18.
    Chang C, Huang IH, Hendrickx AP, Ton-That H. 2013.. Visualization of gram-positive bacterial pili. . Methods Mol. Biol. 966::7795
    [Crossref] [Google Scholar]
  19. 19.
    Chang C, Mandlik A, Das A, Ton-That H. 2011.. Cell surface display of minor pilin adhesins in the form of a simple heterodimeric assembly in Corynebacterium diphtheriae. . Mol. Microbiol. 79::123647
    [Crossref] [Google Scholar]
  20. 20.
    Chang C, Wu C, Osipiuk J, Siegel SD, Zhu S, et al. 2019.. Cell-to-cell interaction requires optimal positioning of a pilus tip adhesin modulated by gram-positive transpeptidase enzymes. . PNAS 116::1804149
    [Crossref] [Google Scholar]
  21. 21.
    Chen YH, Li SH, Yang YC, Hsu SH, Nizet V, Chang YC. 2020.. T4 pili promote colonization and immune evasion phenotypes of nonencapsulated M4 Streptococcus pyogenes. . mBio 11::e01580
    [Google Scholar]
  22. 22.
    Choo PY, Wang CY, VanNieuwenhze MS, Kline KA. 2023.. Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis. . Mol. Microbiol. 119::118
    [Crossref] [Google Scholar]
  23. 23.
    Cisar JO, David VA, Curl SH, Vatter AE. 1984.. Exclusive presence of lactose-sensitive fimbriae on a typical strain (WVU45) of Actinomyces naeslundii. . Infect. Immun. 46::45358
    [Crossref] [Google Scholar]
  24. 24.
    Cisar JO, McIntire FC, Vatter AE. 1978.. Fimbriae of Actinomyces viscosus T14V: their relationship to the virulence-associated antigen and to coaggregation with Streptococcus sanguis 34. . Adv. Exp. Med. Biol. 107::695701
    [Crossref] [Google Scholar]
  25. 25.
    Cisar JO, Sandberg AL, Abeygunawardana C, Reddy GP, Bush CA. 1995.. Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides. . Glycobiology 5::65562
    [Crossref] [Google Scholar]
  26. 26.
    Cisar JO, Takahashi Y, Ruhl S, Donkersloot JA, Sandberg AL. 1997.. Specific inhibitors of bacterial adhesion: observations from the study of gram-positive bacteria that initiate biofilm formation on the tooth surface. . Adv. Dent. Res. 11::16875
    [Crossref] [Google Scholar]
  27. 27.
    Cisar JO, Vatter AE, Clark WB, Curl SH, Hurst-Calderone S, Sandberg AL. 1988.. Mutants of Actinomyces viscosus T14V lacking type 1, type 2, or both types of fimbriae. . Infect. Immun. 56::298489
    [Crossref] [Google Scholar]
  28. 28.
    Cisar JO, Vatter AE, McIntire FC. 1978.. Identification of the virulence-associated antigen on the surface fibrils of Actinomyces viscosus T14. . Infect. Immun. 19::31219
    [Crossref] [Google Scholar]
  29. 29.
    Comfort D, Clubb RT. 2004.. A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. . Infect. Immun. 72::271022
    [Crossref] [Google Scholar]
  30. 30.
    Crawford PC, Clark WB. 1986.. Fimbria-specific antibodies in serum and saliva of mice immunized with Actinomyces viscosus T14V fimbriae. . Infect. Immun. 54::50715
    [Crossref] [Google Scholar]
  31. 31.
    Crawford PC, Clark WB. 1986.. Modulation of Actinomyces viscosus colonization of mouse teeth in vivo by immunization with fimbrial adhesins. . Infect. Immun. 54::51621
    [Crossref] [Google Scholar]
  32. 32.
    Danne C, Entenza JM, Mallet A, Briandet R, Debarbouille M, et al. 2011.. Molecular characterization of a Streptococcus gallolyticus genomic island encoding a pilus involved in endocarditis. . J. Infect. Dis. 204::196070
    [Crossref] [Google Scholar]
  33. 33.
    Davidsson S, Carlsson J, Mölling P, Gashi N, Andrén O, et al. 2017.. Prevalence of Flp pili–encoding plasmids in Cutibacterium acnes isolates obtained from prostatic tissue. . Front. Microbiol. 8::2241
    [Crossref] [Google Scholar]
  34. 34.
    De Angelis G, Moschioni M, Muzzi A, Pezzicoli A, Censini S, et al. 2011.. The Streptococcus pneumoniae pilus-1 displays a biphasic expression pattern. . PLOS ONE 6::e21269
    [Crossref] [Google Scholar]
  35. 35.
    Dramsi S, Caliot E, Bonne I, Guadagnini S, Prevost MC, et al. 2006.. Assembly and role of pili in group B streptococci. . Mol. Microbiol. 60::140113
    [Crossref] [Google Scholar]
  36. 36.
    Dramsi S, Dubrac S, Konto-Ghiorghi Y, Da Cunha V, Couve E, et al. 2012.. Rga, a RofA-like regulator, is the major transcriptional activator of the PI-2a pilus in Streptococcus agalactiae. . Microb. Drug Resist. 18::28697
    [Crossref] [Google Scholar]
  37. 37.
    Dramsi S, Trieu-Cuot P, Bierne H. 2005.. Sorting sortases: a nomenclature proposal for the various sortases of gram-positive bacteria. . Res. Microbiol. 156::28997
    [Crossref] [Google Scholar]
  38. 38.
    Duguid JP, Smith IW, Dempster G, Edmunds PN. 1955.. Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. . J. Pathol. Bacteriol. 70::33548
    [Crossref] [Google Scholar]
  39. 39.
    Echelman DJ, Alegre-Cebollada J, Badilla CL, Chang C, Ton-That H, Fernández JM. 2016.. CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks. . PNAS 113::249095
    [Crossref] [Google Scholar]
  40. 40.
    Falugi F, Zingaretti C, Pinto V, Mariani M, Amodeo L, et al. 2008.. Sequence variation in group A Streptococcus pili and association of pilus backbone types with lancefield T serotypes. . J. Infect. Dis. 198::183441
    [Crossref] [Google Scholar]
  41. 41.
    Gaspar AH, Ton-That H. 2006.. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. . J. Bacteriol. 188::152633
    [Crossref] [Google Scholar]
  42. 42.
    Gianfaldoni C, Censini S, Hilleringmann M, Moschioni M, Facciotti C, et al. 2007.. Streptococcus pneumoniae pilus subunits protect mice against lethal challenge. . Infect. Immun. 75::105962
    [Crossref] [Google Scholar]
  43. 43.
    Gibbons RJ, Hay DI. 1988.. Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces. . Infect. Immun. 56::43945
    [Crossref] [Google Scholar]
  44. 44.
    Gibbons RJ, Hay DI, Cisar JO, Clark WB. 1988.. Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. . Infect. Immun. 56::299093
    [Crossref] [Google Scholar]
  45. 45.
    Girard AE, Jacius BH. 1974.. Ultrastructure of Actinomyces viscosus and Actinomyces naeslundii. . Arch. Oral Biol. 19::7179
    [Crossref] [Google Scholar]
  46. 46.
    Guttilla IK, Gaspar AH, Swierczynski A, Swaminathan A, Dwivedi P, et al. 2009.. Acyl enzyme intermediates in sortase-catalyzed pilus morphogenesis in gram-positive bacteria. . J. Bacteriol. 191::560312
    [Crossref] [Google Scholar]
  47. 47.
    Honda E, Yanagawa R. 1974.. Agglutination of trypsinized sheep erythrocytes by the pili of Coryne-bacterium renale. . Infect. Immun. 10::142632
    [Crossref] [Google Scholar]
  48. 48.
    Hospenthal MK, Costa TRD, Waksman G. 2017.. A comprehensive guide to pilus biogenesis in gram-negative bacteria. . Nat. Rev. Microbiol. 15::36579
    [Crossref] [Google Scholar]
  49. 49.
    Houwink AL, van Iterson W. 1950.. Electron microscopical observations on bacterial cytology; a study on flagellation. . Biochim. Biophys. Acta 5::1044
    [Crossref] [Google Scholar]
  50. 50.
    Hultgren SJ, Normark S, Abraham SN. 1991.. Chaperone-assisted assembly and molecular architecture of adhesive pili. . Annu. Rev. Microbiol. 45::383415
    [Crossref] [Google Scholar]
  51. 51.
    Ilangovan U, Ton-That H, Iwahara J, Schneewind O, Clubb RT. 2001.. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. . PNAS 98::605661
    [Crossref] [Google Scholar]
  52. 52.
    Iovino F, Engelen-Lee JY, Brouwer M, van de Beek D, van der Ende A, et al. 2017.. pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion. . J. Exp. Med. 214::161930
    [Crossref] [Google Scholar]
  53. 53.
    Iovino F, Hammarlof DL, Garriss G, Brovall S, Nannapaneni P, Henriques-Normark B. 2016.. Pneumococcal meningitis is promoted by single cocci expressing pilus adhesin RrgA. . J. Clin. Investig. 126::282126
    [Crossref] [Google Scholar]
  54. 54.
    Jiang S, Park SE, Yadav P, Paoletti LC, Wessels MR. 2012.. Regulation and function of pilus island 1 in group B Streptococcus. . J. Bacteriol. 194::247990
    [Crossref] [Google Scholar]
  55. 55.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  56. 56.
    Kachlany SC, Planet PJ, DeSalle R, Fine DH, Figurski DH. 2001.. Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum. . Trends Microbiol. 9::42937
    [Crossref] [Google Scholar]
  57. 57.
    Kang HJ, Coulibaly F, Proft T, Baker EN. 2011.. Crystal structure of Spy0129, a Streptococcus pyogenes class B sortase involved in pilus assembly. . PLOS ONE 6::e15969
    [Crossref] [Google Scholar]
  58. 58.
    Kattke MD, Chan AH, Duong A, Sexton DL, Sawaya MR, et al. 2016.. Crystal structure of the Streptomyces coelicolor sortase E1 transpeptidase provides insight into the binding mode of the novel class E sorting signal. . PLOS ONE 11::e0167763
    [Crossref] [Google Scholar]
  59. 59.
    Konto-Ghiorghi Y, Mairey E, Mallet A, Dumenil G, Caliot E, et al. 2009.. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. . PLOS Pathog. 5::e1000422
    [Crossref] [Google Scholar]
  60. 60.
    Kreikemeyer B, Nakata M, Oehmcke S, Gschwendtner C, Normann J, Podbielski A. 2005.. Streptococcus pyogenes collagen type I–binding Cpa surface protein. Expression profile, binding characteristics, biological functions, and potential clinical impact. . J. Biol. Chem. 280::3322839
    [Crossref] [Google Scholar]
  61. 61.
    Lauer P, Rinaudo CD, Soriani M, Margarit I, Maione D, et al. 2005.. Genome analysis reveals pili in group B Streptococcus. . Science 309::105
    [Crossref] [Google Scholar]
  62. 62.
    LeMieux J, Hava DL, Basset A, Camilli A. 2006.. RrgA and RrgB are components of a multisubunit pilus encoded by the Streptococcus pneumoniae rlrA pathogenicity islet. . Infect. Immun. 74::245356
    [Crossref] [Google Scholar]
  63. 63.
    Lizano S, Luo F, Bessen DE. 2007.. Role of streptococcal T antigens in superficial skin infection. . J. Bacteriol. 189::142634
    [Crossref] [Google Scholar]
  64. 64.
    Loh JMS, Rivera-Hernandez T, McGregor R, Khemlani AHJ, Tay ML, et al. 2021.. A multivalent T-antigen-based vaccine for group A Streptococcus. . Sci. Rep. 11::4353
    [Crossref] [Google Scholar]
  65. 65.
    Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, et al. 2005.. Identification of a universal group B Streptococcus vaccine by multiple genome screen. . Science 309::14850
    [Crossref] [Google Scholar]
  66. 66.
    Maisey HC, Hensler M, Nizet V, Doran KS. 2007.. Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. . J. Bacteriol. 189::146467
    [Crossref] [Google Scholar]
  67. 67.
    Mandlik A, Das A, Ton-That H. 2008.. The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. . PNAS 105::1414752
    [Crossref] [Google Scholar]
  68. 68.
    Mandlik A, Swierczynski A, Das A, Ton-That H. 2007.. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. . Mol. Microbiol. 64::11124
    [Crossref] [Google Scholar]
  69. 69.
    Mandlik A, Swierczynski A, Das A, Ton-That H. 2008.. Pili in gram-positive bacteria: assembly, involvement in colonization and biofilm development. . Trends Microbiol. 16::3340
    [Crossref] [Google Scholar]
  70. 70.
    Manetti AG, Köller T, Becherelli M, Buccato S, Kreikemeyer B, et al. 2010.. Environmental acidification drives S. pyogenes pilus expression and microcolony formation on epithelial cells in a FCT-dependent manner. . PLOS ONE 5::e13864
    [Crossref] [Google Scholar]
  71. 71.
    Manetti AG, Zingaretti C, Falugi F, Capo S, Bombaci M, et al. 2007.. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. . Mol. Microbiol. 64::96883
    [Crossref] [Google Scholar]
  72. 72.
    Manzano C, Contreras-Martel C, El Mortaji L, Izore T, Fenel D, et al. 2008.. Sortase-mediated pilus fiber biogenesis in Streptococcus pneumoniae. . Structure 16::183848
    [Crossref] [Google Scholar]
  73. 73.
    Manzano C, Izore T, Job V, Di Guilmi AM, Dessen A. 2009.. Sortase activity is controlled by a flexible lid in the pilus biogenesis mechanism of gram-positive pathogens. . Biochemistry 48::1054957
    [Crossref] [Google Scholar]
  74. 74.
    Mao H, Hart SA, Schink A, Pollok BA. 2004.. Sortase-mediated protein ligation: a new method for protein engineering. . J. Am. Chem. Soc. 126::267071
    [Crossref] [Google Scholar]
  75. 75.
    Marraffini LA, Dedent AC, Schneewind O. 2006.. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. . Microbiol. Mol. Biol. Rev. 70::192221
    [Crossref] [Google Scholar]
  76. 76.
    Marraffini LA, Schneewind O. 2005.. Anchor structure of staphylococcal surface proteins. V. Anchor structure of the sortase B substrate IsdC. . J. Biol. Chem. 280::1626371
    [Crossref] [Google Scholar]
  77. 77.
    Marraffini LA, Ton-That H, Zong Y, Narayana SV, Schneewind O. 2004.. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. A conserved arginine residue is required for efficient catalysis of sortase A. . J. Biol. Chem. 279::3776370
    [Crossref] [Google Scholar]
  78. 78.
    Mazmanian SK, Liu G, Ton-That H, Schneewind O. 1999.. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. . Science 285::76063
    [Crossref] [Google Scholar]
  79. 79.
    Mazmanian SK, Ton-That H, Su K, Schneewind O. 2002.. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. . PNAS 99::229398
    [Crossref] [Google Scholar]
  80. 80.
    McConnell SA, Amer BR, Muroski J, Fu J, Chang C, et al. 2018.. Protein labeling via a specific lysine-isopeptide bond using the pilin polymerizing sortase from Corynebacterium diphtheriae. . J. Am. Chem. Soc. 140::842023
    [Crossref] [Google Scholar]
  81. 81.
    McConnell SA, McAllister RA, Amer BR, Mahoney BJ, Sue CK, et al. 2021.. Sortase-assembled pili in Corynebacterium diphtheriae are built using a latch mechanism. . PNAS 118::e2019649118
    [Crossref] [Google Scholar]
  82. 82.
    McIntire FC, Vatter AE, Baros J, Arnold J. 1978.. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. . Infect. Immun. 21::97888
    [Crossref] [Google Scholar]
  83. 83.
    Melville S, Craig L. 2013.. Type IV pili in gram-positive bacteria. . Microbiol. Mol. Biol. Rev. 77::32341
    [Crossref] [Google Scholar]
  84. 84.
    Mishra A, Das A, Cisar JO, Ton-That H. 2007.. Sortase-catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. . J. Bacteriol. 189::315665
    [Crossref] [Google Scholar]
  85. 85.
    Mishra A, Devarajan B, Reardon ME, Dwivedi P, Krishnan V, et al. 2011.. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development. . Mol. Microbiol. 81::120520
    [Crossref] [Google Scholar]
  86. 86.
    Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H. 2010.. The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. . Mol. Microbiol. 77::84154
    [Crossref] [Google Scholar]
  87. 87.
    Moelling C, Oberschlacke R, Ward P, Karijolich J, Borisova K, et al. 2007.. Metal-dependent repression of siderophore and biofilm formation in Actinomyces naeslundii. . FEMS Microbiol. Lett. 275::21420
    [Crossref] [Google Scholar]
  88. 88.
    Möller J, Kraner M, Sonnewald U, Sangal V, Tittlbach H, et al. 2019.. Proteomics of diphtheria toxoid vaccines reveals multiple proteins that are immunogenic and may contribute to protection of humans against Corynebacterium diphtheriae. . Vaccine 37::306170
    [Crossref] [Google Scholar]
  89. 89.
    Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, et al. 2005.. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. . PNAS 102::1564146
    [Crossref] [Google Scholar]
  90. 90.
    Muñoz-Elías EJ, Marcano J, Camilli A. 2008.. Isolation of Streptococcus pneumoniae biofilm mutants and their characterization during nasopharyngeal colonization. . Infect. Immun. 76::504961
    [Crossref] [Google Scholar]
  91. 91.
    Nakata M, Köller T, Moritz K, Ribardo D, Jonas L, et al. 2009.. Mode of expression and functional characterization of FCT-3 pilus region–encoded proteins in Streptococcus pyogenes serotype M49. . Infect. Immun. 77::3244
    [Crossref] [Google Scholar]
  92. 92.
    Nakata M, Podbielski A, Kreikemeyer B. 2005.. MsmR, a specific positive regulator of the Streptococcus pyogenes FCT pathogenicity region and cytolysin-mediated translocation system genes. . Mol. Microbiol. 57::786803
    [Crossref] [Google Scholar]
  93. 93.
    Nakata M, Sumitomo T, Patenge N, Kreikemeyer B, Kawabata S. 2020.. Thermosensitive pilus production by FCT type 3 Streptococcus pyogenes controlled by Nra regulator translational efficiency. . Mol. Microbiol. 113::17389
    [Crossref] [Google Scholar]
  94. 94.
    Nallapareddy SR, Sillanpää J, Mitchell J, Singh KV, Chowdhury SA, et al. 2011.. Conservation of Ebp-type pilus genes among enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. . Infect. Immun. 79::291120
    [Crossref] [Google Scholar]
  95. 95.
    Nallapareddy SR, Singh KV, Sillanpää J, Garsin DA, Hook M, et al. 2006.. Endocarditis and biofilm-associated pili of Enterococcus faecalis. . J. Clin. Investig. 116::2799807
    [Crossref] [Google Scholar]
  96. 96.
    Navarre WW, Schneewind O. 1999.. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. . Microbiol. Mol. Biol. Rev. 63::174229
    [Crossref] [Google Scholar]
  97. 97.
    Nielsen HV, Flores-Mireles AL, Kau AL, Kline KA, Pinkner JS, et al. 2013.. Pilin and sortase residues critical for endocarditis- and biofilm-associated pilus biogenesis in Enterococcus faecalis. . J. Bacteriol. 195::448495
    [Crossref] [Google Scholar]
  98. 98.
    Nobbs AH, Rosini R, Rinaudo CD, Maione D, Grandi G, Telford JL. 2008.. Sortase A utilizes an ancillary protein anchor for efficient cell wall anchoring of pili in Streptococcus agalactiae. . Infect. Immun. 76::355060
    [Crossref] [Google Scholar]
  99. 99.
    Noda H, Wyckoff RW. 1952.. The electron microscopy of developing bacteriophage. III. Techniques to visualize developing forms. . Biochim. Biophys. Acta 8::38188
    [Crossref] [Google Scholar]
  100. 100.
    O'Connell Motherway M, Houston A, O'Callaghan G, Reunanen J, O'Brien F, et al. 2019.. A bifidobacterial pilus-associated protein promotes colonic epithelial proliferation. . Mol. Microbiol. 111::287301
    [Crossref] [Google Scholar]
  101. 101.
    Pancotto L, De Angelis G, Bizzarri E, Barocchi MA, Del Giudice G, et al. 2013.. Expression of the Streptococcus pneumoniae pilus-1 undergoes on and off switching during colonization in mice. . Sci. Rep. 3::2040
    [Crossref] [Google Scholar]
  102. 102.
    Papasergi S, Brega S, Mistou MY, Firon A, Oxaran V, et al. 2011.. The GBS PI-2a pilus is required for virulence in mice neonates. . PLOS ONE 6::e18747
    [Crossref] [Google Scholar]
  103. 103.
    Patti JM, Allen BL, McGavin MJ, Hook M. 1994.. MSCRAMM-mediated adherence of microorganisms to host tissues. . Annu. Rev. Microbiol. 48::585617
    [Crossref] [Google Scholar]
  104. 104.
    Periasamy S, Chalmers NI, Du-Thumm L, Kolenbrander PE. 2009.. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. . Appl. Environ. Microbiol. 75::325057
    [Crossref] [Google Scholar]
  105. 105.
    Perry AM, Ton-That H, Mazmanian SK, Schneewind O. 2002.. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring. . J. Biol. Chem. 277::1624148
    [Crossref] [Google Scholar]
  106. 106.
    Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL. 2007.. Sortagging: a versatile method for protein labeling. . Nat. Chem. Biol. 3::7078
    [Crossref] [Google Scholar]
  107. 107.
    Ramirez NA, Das A, Ton-That H. 2020.. New paradigms of pilus assembly mechanisms in gram-positive Actinobacteria. . Trends Microbiol. 28::9991009
    [Crossref] [Google Scholar]
  108. 108.
    Ramirez NA, Wu C, Chang C, Siegel SD, Das A, Ton-That H. 2022.. A conserved signal-peptidase antagonist modulates membrane homeostasis of actinobacterial sortase critical for surface morphogenesis. . PNAS 119::e2203114119
    [Crossref] [Google Scholar]
  109. 109.
    Reardon-Robinson ME, Osipiuk J, Jooya N, Chang C, Joachimiak A, et al. 2015.. A thiol-disulfide oxidoreductase of the gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence. . Mol. Microbiol. 98::103750
    [Crossref] [Google Scholar]
  110. 110.
    Reardon-Robinson ME, Wu C, Mishra A, Chang C, Bier N, et al. 2014.. Pilus hijacking by a bacterial coaggregation factor critical for oral biofilm development. . PNAS 111::383540
    [Crossref] [Google Scholar]
  111. 111.
    Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. 2003.. Bacterial coaggregation: an integral process in the development of multi-species biofilms. . Trends Microbiol 11::94100
    [Crossref] [Google Scholar]
  112. 112.
    Rinaudo CD, Rosini R, Galeotti CL, Berti F, Necchi F, et al. 2010.. Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus. . PLOS ONE 5::e9216
    [Crossref] [Google Scholar]
  113. 113.
    Rosch JW, Mann B, Thornton J, Sublett J, Tuomanen E. 2008.. Convergence of regulatory networks on the pilus locus of Streptococcus pneumoniae. . Infect. Immun. 76::318796
    [Crossref] [Google Scholar]
  114. 114.
    Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M, et al. 2006.. Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. . Mol. Microbiol. 61::12641
    [Crossref] [Google Scholar]
  115. 115.
    Ruhl S, Cisar JO, Sandberg AL. 2000.. Identification of polymorphonuclear leukocyte and HL-60 cell receptors for adhesins of Streptococcus gordonii and Actinomyces naeslundii. . Infect. Immun. 68::634654
    [Crossref] [Google Scholar]
  116. 116.
    Ruhl S, Sandberg AL, Cisar JO. 2004.. Salivary receptors for the proline-rich protein-binding and lectin-like adhesins of oral actinomyces and streptococci. . J. Dent. Res. 83::50510
    [Crossref] [Google Scholar]
  117. 117.
    Ruhl S, Sandberg AL, Cole MF, Cisar JO. 1996.. Recognition of immunoglobulin A1 by oral actinomyces and streptococcal lectins. . Infect. Immun. 64::542124
    [Crossref] [Google Scholar]
  118. 118.
    Samen U, Heinz B, Boisvert H, Eikmanns BJ, Reinscheid DJ, Borges F. 2011.. Rga is a regulator of adherence and pilus formation in Streptococcus agalactiae. . Microbiology 157::231927
    [Crossref] [Google Scholar]
  119. 119.
    Sandberg AL, Ruhl S, Joralmon RA, Brennan MJ, Sutphin MJ, Cisar JO. 1995.. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin. . Infect. Immun. 63::262531
    [Crossref] [Google Scholar]
  120. 120.
    Sangermani M, Hug I, Sauter N, Pfohl T, Jenal U. 2019.. Tad pili play a dynamic role in Caulobacter crescentus surface colonization. . mBio 10::e01237
    [Crossref] [Google Scholar]
  121. 121.
    Sheen TR, Jimenez A, Wang NY, Banerjee A, van Sorge NM, Doran KS. 2011.. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract. . J. Bacteriol. 193::683442
    [Crossref] [Google Scholar]
  122. 122.
    Shoji M, Shibata S, Sueyoshi T, Naito M, Nakayama K. 2020.. Biogenesis of type V pili. . Microbiol. Immunol. 64::64356
    [Crossref] [Google Scholar]
  123. 123.
    Siegel SD, Amer BR, Wu C, Sawaya MR, Gosschalk JE, et al. 2019.. Structure and mechanism of LcpA, a phosphotransferase that mediates glycosylation of a gram-positive bacterial cell wall–anchored protein. . mBio 10::e01580
    [Google Scholar]
  124. 124.
    Siegel SD, Reardon ME, Ton-That H. 2017.. Anchoring of LPXTG-like proteins to the gram-positive cell wall envelope. . Curr. Top. Microbiol. Immunol. 404::15975
    [Google Scholar]
  125. 125.
    Sillanpää J, Chang C, Singh KV, Montealegre MC, Nallapareddy SR, et al. 2013.. Contribution of individual Ebp pilus subunits of Enterococcus faecalis OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. . PLOS ONE 8::e68813
    [Crossref] [Google Scholar]
  126. 126.
    Sillanpää J, Nallapareddy SR, Singh KV, Prakash VP, Fothergill T, et al. 2010.. Characterization of the ebpfm pilus-encoding operon of Enterococcus faecium and its role in biofilm formation and virulence in a murine model of urinary tract infection. . Virulence 1::23646
    [Crossref] [Google Scholar]
  127. 127.
    Singh PK, Little J, Donnenberg MS. 2022.. Landmark discoveries and recent advances in type IV pilus research. . Microbiol. Mol. Biol. Rev. 86::e00076
    [Crossref] [Google Scholar]
  128. 128.
    Sjöquist J, Meloun B, Hjelm H. 1972.. Protein A isolated from Staphylococcus aureus after digestion with lysostaphin. . Eur. J. Biochem. 29::57278
    [Crossref] [Google Scholar]
  129. 129.
    Sjöquist J, Movitz J, Johansson IB, Hjelm H. 1972.. Localization of protein A in the bacteria. . Eur. J. Biochem. 30::19094
    [Crossref] [Google Scholar]
  130. 130.
    Spirig T, Weiner EM, Clubb RT. 2011.. Sortase enzymes in gram-positive bacteria. . Mol. Microbiol. 82::104459
    [Crossref] [Google Scholar]
  131. 131.
    Strom MS, Lory S. 1993.. Structure-function and biogenesis of the type IV pili. . Annu. Rev. Microbiol. 47::56596
    [Crossref] [Google Scholar]
  132. 132.
    Strömberg N, Boren T. 1992.. Actinomyces tissue specificity may depend on differences in receptor specificity for GalNAc β-containing glycoconjugates. . Infect. Immun. 60::326877
    [Crossref] [Google Scholar]
  133. 133.
    Strömberg N, Karlsson KA. 1990.. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach. . J. Biol. Chem. 265::1125158
    [Crossref] [Google Scholar]
  134. 134.
    Sue CK, Cheung NA, Mahoney BJ, McConnell SA, Scully JM, et al. 2024.. The basal and major pilins in the Corynebacterium diphtheriae SpaA pilus adopt similar structures that competitively react with the pilin polymerase. . Biopolymers 115::e23539
    [Crossref] [Google Scholar]
  135. 135.
    Sue CK, McConnell SA, Ellis-Guardiola K, Muroski JM, McAllister RA, et al. 2020.. Kinetics and optimization of the lysine-isopeptide bond forming sortase enzyme from Corynebacterium diphtheriae. . Bioconjug. Chem. 31::162434
    [Crossref] [Google Scholar]
  136. 136.
    Swaminathan A, Mandlik A, Swierczynski A, Gaspar A, Das A, Ton-That H. 2007.. Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae. . Mol. Microbiol. 66::96174
    [Crossref] [Google Scholar]
  137. 137.
    Swierczynski A, Ton-That H. 2006.. Type III pilus of corynebacteria: Pilus length is determined by the level of its major pilin subunit. . J. Bacteriol. 188::631825
    [Crossref] [Google Scholar]
  138. 138.
    Telford JL. 2007.. Vaccines containing Corynebacterium diphtheriae pili. World Patent WO/2007/026247
    [Google Scholar]
  139. 139.
    Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G. 2006.. Pili in gram-positive pathogens. . Nat. Rev. Microbiol. 4::50919
    [Crossref] [Google Scholar]
  140. 140.
    Tomich M, Planet PJ, Figurski DH. 2007.. The tad locus: postcards from the widespread colonization island. . Nat. Rev. Microbiol. 5::36375
    [Crossref] [Google Scholar]
  141. 141.
    Ton-That H, Das A, Mishra A. 2011.. Actinomyces oris fimbriae: an adhesive principle in bacterial biofilms and tissue tropism. . In Genomic Inquiries into Oral Bacterial Communities, ed. PE Kolenbrander , pp. 6377. Washington, DC:: ASM
    [Google Scholar]
  142. 142.
    Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O. 1999.. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. . PNAS 96::1242429
    [Crossref] [Google Scholar]
  143. 143.
    Ton-That H, Marraffini LA, Schneewind O. 2004.. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. . Mol. Microbiol. 53::25161
    [Crossref] [Google Scholar]
  144. 144.
    Ton-That H, Mazmanian SK, Alksne L, Schneewind O. 2002.. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis. . J. Biol. Chem. 277::744752
    [Crossref] [Google Scholar]
  145. 145.
    Ton-That H, Schneewind O. 2003.. Assembly of pili on the surface of Corynebacterium diphtheriae. . Mol. Microbiol. 50::142938
    [Crossref] [Google Scholar]
  146. 146.
    Ton-That H, Schneewind O. 2004.. Assembly of pili in gram-positive bacteria. . Trends Microbiol. 12::22834
    [Crossref] [Google Scholar]
  147. 147.
    Waksman G, Hultgren SJ. 2009.. Structural biology of the chaperone-usher pathway of pilus biogenesis. . Nat. Rev. Microbiol. 7::76574
    [Crossref] [Google Scholar]
  148. 148.
    Wu C, Huang IH, Chang C, Reardon-Robinson ME, Das A, Ton-That H. 2014.. Lethality of sortase depletion in Actinomyces oris caused by excessive membrane accumulation of a surface glycoprotein. . Mol. Microbiol. 94::122741
    [Crossref] [Google Scholar]
  149. 149.
    Wu C, Mishra A, Yang J, Cisar JO, Das A, Ton-That H. 2011.. Dual function of a tip fimbrillin of Actinomyces in fimbrial assembly and receptor binding. . J. Bacteriol. 193::3197206
    [Crossref] [Google Scholar]
  150. 150.
    Wu H, Mintz KP, Ladha M, Fives-Taylor PM. 1998.. Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213. . Mol. Microbiol. 28::487500
    [Crossref] [Google Scholar]
  151. 151.
    Zhou M, Wu H. 2009.. Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. . Microbiology 155::31727
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-112123-100908
Loading
/content/journals/10.1146/annurev-micro-112123-100908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error