1932

Abstract

The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-081623-091311
2024-08-08
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-081623-091311.html?itemId=/content/journals/10.1146/annurev-neuro-081623-091311&mimeType=html&fmt=ahah

Literature Cited

  1. Abe Y, Nakao H, Goto M, Tamano M, Koebis M, et al. 2021.. Efficient marmoset genome engineering by autologous embryo transfer and CRISPR/Cas9 technology. . Sci. Rep. 11::20234
    [Crossref] [Google Scholar]
  2. Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. 2012.. A neural circuit for spatial summation in visual cortex. . Nature 490::22631
    [Crossref] [Google Scholar]
  3. Albers AM, Kok P, Toni I, Dijkerman HC, de Lange FP. 2013.. Shared representations for working memory and mental imagery in early visual cortex. . Curr. Biol. 23::142731
    [Crossref] [Google Scholar]
  4. Alonso JM, Martinez LM. 1998.. Functional connectivity between simple cells and complex cells in cat striate cortex. . Nat. Neurosci. 1::395403
    [Crossref] [Google Scholar]
  5. Angelucci A, Bijanzadeh M, Nurminen L, Federer F, Merlin S, Bressloff PC. 2017.. Circuits and mechanisms for surround modulation in visual cortex. . Annu. Rev. Neurosci. 40::42551
    [Crossref] [Google Scholar]
  6. Bai WZ, Ishida M, Arimatsu Y. 2004.. Chemically defined feedback connections from infragranular layers of sensory association cortices in the rat. . Neuroscience 123::25767
    [Crossref] [Google Scholar]
  7. Barabási DL, Bianconi G, Bullmore E, Burgess M, Chung S, et al. 2023.. Neuroscience needs network science. . J. Neurosci. 43::598995
    [Crossref] [Google Scholar]
  8. Barbas H. 2015.. General cortical and special prefrontal connections: principles from structure to function. . Annu. Rev. Neurosci. 38::26989
    [Crossref] [Google Scholar]
  9. Barbas H, Rempel-Clower N. 1997.. Cortical structure predicts the pattern of corticocortical connections. . Cereb. Cortex 7::63546
    [Crossref] [Google Scholar]
  10. Barrett LF, Simmons WK. 2015.. Interoceptive predictions in the brain. . Nat. Rev. Neurosci. 16::41929
    [Crossref] [Google Scholar]
  11. Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ. 2015.. A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey. . NeuroImage 108::46075
    [Crossref] [Google Scholar]
  12. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. 2012.. Canonical microcircuits for predictive coding. . Neuron 76::695711
    [Crossref] [Google Scholar]
  13. Berezovskii VK, Nassi JJ, Born RT. 2011.. Segregation of feedforward and feedback projections in mouse visual cortex. . J. Comp. Neurol. 519::367283
    [Crossref] [Google Scholar]
  14. Bijanzadeh M, Nurminen L, Merlin S, Clark AM, Angelucci A. 2018.. Distinct laminar processing of local and global context in primate primary visual cortex. . Neuron 100::25974.e4
    [Crossref] [Google Scholar]
  15. Bolz J, Gilbert CD. 1986.. Generation of end-inhibition in the visual cortex via interlaminar connections. . Nature 320::36265
    [Crossref] [Google Scholar]
  16. Bortone DS, Olsen SR, Scanziani M. 2014.. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. . Neuron 82::47485
    [Crossref] [Google Scholar]
  17. Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R. 2011.. Laminar differences in gamma and alpha coherence in the ventral stream. . PNAS 108::1126267
    [Crossref] [Google Scholar]
  18. Burkhalter A, D'Souza RD, Ji W, Meier AM. 2023.. Integration of feedforward and feedback information streams in the modular architecture of mouse visual cortex. . Annu. Rev. Neurosci. 46::25980
    [Crossref] [Google Scholar]
  19. Buzsaki G, Anastassiou CA, Koch C. 2012.. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. . Nat. Rev. Neurosci. 13::40720
    [Crossref] [Google Scholar]
  20. Callaway EM. 2004.. Feedforward, feedback and inhibitory connections in primate visual cortex. . Neural Netw. 17::62532
    [Crossref] [Google Scholar]
  21. Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, et al. 2009.. The human K-complex represents an isolated cortical down-state. . Science 324::108487
    [Crossref] [Google Scholar]
  22. Chan AM, Baker JM, Eskandar E, Schomer D, Ulbert I, et al. 2011.. First-pass selectivity for semantic categories in human anteroventral temporal lobe. . J. Neurosci. 31::1811929
    [Crossref] [Google Scholar]
  23. Chen X, Ravindra Kumar S, Adams CD, Yang D, Wang T, et al. 2022.. Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems. . Neuron 110::224257.e6
    [Crossref] [Google Scholar]
  24. Constantinople CM, Bruno RM. 2013.. Deep cortical layers are activated directly by thalamus. . Science 340::159194
    [Crossref] [Google Scholar]
  25. Cumming BG, DeAngelis GC. 2001.. The physiology of stereopsis. . Annu. Rev. Neurosci. 24::20338
    [Crossref] [Google Scholar]
  26. DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, et al. 2013.. New insights into the classification and nomenclature of cortical GABAergic interneurons. . Nat. Rev. Neurosci. 14::20216
    [Crossref] [Google Scholar]
  27. Douglas RJ, Martin KAC. 2004.. Neuronal circuits of the neocortex. . Annu. Rev. Neurosci. 27::41951
    [Crossref] [Google Scholar]
  28. D'Souza RD, Wang Q, Ji W, Meier AM, Kennedy H, et al. 2022.. Hierarchical and nonhierarchical features of the mouse visual cortical network. . Nat. Commun. 13::503
    [Crossref] [Google Scholar]
  29. Federer F, Ta'afua S, Merlin S, Hassanpour MS, Angelucci A. 2021.. Stream-specific feedback inputs to the primate primary visual cortex. . Nat. Commun. 12::228
    [Crossref] [Google Scholar]
  30. Felleman DJ, Van Essen DC. 1991.. Distributed hierarchical processing in the primate cerebral cortex. . Cereb. Cortex 1::147
    [Crossref] [Google Scholar]
  31. Ferster D, Miller KD. 2000.. Neural mechanisms of orientation selectivity in the visual cortex. . Annu. Rev. Neurosci. 23::44171
    [Crossref] [Google Scholar]
  32. Finn ES, Huber L, Jangraw DC, Molfese PJ, Bandettini PA. 2019.. Layer-dependent activity in human prefrontal cortex during working memory. . Nat. Neurosci. 22::168795
    [Crossref] [Google Scholar]
  33. Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB. 2016.. Experience-dependent spatial expectations in mouse visual cortex. . Nat. Neurosci. 19::165864
    [Crossref] [Google Scholar]
  34. Fleming SM, Dolan RJ. 2012.. The neural basis of metacognitive ability. . Philos. Trans. R. Soc. B 367::133849
    [Crossref] [Google Scholar]
  35. Franken TP, Reynolds JH. 2021.. Columnar processing of border ownership in primate visual cortex. . eLife 10::e72573
    [Crossref] [Google Scholar]
  36. Fries P. 2009.. Neuronal gamma-band synchronization as a fundamental process in cortical computation. . Annu. Rev. Neurosci. 32::20924
    [Crossref] [Google Scholar]
  37. Geschwind DH, Rakic P. 2013.. Cortical evolution: judge the brain by its cover. . Neuron 80::63347
    [Crossref] [Google Scholar]
  38. Gilbert CD, Li W. 2013.. Top-down influences on visual processing. . Nat. Rev. Neurosci. 14::35063
    [Crossref] [Google Scholar]
  39. Goertsen D, Flytzanis NC, Goeden N, Chuapoco MR, Cummins A, et al. 2022.. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. . Nat. Neurosci. 25::10615
    [Crossref] [Google Scholar]
  40. Gouwens NW, Sorensen SA, Berg J, Lee C, Jarsky T, et al. 2019.. Classification of electrophysiological and morphological neuron types in the mouse visual cortex. . Nat. Neurosci. 22::118295
    [Crossref] [Google Scholar]
  41. Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. 2013.. Molecular logic of neocortical projection neuron specification, development and diversity. . Nat. Rev. Neurosci. 14::75569
    [Crossref] [Google Scholar]
  42. Haeusler S, Maass W. 2007.. A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. . Cereb. Cortex 17::14962
    [Crossref] [Google Scholar]
  43. Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, et al. 2019.. Hierarchical organization of cortical and thalamic connectivity. . Nature 575::195202
    [Crossref] [Google Scholar]
  44. Harris KD, Mrsic-Flogel TD. 2013.. Cortical connectivity and sensory coding. . Nature 503::5158
    [Crossref] [Google Scholar]
  45. Harris KD, Shepherd GM. 2015.. The neocortical circuit: themes and variations. . Nat. Neurosci. 18::17081
    [Crossref] [Google Scholar]
  46. Harrison SA, Tong F. 2009.. Decoding reveals the contents of visual working memory in early visual areas. . Nature 458::63235
    [Crossref] [Google Scholar]
  47. Haynes JD, Rees G. 2006.. Decoding mental states from brain activity in humans. . Nat. Rev. Neurosci. 7::52334
    [Crossref] [Google Scholar]
  48. Heeger DJ. 2017.. Theory of cortical function. . PNAS 114::177382
    [Crossref] [Google Scholar]
  49. Heimer L. 2012.. The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide. New York:: Springer-Verlag
    [Google Scholar]
  50. Higuchi S, Miyashita Y. 1996.. Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. . PNAS 93::73943
    [Crossref] [Google Scholar]
  51. Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB, et al. 2017.. Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. . Nat. Neurosci. 20::96068
    [Crossref] [Google Scholar]
  52. Hirabayashi T, Miyashita Y. 2014.. Computational principles of microcircuits for visual object processing in the macaque temporal cortex. . Trends Neurosci. 37::17887
    [Crossref] [Google Scholar]
  53. Hirabayashi T, Takeuchi D, Tamura K, Miyashita Y. 2013.. Functional microcircuit recruited during retrieval of object association memory in monkey perirhinal cortex. . Neuron 77::192203
    [Crossref] [Google Scholar]
  54. Hubel DH, Wiesel TN. 1962.. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. . J. Physiol. 160::10654
    [Crossref] [Google Scholar]
  55. Hubel DH, Wiesel TN. 1968.. Receptive fields and functional architecture of monkey striate cortex. . J. Physiol. 195::21543
    [Crossref] [Google Scholar]
  56. Hubel DH, Wiesel TN. 1977.. Ferrier lecture. Functional architecture of macaque monkey visual cortex. . Proc. R. Soc. B 198::159
    [Google Scholar]
  57. Huber L, Finn ES, Chai Y, Goebel R, Stirnberg R, et al. 2021.. Layer-dependent functional connectivity methods. . Prog. Neurobiol. 207::101835
    [Crossref] [Google Scholar]
  58. Huber L, Handwerker DA, Jangraw DC, Chen G, Hall A, et al. 2017.. High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1. . Neuron 96::125363.e7
    [Crossref] [Google Scholar]
  59. Issa EB, Cadieu CF, DiCarlo JJ. 2018.. Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals. . eLife 7::e42870
    [Crossref] [Google Scholar]
  60. Jendritza P, Klein FJ, Fries P. 2023.. Multi-area recordings and optogenetics in the awake, behaving marmoset. . Nat. Commun. 14::577
    [Crossref] [Google Scholar]
  61. Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, et al. 2015.. Principles of connectivity among morphologically defined cell types in adult neocortex. . Science 350::aac9462
    [Crossref] [Google Scholar]
  62. Kamitani Y, Tong F. 2005.. Decoding the visual and subjective contents of the human brain. . Nat. Neurosci. 8::67985
    [Crossref] [Google Scholar]
  63. Kaschube M. 2014.. Neural maps versus salt-and-pepper organization in visual cortex. . Curr. Opin. Neurobiol. 24::95102
    [Crossref] [Google Scholar]
  64. Keller AJ, Dipoppa M, Roth MM, Caudill MS, Ingrosso A, et al. 2020a.. A disinhibitory circuit for contextual modulation in primary visual cortex. . Neuron 108::118193.e8
    [Crossref] [Google Scholar]
  65. Keller AJ, Roth MM, Scanziani M. 2020b.. Feedback generates a second receptive field in neurons of the visual cortex. . Nature 582::54549
    [Crossref] [Google Scholar]
  66. Keller GB, Mrsic-Flogel TD. 2018.. Predictive processing: a canonical cortical computation. . Neuron 100::42435
    [Crossref] [Google Scholar]
  67. Kim EJ, Juavinett AL, Kyubwa EM, Jacobs MW, Callaway EM. 2015.. Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function. . Neuron 88::125367
    [Crossref] [Google Scholar]
  68. Kopell N, Ermentrout GB, Whittington MA, Traub RD. 2000.. Gamma rhythms and beta rhythms have different synchronization properties. . PNAS 97::186772
    [Crossref] [Google Scholar]
  69. Kosslyn SM. 1996.. Image and Brain: The Resolution of the Imagery Debate. Cambridge, MA:: MIT Press
    [Google Scholar]
  70. Kosslyn SM, Ganis G, Thompson WL. 2001.. Neural foundations of imagery. . Nat. Rev. Neurosci. 2::63542
    [Crossref] [Google Scholar]
  71. Kosslyn SM, Thompson WL, Ganis G. 2006.. The Case for Mental Imagery. New York:: Oxford Univ. Press
    [Google Scholar]
  72. Koyano KW, Takeda M, Matsui T, Hirabayashi T, Ohashi Y, Miyashita Y. 2016.. Laminar module cascade from layer 5 to 6 implementing cue-to-target conversion for object memory retrieval in the primate temporal cortex. . Neuron 92::51829
    [Crossref] [Google Scholar]
  73. Laramée ME, Boire D. 2014.. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. . Front. Neural Circuits 8::149
    [Google Scholar]
  74. Lawrence SJD, van Mourik T, Kok P, Koopmans PJ, Norris DG, de Lange FP. 2018.. Laminar organization of working memory signals in human visual cortex. . Curr. Biol. 28::343540.e4
    [Crossref] [Google Scholar]
  75. Lien AD, Scanziani M. 2013.. Tuned thalamic excitation is amplified by visual cortical circuits. . Nat. Neurosci. 16::131523
    [Crossref] [Google Scholar]
  76. Lien AD, Scanziani M. 2018.. Cortical direction selectivity emerges at convergence of thalamic synapses. . Nature 558::8086
    [Crossref] [Google Scholar]
  77. Liu C, Ye FQ, Newman JD, Szczupak D, Tian X, et al. 2020.. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. . Nat. Neurosci. 23::27180
    [Crossref] [Google Scholar]
  78. Logothetis NK. 2008.. What we can do and what we cannot do with fMRI. . Nature 453::86978
    [Crossref] [Google Scholar]
  79. Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H. 2013.. Cortical high-density counterstream architectures. . Science 342::1238406
    [Crossref] [Google Scholar]
  80. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, et al. 2014.. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. . J. Comp. Neurol. 522::22559
    [Crossref] [Google Scholar]
  81. Marques T, Nguyen J, Fioreze G, Petreanu L. 2018.. The functional organization of cortical feedback inputs to primary visual cortex. . Nat. Neurosci. 21::75764
    [Crossref] [Google Scholar]
  82. Marr D. 1982.. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Cambridge, MA:: MIT Press
    [Google Scholar]
  83. Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, et al. 2019.. Cortical layer-specific critical dynamics triggering perception. . Science 365::eaaw5202
    [Crossref] [Google Scholar]
  84. Matsui T, Koyano KW, Koyama M, Nakahara K, Takeda M, et al. 2007.. MRI-based localization of electrophysiological recording sites within the cerebral cortex at single-voxel accuracy. . Nat. Methods 4::16168
    [Crossref] [Google Scholar]
  85. Mitzdorf U. 1985.. Current source-density method and application in cat cerebral cortex—investigation of evoked-potentials and EEG phenomena. . Physiol. Rev. 65::37100
    [Crossref] [Google Scholar]
  86. Miyamoto D, Hirai D, Fung CC, Inutsuka A, Odagawa M, et al. 2016.. Top-down cortical input during NREM sleep consolidates perceptual memory. . Science 352::131518
    [Crossref] [Google Scholar]
  87. Miyamoto K, Osada T, Setsuie R, Takeda M, Tamura K, et al. 2017.. Causal neural network of metamemory for retrospection in primates. . Science 355::18893
    [Crossref] [Google Scholar]
  88. Miyamoto K, Setsuie R, Osada T, Miyashita Y. 2018.. Reversible silencing of the frontopolar cortex selectively impairs metacognitive judgment on non-experience in primates. . Neuron 97::98089.e6
    [Crossref] [Google Scholar]
  89. Miyashita Y. 1988.. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. . Nature 335::81720
    [Crossref] [Google Scholar]
  90. Miyashita Y. 1993.. Inferior temporal cortex: where visual perception meets memory. . Annu. Rev. Neurosci. 16::24563
    [Crossref] [Google Scholar]
  91. Miyashita Y. 2004.. Cognitive memory: cellular and network machineries and their top-down control. . Science 306::43540
    [Crossref] [Google Scholar]
  92. Miyashita Y. 2019.. Perirhinal circuits for memory processing. . Nat. Rev. Neurosci. 20::57792
    [Crossref] [Google Scholar]
  93. Miyashita Y. 2022.. Operating principles of the cerebral cortex as a six-layered network in primates: beyond the classic canonical circuit model. . Proc. Japan Acad. B 98::93111
    [Crossref] [Google Scholar]
  94. Murray EA, Gaffan D, Mishkin M. 1993.. Neural substrates of visual stimulus–stimulus association in rhesus-monkeys. . J. Neurosci. 13::454961
    [Crossref] [Google Scholar]
  95. Naya Y, Sakai K, Miyashita Y. 1996.. Activity of primate inferotemporal neurons related to a sought target in pair-association task. . PNAS 93::266469
    [Crossref] [Google Scholar]
  96. Naya Y, Yoshida M, Miyashita Y. 2001.. Backward spreading of memory-retrieval signal in the primate temporal cortex. . Science 291::66164
    [Crossref] [Google Scholar]
  97. Nicholson C, Freeman JA. 1975.. Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. . J. Neurophysiol. 38::35668
    [Crossref] [Google Scholar]
  98. Niell CM, Scanziani M. 2021.. How cortical circuits implement cortical computations: mouse visual cortex as a model. . Annu. Rev. Neurosci. 44::51746
    [Crossref] [Google Scholar]
  99. Niell CM, Stryker MP. 2008.. Highly selective receptive fields in mouse visual cortex. . J. Neurosci. 28::752036
    [Crossref] [Google Scholar]
  100. NIH (Natl. Inst. Health). 2021.. 2021 Marmoset community white paper. Rep. , NIH, Bethesda, MD:
    [Google Scholar]
  101. Norris DG, Polimeni JR. 2019.. Laminar (f)MRI: a short history and future prospects. . NeuroImage 197::64349
    [Crossref] [Google Scholar]
  102. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. 2005.. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. . Nature 433::597603
    [Crossref] [Google Scholar]
  103. Okano H, Sasaki E, Yamamori T, Iriki A, Shimogori T, et al. 2016.. Brain/MINDS: a Japanese national brain project for marmoset neuroscience. . Neuron 92::58290
    [Crossref] [Google Scholar]
  104. Olsen SR, Bortone DS, Adesnik H, Scanziani M. 2012.. Gain control by layer six in cortical circuits of vision. . Nature 483::4752
    [Crossref] [Google Scholar]
  105. Osada T, Adachi Y, Kimura HM, Miyashita Y. 2008.. Towards understanding of the cortical network underlying associative memory. . Philos. Trans. R. Soc. B 363::218799
    [Crossref] [Google Scholar]
  106. Pennartz CMA, Dora S, Muckli L, Lorteije JAM. 2019.. Towards a unified view on pathways and functions of neural recurrent processing. . Trends Neurosci. 42::589603
    [Crossref] [Google Scholar]
  107. Priebe NJ, Ferster D. 2012.. Mechanisms of neuronal computation in mammalian visual cortex. . Neuron 75::194208
    [Crossref] [Google Scholar]
  108. Pylyshyn ZW. 2003.. Seeing and Visualizing: It's Not What You Think. Cambridge, MA:: MIT Press
    [Google Scholar]
  109. Quinn KR, Seillier L, Butts DA, Nienborg H. 2021.. Decision-related feedback in visual cortex lacks spatial selectivity. . Nat. Commun. 12::4473
    [Crossref] [Google Scholar]
  110. Ramachandran S, Meyer T, Olson CR. 2017.. Prediction suppression and surprise enhancement in monkey inferotemporal cortex. . J. Neurophysiol. 118::37482
    [Crossref] [Google Scholar]
  111. Rao RP, Ballard DH. 1999.. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. . Nat. Neurosci. 2::7987
    [Crossref] [Google Scholar]
  112. Rockland KS. 2019.. What do we know about laminar connectivity?. NeuroImage 197::77284
    [Crossref] [Google Scholar]
  113. Rossi LF, Harris KD, Carandini M. 2020.. Spatial connectivity matches direction selectivity in visual cortex. . Nature 588::64852
    [Crossref] [Google Scholar]
  114. Rudy B, Fishell G, Lee S, Hjerling-Leffler J. 2011.. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. . Dev. Neurobiol. 71::4561
    [Crossref] [Google Scholar]
  115. Ruff DA, Ni AM, Cohen MR. 2018.. Cognition as a window into neuronal population space. . Annu. Rev. Neurosci. 41::7797
    [Crossref] [Google Scholar]
  116. Sakai K, Miyashita Y. 1991.. Neural organization for the long-term memory of paired associates. . Nature 354::15255
    [Crossref] [Google Scholar]
  117. Schroeder CE, Mehta AD, Givre SJ. 1998.. A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. . Cereb. Cortex 8::57592
    [Crossref] [Google Scholar]
  118. Schuman B, Dellal S, Prönneke A, Machold R, Rudy B. 2021.. Neocortical layer 1: an elegant solution to top-down and bottom-up integration. . Annu. Rev. Neurosci. 44::22152
    [Crossref] [Google Scholar]
  119. Schwiedrzik CM, Freiwald WA. 2017.. High-level prediction signals in a low-level area of the macaque face-processing hierarchy. . Neuron 96::8997.e4
    [Crossref] [Google Scholar]
  120. Senzai Y, Fernandez-Ruiz A, Buzsáki G. 2019.. Layer-specific physiological features and interlaminar interactions in the primary visual cortex of the mouse. . Neuron 101::50013.e5
    [Crossref] [Google Scholar]
  121. Shipp S. 2007.. Structure and function of the cerebral cortex. . Curr. Biol. 17::R44349
    [Crossref] [Google Scholar]
  122. Shipp S, Adams RA, Friston KJ. 2013.. Reflections on agranular architecture: predictive coding in the motor cortex. . Trends Neurosci. 36::70616
    [Crossref] [Google Scholar]
  123. Solomon SS, Tang H, Sussman E, Kohn A. 2021.. Limited evidence for sensory prediction error responses in visual cortex of macaques and humans. . Cereb. Cortex 31::313652
    [Crossref] [Google Scholar]
  124. Spratling MW. 2017.. A review of predictive coding algorithms. . Brain Cogn. 112::9297
    [Crossref] [Google Scholar]
  125. Squire LR, Zola-Morgan S. 1991.. The medial temporal lobe memory system. . Science 253::138086
    [Crossref] [Google Scholar]
  126. Summerfield C, de Lange FP. 2014.. Expectation in perceptual decision making: neural and computational mechanisms. . Nat. Rev. Neurosci. 15::74556
    [Crossref] [Google Scholar]
  127. Suzuki WA, Naya Y. 2014.. The perirhinal cortex. . Annu. Rev. Neurosci. 37::3953
    [Crossref] [Google Scholar]
  128. Takeda M, Hirabayashi T, Adachi Y, Miyashita Y. 2018.. Dynamic laminar rerouting of inter-areal mnemonic signal by cognitive operations in primate temporal cortex. . Nat. Commun. 9::4629
    [Crossref] [Google Scholar]
  129. Takeda M, Koyano KW, Hirabayashi T, Adachi Y, Miyashita Y. 2015.. Top-down regulation of laminar circuit via inter-area signal for successful object memory recall in monkey temporal cortex. . Neuron 86::84052
    [Crossref] [Google Scholar]
  130. Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y. 2011.. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. . Science 331::144347
    [Crossref] [Google Scholar]
  131. Tamura K, Takeda M, Setsuie R, Tsubota T, Hirabayashi T, et al. 2017.. Conversion of object identity to object-general semantic value in the primate temporal cortex. . Science 357::68792
    [Crossref] [Google Scholar]
  132. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, et al. 2016.. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. . Nat. Neurosci. 19::33546
    [Crossref] [Google Scholar]
  133. Thomson AM, Bannister AP. 2003.. Interlaminar connections in the neocortex. . Cereb. Cortex 13::514
    [Crossref] [Google Scholar]
  134. Tremblay R, Lee S, Rudy B. 2016.. GABAergic interneurons in the neocortex: from cellular properties to circuits. . Neuron 91::26092
    [Crossref] [Google Scholar]
  135. van Bergen RS, Kriegeskorte N. 2020.. Going in circles is the way forward: the role of recurrence in visual inference. . Curr. Opin. Neurobiol. 65::17693
    [Crossref] [Google Scholar]
  136. van den Bergh G, Zhang B, Arckens L, Chino YM. 2010.. Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys. . J. Comp. Neurol. 518::205170
    [Crossref] [Google Scholar]
  137. van den Heuvel MP, Bullmore ET, Sporns O. 2016.. Comparative connectomics. . Trends Cogn. Sci. 20::34561
    [Crossref] [Google Scholar]
  138. van Hooser SD, Heimel JA, Chung S, Nelson SB, Toth LJ. 2005.. Orientation selectivity without orientation maps in visual cortex of a highly visual mammal. . J. Neurosci. 25::1928
    [Crossref] [Google Scholar]
  139. van Kerkoerle T, Self MW, Dagnino B, Gariel-Mathis MA, Poort J, et al. 2014.. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. . PNAS 111::1433241
    [Crossref] [Google Scholar]
  140. van Kerkoerle T, Self MW, Roelfsema PR. 2017.. Layer-specificity in the effects of attention and working memory on activity in primary visual cortex. . Nat. Commun. 8::13804
    [Crossref] [Google Scholar]
  141. Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, et al. 2001.. Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. . Neuron 32::56577
    [Crossref] [Google Scholar]
  142. Vanduffel W, Zhu Q, Orban GA. 2014.. Monkey cortex through fMRI glasses. . Neuron 83::53350
    [Crossref] [Google Scholar]
  143. Vinck M, Uran C, Spyropoulos G, Onorato I, Broggini AC, et al. 2023.. Principles of large-scale neural interactions. . Neuron 111::9871002
    [Crossref] [Google Scholar]
  144. Wilson NR, Runyan CA, Wang FL, Sur M. 2012.. Division and subtraction by distinct cortical inhibitory networks in vivo. . Nature 488::34348
    [Crossref] [Google Scholar]
  145. Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, et al. 2023.. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. . Nature 624::31732
    [Crossref] [Google Scholar]
  146. Yu Y, Huber L, Yang J, Jangraw DC, Handwerker DA, et al. 2019.. Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. . Sci. Adv. 5::eaav9053
    [Crossref] [Google Scholar]
  147. Yunzab M, Choi V, Meffin H, Cloherty SL, Priebe NJ, Ibbotson MR. 2019.. Synaptic basis for contrast-dependent shifts in functional identity in mouse V1. . eNeuro 6:: ENEURO.0480-18.2019
    [Crossref] [Google Scholar]
  148. Zeki S. 1993.. A Vision of the Brain. Hoboken, NJ:: Blackwell
    [Google Scholar]
  149. Zmarz P, Keller GB. 2016.. Mismatch receptive fields in mouse visual cortex. . Neuron 92::76672
    [Crossref] [Google Scholar]
  150. Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA. 1989.. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. . J. Neurosci. 9::435570
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-081623-091311
Loading
/content/journals/10.1146/annurev-neuro-081623-091311
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error