1932

Abstract

Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-112723-083001
2024-11-20
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-112723-083001.html?itemId=/content/journals/10.1146/annurev-micro-112723-083001&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alix E, Blanc-Potard A-B. 2008.. Peptide-assisted degradation of the Salmonella MgtC virulence factor. . EMBO J. 27::54657
    [Crossref] [Google Scholar]
  2. 2.
    Allen RJ, Brenner EP, VanOrsdel CE, Hobson JJ, Hearn DJ, Hemm MR. 2014.. Conservation analysis of the CydX protein yields insights into small protein identification and evolution. . BMC Genom. 15::946
    [Crossref] [Google Scholar]
  3. 3.
    Aoyama JJ, Storz G. 2023.. Two for one: regulatory RNAs that encode small proteins. . Trends Biochem. Sci. 48::103543
    [Crossref] [Google Scholar]
  4. 4.
    Aoyama JJ, Raina M, Zhong A, Storz G. 2022.. Dual-function Spot 42 RNA encodes a 15-amino acid protein that regulates the CRP transcription factor. . PNAS 119::e2119866119
    [Crossref] [Google Scholar]
  5. 5.
    Arnold BJ, Huang I-T, Hanage WP. 2022.. Horizontal gene transfer and adaptive evolution in bacteria. . Nat. Rev. Microbiol. 20::20618
    [Crossref] [Google Scholar]
  6. 6.
    Atrih A, Foster SJ. 1999.. The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination. . Antonie Van Leeuwenhoek 75::299307
    [Crossref] [Google Scholar]
  7. 7.
    Bachhawat P, Stock AM. 2007.. Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. . J. Bacteriol. 189::598795
    [Crossref] [Google Scholar]
  8. 8.
    Balasubramanian D, Vanderpool CK. 2013.. Deciphering the interplay between two independent functions of the small RNA regulator SgrS in Salmonella. . J. Bacteriol. 195::462030
    [Crossref] [Google Scholar]
  9. 9.
    Ballal A, Basu B, Apte SK. 2007.. The Kdp-ATPase system and its regulation. . J. Biosci. 32::55968
    [Crossref] [Google Scholar]
  10. 10.
    Bisson-Filho AW, Discola KF, Castellen P, Blasios V, Martins A, et al. 2015.. FtsZ filament capping by MciZ, a developmental regulator of bacterial division. . PNAS 112::E213038
    [Crossref] [Google Scholar]
  11. 11.
    Bobrovskyy M, Vanderpool CK. 2014.. The small RNA SgrS: roles in metabolism and pathogenesis of enteric bacteria. . Front. Cell. Infect. Microbiol. 4::61
    [Crossref] [Google Scholar]
  12. 12.
    Bosma EF, Rau MH, van Gijtenbeek LA, Siedler S. 2021.. Regulation and distinct physiological roles of manganese in bacteria. . FEMS Microbiol. Rev. 45::fuab02
    [Crossref] [Google Scholar]
  13. 13.
    Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. 2021.. Molecular basis of lysis–lysogeny decisions in gram-positive phages. . Annu. Rev. Microbiol. 75::56381
    [Crossref] [Google Scholar]
  14. 14.
    Bramkamp M, Altendorf K, Greie JC. 2007.. Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli. . Mol. Membr. Biol. 24::37586
    [Crossref] [Google Scholar]
  15. 15.
    Burkholder WF, Kurtser I, Grossman AD. 2001.. Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. . Cell 104::26979
    [Crossref] [Google Scholar]
  16. 16.
    Buschiazzo A, Trajtenberg F. 2019.. Two-component sensing and regulation: How do histidine kinases talk with response regulators at the molecular level?. Annu. Rev. Microbiol. 73::50728
    [Crossref] [Google Scholar]
  17. 17.
    Cameron TA, Margolin W. 2024.. Insights into the assembly and regulation of the bacterial divisome. . Nat. Rev. Microbiol. 22::3345
    [Crossref] [Google Scholar]
  18. 18.
    Chen H, Luo Q, Yin J, Gao T, Gao H. 2015.. Evidence for the requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis. . Biochim. Biophys. Acta 1850::31828
    [Crossref] [Google Scholar]
  19. 19.
    Chen S, Lesnik EA, Hall TA, Sampath R, Griffey RH, et al. 2002.. A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. . Biosystems 65::15777
    [Crossref] [Google Scholar]
  20. 20.
    Cheung GYC, Joo H-S, Chatterjee SS, Otto M. 2014.. Phenol-soluble modulins – critical determinants of staphylococcal virulence. . FEMS Microbiol. Rev. 38::698719
    [Crossref] [Google Scholar]
  21. 21.
    Choi E, Lee KY, Shin D. 2012.. The MgtR regulatory peptide negatively controls expression of the MgtA Mg2+ transporter in Salmonella enterica serovar Typhimurium. . Biochim. Biophys. Res. Commun. 417::31823
    [Crossref] [Google Scholar]
  22. 22.
    Choi J, Groisman EA. 2017.. Activation of master virulence regulator PhoP in acidic pH requires the Salmonella-specific protein UgtL. . Sci. Signal. 10::eaan6284
    [Crossref] [Google Scholar]
  23. 23.
    Cutting S, Anderson M, Lysenko E, Page A, Tomoyasu T, et al. 1997.. SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. . J. Bacteriol. 179::553442
    [Crossref] [Google Scholar]
  24. 24.
    D'Souza C, Nakano MM, Zuber P. 1994.. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. . PNAS 91::9397401
    [Crossref] [Google Scholar]
  25. 25.
    Du D, Neuberger A, Orr MW, Newman CE, Hsu P-C, et al. 2020.. Interactions of a bacterial RND transporter with a transmembrane small protein in a lipid environment. . Structure 28::62534.e6
    [Crossref] [Google Scholar]
  26. 26.
    Du D, Wang Z, James NR, Voss JE, Klimont E, et al. 2014.. Structure of the AcrAB-TolC multidrug efflux pump. . Nature 509::51215
    [Crossref] [Google Scholar]
  27. 27.
    Durica-Mitic S, Göpel Y, Görke B. 2018.. Carbohydrate utilization in bacteria: making the most out of sugars with the help of small regulatory RNAs. . Microbiol. Spectr. 6:(2). https://doi.org/10.1128/microbiolspec.rwr-0013-2017
    [Google Scholar]
  28. 28.
    Ebmeier SE, Tan IS, Clapham KR, Ramamurthi KS. 2012.. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. . Mol. Microbiol. 84::68296
    [Crossref] [Google Scholar]
  29. 29.
    Edelmann D, Berghoff BA. 2022.. A shift in perspective: a role for the type I toxin TisB as persistence-stabilizing factor. . Front. Microbiol. 13::871699
    [Crossref] [Google Scholar]
  30. 30.
    Fozo EM, Hemm MR, Storz G. 2008.. Small toxic proteins and the antisense RNAs that repress them. . Microbiol. Mol. Biol. Rev. 72::57989
    [Crossref] [Google Scholar]
  31. 31.
    Froschauer K, Svensson SL, Gelhausen R, Fiore E, Kible P, et al. 2022.. Complementary Ribo-seq approaches map the translatome and provide a small protein census in the foodborne pathogen Campylobacter jejuni. . bioRxiv 2022.11.09.515450. https://doi.org/10.1101/2022.11.09.515450
  32. 32.
    Frumkin I, Laub MT. 2023.. Selection of a de novo gene that can promote survival of Escherichia coli by modulating protein homeostasis pathways. . Nat. Ecol. Evol. 7::206779
    [Crossref] [Google Scholar]
  33. 33.
    Fuchs S, Engelmann S. 2023.. Small proteins in bacteria – big challenges in prediction and identification. . Proteomics 23::e2200421
    [Crossref] [Google Scholar]
  34. 34.
    Gallego Del Sol F, Quiles-Puchalt N, Brady A, Penadés JR, Marina A. 2022.. Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. . Nat. Commun. 13::3627
    [Crossref] [Google Scholar]
  35. 35.
    Gaßel M, Möllenkamp T, Puppe W, Altendorf K. 1999.. The KdpF subunit is part of the K+-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. . J. Biol. Chem. 274::379017
    [Crossref] [Google Scholar]
  36. 36.
    Gill RLJ, Castaing JP, Hsin J, Tan IS, Wang X, et al. 2015.. Structural basis for the geometry-driven localization of a small protein. . PNAS 112::E190815
    [Crossref] [Google Scholar]
  37. 37.
    Gogry FA, Siddiqui MT, Sultan I, Haq QMR. 2021.. Current update on intrinsic and acquired colistin resistance mechanisms in bacteria. . Front. Med. 8::677720
    [Crossref] [Google Scholar]
  38. 38.
    Goojani HG, Besharati S, Chauhan P, Asseri AH, Lill H, Bald D. 2023.. Cytochrome bd-I from Escherichia coli is catalytically active in the absence of the CydH subunit. . FEBS Lett. 597::54756
    [Crossref] [Google Scholar]
  39. 39.
    Granvogl B, Zoryan M, Plöscher M, Eichacker LA. 2008.. Localization of 13 one-helix integral membrane proteins in photosystem II subcomplexes. . Anal. Biochem. 383::27988
    [Crossref] [Google Scholar]
  40. 40.
    Grauel A, Kägi J, Rasmussen T, Makarchuk I, Oppermann S, et al. 2021.. Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D. . Nat. Commun. 12::6498
    [Crossref] [Google Scholar]
  41. 41.
    Groisman EA, Hollands K, Kriner MA, Lee E-J, Park S-Y, Pontes MH. 2013.. Bacterial Mg2+ homeostasis, transport, and virulence. . Annu. Rev. Genet. 47::62546
    [Crossref] [Google Scholar]
  42. 42.
    Hamoen LW, Eshuis H, Jongbloed J, Venema G, van Sinderen D. 1995.. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. . Mol. Microbiol. 15::5563
    [Crossref] [Google Scholar]
  43. 43.
    Handler AA, Lim JE, Losick R. 2008.. Peptide inhibitor of cytokinesis during sporulation in Bacillus subtilis. . Mol. Microbiol. 68::58899
    [Crossref] [Google Scholar]
  44. 44.
    Hemm MR, Paul BJ, Miranda-Ríos J, Zhang A, Soltanzad N, Storz G. 2010.. Small stress response proteins in Escherichia coli: proteins missed by classical proteomic studies. . J. Bacteriol. 192::4658
    [Crossref] [Google Scholar]
  45. 45.
    Hemm MR, Paul BJ, Schneider TD, Storz G, Rudd KE. 2008.. Small membrane proteins found by comparative genomics and ribosome binding site models. . Mol. Microbiol. 70::1487501
    [Crossref] [Google Scholar]
  46. 46.
    Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G. 2012.. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. . PNAS 109::16696701
    [Crossref] [Google Scholar]
  47. 47.
    Hobson JJ, Gallegos AS, Atha BW 3rd, Kelly JP, Lein CD, et al. 2018.. Investigation of amino acid specificity in the CydX small protein shows sequence plasticity at the functional level. . PLOS ONE 13::e0198699
    [Crossref] [Google Scholar]
  48. 48.
    Hoeser J, Hong S, Gehmann G, Gennis RB, Friedrich T. 2014.. Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site. . FEBS Lett. 588::153741
    [Crossref] [Google Scholar]
  49. 49.
    Impens F, Rolhion N, Radoshevich L, Bécavin C, Duval M, et al. 2017.. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. . Nat. Microbiol. 2::17005
    [Crossref] [Google Scholar]
  50. 50.
    Jakobs M, Meinhardt F. 2015.. What renders bacilli genetically competent? A gaze beyond the model organism. . Appl. Microbiol. Biotechnol. 99::155770
    [Crossref] [Google Scholar]
  51. 51.
    Jean-Francois FL, Dai J, Yu L, Myrick A, Rubin E, et al. 2014.. Binding of MgtR, a Salmonella transmembrane regulatory peptide, to MgtC, a Mycobacterium tuberculosis virulence factor: a structural study. . J. Mol. Biol. 426::43646
    [Crossref] [Google Scholar]
  52. 52.
    Jiang S, Steup LC, Kippnich C, Lazaridi S, Malengo G, et al. 2023.. The inhibitory mechanism of a small protein reveals its role in antimicrobial peptide sensing. . PNAS 120::e2309607120
    [Crossref] [Google Scholar]
  53. 53.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  54. 54.
    Jurėnas D, Fraikin N, Goormaghtigh F, Van Melderen L. 2022.. Biology and evolution of bacterial toxin–antitoxin systems. . Nat. Rev. Microbiol. 20::33550
    [Crossref] [Google Scholar]
  55. 55.
    Kato A, Chen HD, Latifi T, Groisman EA. 2012.. Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. . Mol. Cell 47::897908
    [Crossref] [Google Scholar]
  56. 56.
    Kim EY, Tyndall ER, Huang KC, Tian F, Ramamurthi KS. 2017.. Dash-and-recruit mechanism drives membrane curvature recognition by the small bacterial protein SpoVM. . Cell Syst. 5::51826.e3
    [Crossref] [Google Scholar]
  57. 57.
    Knopp M, Babina AM, Gudmundsdóttir JS, Douglass MV, Trent MS, Andersson DI. 2021.. A novel type of colistin resistance genes selected from random sequence space. . PLOS Genet. 17::e1009227
    [Crossref] [Google Scholar]
  58. 58.
    Kohlstaedt M, Buschmann S, Langer JD, Xie H, Michel H. 2017.. Subunit CcoQ is involved in the assembly of the Cbb3-type cytochrome c oxidases from Pseudomonas stutzeri ZoBell but not required for their activity. . Biochim. Biophys. Acta Bioenerg. 1858::23138
    [Crossref] [Google Scholar]
  59. 59.
    Kohlstaedt M, Buschmann S, Xie H, Resemann A, Warkentin E, et al. 2016.. Identification and characterization of the novel subunit CcoM in the cbb3-cytochrome c oxidase from Pseudomonas stutzeri ZoBell. . mBio 7::e01921-15
    [Crossref] [Google Scholar]
  60. 60.
    Kondo T, Plaza S, Zanet J, Benrabah E, Valenti P, et al. 2010.. Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. . Science 329::33639
    [Crossref] [Google Scholar]
  61. 61.
    Konkol MA, Blair KM, Kearns DB. 2013.. Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. . J. Bacteriol. 195::408593
    [Crossref] [Google Scholar]
  62. 62.
    Kosfeld A, Jahreis K. 2012.. Characterization of the interaction between the small regulatory peptide SgrT and the EIICBGlc of the glucose–phosphotransferase system of E. coli K-12. . Metabolites 2::75674
    [Crossref] [Google Scholar]
  63. 63.
    Levin PA, Fan N, Ricca E, Driks A, Losick R, Cutting S. 1993.. An unusually small gene required for sporulation by Bacillus subtilis. . Mol. Microbiol. 9::76171
    [Crossref] [Google Scholar]
  64. 64.
    Lippa AM, Goulian M. 2009.. Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. . PLOS Genet. 5::e1000788
    [Crossref] [Google Scholar]
  65. 65.
    Lippa AM, Goulian M. 2012.. Perturbation of the oxidizing environment of the periplasm stimulates the PhoQ/PhoP system in Escherichia coli. . J. Bacteriol. 194::145763
    [Crossref] [Google Scholar]
  66. 66.
    Lloyd CR, Park S, Fei J, Vanderpool CK. 2017.. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. . J. Bacteriol. 199::e00869-16
    [Crossref] [Google Scholar]
  67. 67.
    Mahmoud SA, Chien P. 2018.. Regulated proteolysis in bacteria. . Annu. Rev. Biochem. 87::67796
    [Crossref] [Google Scholar]
  68. 68.
    Martin JE, Waters LS, Storz G, Imlay JA. 2015.. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. . PLOS Genet. 11::e1004977
    [Crossref] [Google Scholar]
  69. 69.
    Masachis S, Darfeuille F. 2018.. Type I toxin-antitoxin systems: regulating toxin expression via Shine-Dalgarno sequence sequestration and small RNA binding. . Microbiol. Spectr. 6:(4). https://doi.org/10.1128/microbiolspec.rwr-0030-2018
    [Crossref] [Google Scholar]
  70. 70.
    Meydan S, Marks J, Klepacki D, Sharma V, Baranov PV, et al. 2019.. Retapamulin-assisted ribosome profiling reveals the alternative bacterial proteome. . Mol. Cell 74::48193.e6
    [Crossref] [Google Scholar]
  71. 71.
    Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022.. ColabFold: making protein folding accessible to all. . Nat. Methods 19::67982
    [Crossref] [Google Scholar]
  72. 72.
    Modell JW, Hopkins AC, Laub MT. 2011.. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. . Genes Dev. 25::132843
    [Crossref] [Google Scholar]
  73. 73.
    Moncrief MB, Maguire ME. 1998.. Magnesium and the role of MgtC in growth of Salmonella typhimurium. . Infect. Immun. 66::38029
    [Crossref] [Google Scholar]
  74. 74.
    Murakami S, Nakashima R, Yamashita E, Yamaguchi A. 2002.. Crystal structure of bacterial multidrug efflux transporter AcrB. . Nature 419::58793
    [Crossref] [Google Scholar]
  75. 75.
    Neiditch MB, Capodagli GC, Prehna G, Federle MJ. 2017.. Genetic and structural analyses of RRNPP intercellular peptide signaling of gram-positive bacteria. . Annu. Rev. Genet. 51::31133
    [Crossref] [Google Scholar]
  76. 76.
    Ogura M, Liu L, Lacelle M, Nakano MM, Zuber P. 1999.. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. . Mol. Microbiol. 32::799812
    [Crossref] [Google Scholar]
  77. 77.
    Oliva MA, Trambaiolo D, Löwe J. 2007.. Structural insights into the conformational variability of FtsZ. . J. Mol. Biol. 373::122942
    [Crossref] [Google Scholar]
  78. 78.
    Peluso EA, Updegrove TB, Chen J, Shroff H, Ramamurthi KS. 2019.. A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface. . PNAS 116::2178999
    [Crossref] [Google Scholar]
  79. 79.
    Persuh M, Turgay K, Mandic-Mulec I, Dubnau D. 1999.. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. . Mol. Microbiol. 33::88694
    [Crossref] [Google Scholar]
  80. 80.
    Prajapati RS, Ogura T, Cutting SM. 2000.. Structural and functional studies on an FtsH inhibitor from Bacillus subtilis. . Biochim. Biophys. Acta 1475::35359
    [Crossref] [Google Scholar]
  81. 81.
    Qiao Z, Yokoyama T, Yan X-F, Beh IT, Shi J, et al. 2022.. Cryo-EM structure of the entire FtsH-HflKC AAA protease complex. . Cell Rep. 39::110890
    [Crossref] [Google Scholar]
  82. 82.
    Raina M, Aoyama JJ, Bhatt S, Paul BJ, Zhang A, et al. 2022.. Dual-function AzuCR RNA modulates carbon metabolism. . PNAS 119::e2117930119
    [Crossref] [Google Scholar]
  83. 83.
    Raina M, King A, Bianco C, Vanderpool CK. 2018.. Dual-function RNAs. . Microbiol. Spectr. 6:(5). https://doi.org/10.1128/microbiolspec.rwr-0032-2018
    [Crossref] [Google Scholar]
  84. 84.
    Ramamurthi KS, Clapham KR, Losick R. 2006.. Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis. . Mol. Microbiol. 62::154757
    [Crossref] [Google Scholar]
  85. 85.
    Ramamurthi KS, Lecuyer S, Stone HA, Losick R. 2009.. Geometric cue for protein localization in a bacterium. . Science 323::135457
    [Crossref] [Google Scholar]
  86. 86.
    Ribis JW, Ravichandran P, Putnam EE, Pishdadian K, Shen A. 2017.. The conserved spore coat protein SpoVM is largely dispensable in Clostridium difficile spore formation. . mSphere 2::e00315-17
    [Crossref] [Google Scholar]
  87. 87.
    Riley EP, Schwarz C, Derman AI, Lopez-Garrido J. 2020.. Milestones in Bacillus subtilis sporulation research. . Microb. Cell 8::116
    [Crossref] [Google Scholar]
  88. 88.
    Ripstein ZA, Vahidi S, Houry WA, Rubinstein JL, Kay LE. 2020.. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. . eLife 9::e52158
    [Crossref] [Google Scholar]
  89. 89.
    Robinson JJ, Weiner JH. 1980.. The effect of amphipaths on the flavin-linked aerobic glycerol-3-phosphate dehydrogenase from Escherichia coli. . Can. J. Biochem. 58::117278
    [Crossref] [Google Scholar]
  90. 90.
    Roggiani M, Dubnau D. 1993.. ComA, a phosphorylated response regulator protein of Bacillussubtilis, binds to the promoter region of srfA. . J. Bacteriol. 175::318287
    [Crossref] [Google Scholar]
  91. 91.
    Rowland SL, Burkholder WF, Cunningham KA, Maciejewski MW, Grossman AD, King GF. 2004.. Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis. . Mol. Cell 13::689701
    [Crossref] [Google Scholar]
  92. 92.
    Ruiz-Orera J, Villanueva-Cañas JL, Albà MM. 2020.. Evolution of new proteins from translated sORFs in long non-coding RNAs. . Exp. Cell Res. 391::111940
    [Crossref] [Google Scholar]
  93. 93.
    Ruvolo MW, Mach KE, Burkholder WF. 2006.. Proteolysis of the replication checkpoint protein Sda is necessary for the efficient initiation of sporulation after transient replication stress in Bacillus subtilis. . Mol. Microbiol. 60::1490508
    [Crossref] [Google Scholar]
  94. 94.
    Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, et al. 2019.. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. . Science 366::1004
    [Crossref] [Google Scholar]
  95. 95.
    Saghatelian A, Couso JP. 2015.. Discovery and characterization of smORF-encoded bioactive polypeptides. . Nat. Chem. Biol. 11::90916
    [Crossref] [Google Scholar]
  96. 96.
    Salazar ME, Podgornaia AI, Laub MT. 2016.. The small membrane protein MgrB regulates PhoQ bifunctionality to control PhoP target gene expression dynamics. . Mol. Microbiol. 102::43045
    [Crossref] [Google Scholar]
  97. 97.
    Salvail H, Choi J, Groisman EA. 2022.. Differential synthesis of novel small protein times Salmonella virulence program. . PLOS Genet. 18::e1010074
    [Crossref] [Google Scholar]
  98. 98.
    Sandman K, Losick R, Youngman P. 1987.. Genetic analysis of Bacillus subtilis spo mutations generated by Tn917-mediated insertional mutagenesis. . Genetics 117::60317
    [Crossref] [Google Scholar]
  99. 99.
    Schmalisch M, Maiques E, Nikolov L, Camp AH, Chevreux B, et al. 2010.. Small genes under sporulation control in the Bacillus subtilis genome. . J. Bacteriol. 192::540212
    [Crossref] [Google Scholar]
  100. 100.
    Schryvers A, Lohmeier E, Weiner JH. 1978.. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. . J. Biol. Chem. 253::78388
    [Crossref] [Google Scholar]
  101. 101.
    Simpson BW, Trent MS. 2019.. Pushing the envelope: LPS modifications and their consequences. . Nat. Rev. Microbiol. 17::40316
    [Crossref] [Google Scholar]
  102. 102.
    Solomon JM, Magnuson R, Srivastava A, Grossman AD. 1995.. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. . Genes Dev. 9::54758
    [Crossref] [Google Scholar]
  103. 103.
    Sun Y-H, de Jong MF, den Hartigh AB, Roux CM, Rolán HG, Tsolis RM. 2012.. The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus. . Front. Cell. Infect. Microbiol. 2::47
    [Crossref] [Google Scholar]
  104. 104.
    Tan IS, Weiss CA, Popham DL, Ramamurthi KS. 2015.. A quality-control mechanism removes unfit cells from a population of sporulating bacteria. . Dev. Cell 34::68293
    [Crossref] [Google Scholar]
  105. 105.
    Theßeling A, Rasmussen T, Burschel S, Wohlwend D, Kägi J, et al. 2019.. Homologous bd oxidases share the same architecture but differ in mechanism. . Nat. Commun. 10::5138
    [Crossref] [Google Scholar]
  106. 106.
    Tran BM, Linnik DS, Punter CM, Śmigiel WM, Mantovanelli L, et al. 2023.. Super-resolving microscopy reveals the localizations and movement dynamics of stressosome proteins in Listeria monocytogenes. . Commun. Biol. 6::51
    [Crossref] [Google Scholar]
  107. 107.
    Turgay K, Hahn J, Burghoorn J, Dubnau D. 1998.. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. . EMBO J. 17::673038
    [Crossref] [Google Scholar]
  108. 108.
    Turgay K, Hamoen LW, Venema G, Dubnau D. 1997.. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. . Genes Dev. 11::11928
    [Crossref] [Google Scholar]
  109. 109.
    Ul Haq I, Brantl S. 2021.. Moonlighting in Bacillus subtilis: The small proteins SR1P and SR7P regulate the moonlighting activity of glyceraldehyde 3-phosphate dehydrogenase A (GapA) and enolase in RNA degradation. . Microorganisms 9::1046
    [Crossref] [Google Scholar]
  110. 110.
    VanOrsdel CE, Bhatt S, Allen RJ, Brenner EP, Hobson JJ, et al. 2013.. The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity. . J. Bacteriol. 195::364050
    [Crossref] [Google Scholar]
  111. 111.
    Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, et al. 2022.. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. . Nucleic Acids Res. 50::D43944
    [Crossref] [Google Scholar]
  112. 112.
    Venkat K, Hoyos M, Haycocks JR, Cassidy L, Engelmann B, et al. 2021.. A dual-function RNA balances carbon uptake and central metabolism in Vibrio cholerae. . EMBO J. 40::e108542
    [Crossref] [Google Scholar]
  113. 113.
    Wadler CS, Vanderpool CK. 2007.. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. . PNAS 104::2045459
    [Crossref] [Google Scholar]
  114. 114.
    Wang H, Yin X, Orr MW, Dambach M, Curtis R, Storz G. 2017.. Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. . PNAS 114::568994
    [Crossref] [Google Scholar]
  115. 115.
    Wang I-N, Smith DL, Young R. 2000.. Holins: the protein clocks of bacteriophage infections. . Annu. Rev. Microbiol. 54::799825
    [Crossref] [Google Scholar]
  116. 116.
    Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S. 2001.. Identification of novel small RNAs using comparative genomics and microarrays. . Genes Dev. 15::163751
    [Crossref] [Google Scholar]
  117. 117.
    Waters LS, Sandoval M, Storz G. 2011.. The Escherichia coli MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. . J. Bacteriol. 193::588797
    [Crossref] [Google Scholar]
  118. 118.
    Williams AH, Redzej A, Rolhion N, Costa TRD, Rifflet A, et al. 2019.. The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation. . Nat. Commun. 10::3005
    [Crossref] [Google Scholar]
  119. 119.
    Wright Z, Seymour M, Paszczak K, Truttmann T, Senn K, et al. 2024.. The small protein MntS evolved from a signal peptide and acquired a novel function regulating manganese homeostasis in Escherichia coli. . Mol. Microbiol. 121::15266
    [Crossref] [Google Scholar]
  120. 120.
    Xu H, Van Remmen H. 2021.. The sarcoendoplasmic reticulum calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies. . Skelet. Muscle 11::25
    [Crossref] [Google Scholar]
  121. 121.
    Yadavalli SS, Goh T, Carey JN, Malengo G, Vellappan S, et al. 2020.. Functional determinants of a small protein controlling a broadly conserved bacterial sensor kinase. . J. Bacteriol. 202::e00305-20
    [Crossref] [Google Scholar]
  122. 122.
    Yadavalli SS, Yuan J. 2022.. Bacterial small membrane proteins: the Swiss army knife of regulators at the lipid bilayer. . J. Bacteriol. 204::e0034421
    [Crossref] [Google Scholar]
  123. 123.
    Yap PS-X, Cheng W-H, Chang S-K, Lim S-HE, Lai K-S. 2022.. MgrB mutations and altered cell permeability in colistin resistance in Klebsiella pneumoniae. . Cells 11::2995
    [Crossref] [Google Scholar]
  124. 124.
    Yeom J, Shao Y, Groisman EA. 2020.. Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. . PNAS 117::2023543
    [Crossref] [Google Scholar]
  125. 125.
    Yin X, Orr MW, Wang H, Hobbs EC, Shabalina SA, Storz G. 2019.. The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. . Mol. Microbiol. 111::13144
    [Crossref] [Google Scholar]
  126. 126.
    Zhao L. 2024.. De novo genes: from non-genic to genic. . Nat. Rev. Genet. 25::81
    [Crossref] [Google Scholar]
  127. 127.
    Zhong A, Jiang X, Hickman AB, Klier K, Teodoro GIC, et al. 2023.. Toxic antiphage defense proteins inhibited by intragenic antitoxin proteins. . PNAS 120::e2307382120
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-112723-083001
Loading
/content/journals/10.1146/annurev-micro-112723-083001
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error