1932

Abstract

The central theme of this review is the dynamic interaction between information selection and learning. We pose a fundamental question about this interaction: How do we learn what features of our experiences are worth learning about? In humans, this process depends on attention and memory, two cognitive functions that together constrain representations of the world to features that are relevant for goal attainment. Recent evidence suggests that the representations shaped by attention and memory are themselves inferred from experience with each task. We review this evidence and place it in the context of work that has explicitly characterized representation learning as statistical inference. We discuss how inference can be scaled to real-world decisions by approximating beliefs based on a small number of experiences. Finally, we highlight some implications of this inference process for human decision-making in social environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-092920-120559
2021-07-08
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-092920-120559.html?itemId=/content/journals/10.1146/annurev-neuro-092920-120559&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson JR. 1991. The adaptive nature of human categorization. Psychol. Rev. 98:3409–29
    [Google Scholar]
  2. Anderson JR, Milson R. 1989. Human memory: an adaptive perspective. Psychol. Rev. 96:4703
    [Google Scholar]
  3. Baker CL, Jara-Ettinger J, Saxe R, Tenenbaum JB 2017. Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nat. Hum. Behav. 1:41–10
    [Google Scholar]
  4. Ballard I, Miller EM, Piantadosi ST, Goodman ND, McClure SM. 2018. Beyond reward prediction errors: Human striatum updates rule values during learning. Cereb. Cortex 28:113965–75
    [Google Scholar]
  5. Ballard I, Wagner AD, McClure SM. 2019. Hippocampal pattern separation supports reinforcement learning. Nat. Commun. 10:11073
    [Google Scholar]
  6. Barron HC, Dolan RJ, Behrens TEJ. 2013. Online evaluation of novel choices by simultaneous representation of multiple memories. Nat. Neurosci. 16:101492–98
    [Google Scholar]
  7. Barto AG 1995. Adaptive critics and the basal ganglia. Models of Information Processing in the Basal Ganglia, Vol. 11 JC Houk, J Davis, D Beiser 215–32 Cambridge, MA: MIT Press
    [Google Scholar]
  8. Bastian B, Haslam N. 2007. Psychological essentialism and attention allocation: preferences for stereotype-consistent versus stereotype-inconsistent information. J. Soc. Psychol. 147:5531–41
    [Google Scholar]
  9. Battleday RM, Peterson JC, Griffiths TL. 2020. Capturing human categorization of natural images by combining deep networks and cognitive models. Nat. Commun. 11:15418
    [Google Scholar]
  10. Behrens TEJ, Muller TH, Whittington JCR, Mark S, Baram AB et al. 2018. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100:2490–509
    [Google Scholar]
  11. Bellman R. 1957. A Markovian decision process. J. Math. Mech. 6:5679–84
    [Google Scholar]
  12. Berg EA. 1948. A simple objective technique for measuring flexibility in thinking. J. Gen. Psychol. 39:115–22
    [Google Scholar]
  13. Biderman N, Bakkour A, Shohamy D. 2020. What are memories for? The hippocampus bridges past experience with future decisions. Trends Cogn. Sci. 24:7542–56
    [Google Scholar]
  14. Birrell JM, Brown VJ. 2000. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20:114320–24
    [Google Scholar]
  15. Bishara AJ, Kruschke JK, Stout JC, Bechara A, McCabe DP, Busemeyer JR. 2010. Sequential learning models for the Wisconsin card sort task: assessing processes in substance dependent individuals. J. Math. Psychol. 54:15–13
    [Google Scholar]
  16. Bornstein AM, Khaw MW, Shohamy D, Daw ND. 2017. Reminders of past choices bias decisions for reward in humans. Nat. Commun. 8:115958
    [Google Scholar]
  17. Bornstein AM, Norman KA. 2017. Reinstated episodic context guides sampling-based decisions for reward. Nat. Neurosci. 20:7997–1003
    [Google Scholar]
  18. Boroditsky L, Ramscar M. 2001. First, we assume a spherical cow…. Behav. Brain Sci 24:4656–57
    [Google Scholar]
  19. Bower G, Trabasso T. 1963. Reversals prior to solution in concept identification. J. Exp. Psychol. 66:4409–18
    [Google Scholar]
  20. Brewer MB, Weber JG, Carini B. 1995. Person memory in intergroup contexts: categorization versus individuation. J. Personal. Soc. Psychol. 69:129–40
    [Google Scholar]
  21. Brunec IK, Bellana B, Ozubko JD, Man V, Robin J et al. 2018. Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr. Biol. 28:132129–35
    [Google Scholar]
  22. Callaway F, Lieder F, Das P, Gul S, Krueger PM, Griffiths T. 2018. A resource-rational analysis of human planning. Proceedings of the 40th Annual Conference of the Cognitive Science Society C Kalish, M Rau, J Zhu, T Rogers Austin, TX: Cogn. Sci. Soc https://doi.org/10.13140/RG.2.2.15636.40326
    [Crossref] [Google Scholar]
  23. Callaway F, Rangel A, Griffiths T. 2019. Fixation patterns in simple choice reflect optimal information sampling. PsyArXiv https://psyarxiv.com/57v6k/
    [Google Scholar]
  24. Cao J, Banaji MR 2016. The base rate principle and the fairness principle in social judgment. PNAS 113:277475–80
    [Google Scholar]
  25. Cohen JD, Dunbar K, McClelland JL. 1990. On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol. Rev. 97:3332–61
    [Google Scholar]
  26. Collins AGE, Brown JK, Gold JM, Waltz JA, Frank MJ. 2014. Working memory contributions to reinforcement learning impairments in schizophrenia. J. Neurosci. 34:4113747–56
    [Google Scholar]
  27. Collins AGE, Frank MJ. 2012. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. Eur. J. Neurosci. 35:71024–35
    [Google Scholar]
  28. Collins AGE, Frank MJ 2013. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol. Rev 120:1190229
    [Google Scholar]
  29. Collins AGE, Frank MJ. 2014. Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 121:3337–66
    [Google Scholar]
  30. Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3:3201–15
    [Google Scholar]
  31. Correa CG, Ho MK, Callaway F, Griffiths TL. 2020. Resource-rational task decomposition to minimize planning costs. arXiv:2007.13862 [cs.AI]
  32. Courville AC, Daw ND, Touretzky DS. 2006. Bayesian theories of conditioning in a changing world. Trends Cogn. Sci. 10:7294–300
    [Google Scholar]
  33. Daw N 2011. Trial by trial data analysis using computational models. Decision Making, Affect, and Learning: Attention and Performance XXIII MR Delgado, EA Phelps, TW Robbins 3–38 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  34. Daw N, Courville A. 2007. The pigeon as particle filter. In Advances in Neural Information Processing Systems 20ed. J Platt, D Koller, Y Singer, S Roweispp. 36976 San Diego, CA: NeurIPS
    [Google Scholar]
  35. Daw N, Niv Y, Dayan P. 2005. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8:121704–11
    [Google Scholar]
  36. Dayan P, Kakade S, Montague PR. 2000. Learning and selective attention. Nat. Neurosci. 3:111218–23
    [Google Scholar]
  37. Duncan K, Doll BB, Daw ND, Shohamy D. 2018. More than the sum of its parts: a role for the hippocampus in configural reinforcement learning. Neuron 98:3645–57
    [Google Scholar]
  38. Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ et al. 2019. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570:7762509–13
    [Google Scholar]
  39. Farashahi S, Rowe K, Aslami Z, Lee D. 2017. Feature-based learning improves adaptability without compromising precision. Nat. Commun. 8:1768
    [Google Scholar]
  40. Farashahi S, Xu J, Wu S-W, Soltani A. 2020. Learning arbitrary stimulus-reward associations for naturalistic stimuli involves transition from learning about features to learning about objects. Cognition 205:104425
    [Google Scholar]
  41. Feinman R, Lake BM. 2018. Learning inductive biases with simple neural networks. arXiv:1802.02745 [cs.CL]
  42. Fiser J, Lengyel G. 2019. A common probabilistic framework for perceptual and statistical learning. Curr. Opin. Neurobiol. 58:218–28
    [Google Scholar]
  43. Franklin NT, Norman KA, Ranganath C, Zacks JM, Gershman SJ. 2020. Structured event memory: a neuro-symbolic model of event cognition. Psychol. Rev. 127:3327–61
    [Google Scholar]
  44. Gallistel CR, Fairhurst S, Balsam P 2004. The learning curve: implications of a quantitative analysis. PNAS 101:3613124–31
    [Google Scholar]
  45. Garvert MM, Dolan RJ, Behrens TE. 2017. A map of abstract relational knowledge in the human hippocampal–entorhinal cortex. eLife 6:e17086
    [Google Scholar]
  46. Gershman SJ, Blei DM, Niv Y. 2010. Context, learning, and extinction. Psychol. Rev. 117:1197–209
    [Google Scholar]
  47. Gershman SJ, Monfils M-H, Norman KA, Niv Y. 2017. The computational nature of memory modification. eLife 6:e23763
    [Google Scholar]
  48. Gershman SJ, Norman KA, Niv Y. 2015. Discovering latent causes in reinforcement learning. Curr. Opin. Behav. Sci. 5:43–50
    [Google Scholar]
  49. Gmytrasiewicz PJ, Doshi P. 2005. A framework for sequential planning in multi-agent settings. J. Artif. Intell. Res. 24:49–79
    [Google Scholar]
  50. Goldfarb EV, Chun MM, Phelps EA. 2016. Memory-guided attention: independent contributions of the hippocampus and striatum. Neuron 89:2317–24
    [Google Scholar]
  51. Goodman ND, Tenenbaum JB, Feldman J, Griffiths TL. 2008. A rational analysis of rule-based concept learning. Cogn. Sci. 32:1108–54
    [Google Scholar]
  52. Gottlieb J. 2012. Perspective attention, learning, and the value of information. Neuron 76:2281–95
    [Google Scholar]
  53. Griffiths TL, Lieder F, Goodman ND. 2015. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7:2217–29
    [Google Scholar]
  54. Grossberg S. 1987. Processing of expected and unexpected events during conditioning and attention: a psychophysiological theory. Adv. Psychol. 42:181–237
    [Google Scholar]
  55. Günseli E, Aly M. 2020. Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex. eLife 9:e53191
    [Google Scholar]
  56. Haber SN, Knutson B. 2010. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:14–26
    [Google Scholar]
  57. Hackel LM, Doll BB, Amodio DM. 2015. Instrumental learning of traits versus rewards: dissociable neural correlates and effects on choice. Nat. Neurosci. 18:91233–35
    [Google Scholar]
  58. Haefner RM, Berkes P, Fiser J. 2016. Perceptual decision-making as probabilistic inference by neural sampling. Neuron 90:3649–60
    [Google Scholar]
  59. Hamrick JB. 2019. Analogues of mental simulation and imagination in deep learning. Curr. Opin. Behav. Sci. 29:8–16
    [Google Scholar]
  60. Hay N, Russell S, Tolpin D, Shimony SE. 2014. Selecting computations: theory and applications. arXiv:1207.5879 [cs.AI]
  61. Hebart MN, Bankson BB, Harel A, Baker CI, Cichy RM. 2018. The representational dynamics of task and object processing in humans. eLife 7:e32816
    [Google Scholar]
  62. Hebart MN, Zheng CY, Pereira F, Baker C. 2020. Revealing the multidimensional mental representations of natural objects underlying human similarity judgments. Nat. Hum. Behav. 4:1173–85
    [Google Scholar]
  63. Hilton JL, von Hippel W 1996. Stereotypes. Annu. Rev. Psychol. 47:237–71
    [Google Scholar]
  64. Ho MK, Cushman F, Littman ML, Austerweil JL. 2019. People teach with rewards and punishments as communication, not reinforcements. J. Exp. Psychol. 148:3520–49
    [Google Scholar]
  65. Hornsby AN, Evans T, Riefer PS, Prior R, Love BC. 2020. Conceptual organization is revealed by consumer activity patterns. Comput. Brain Behav. 3:162–73
    [Google Scholar]
  66. Hoskin AN, Bornstein AM, Norman KA, Cohen JD. 2019. Refresh my memory: Episodic memory reinstatements intrude on working memory maintenance. Cogn. Affect. Behav. Neurosci. 19:2338–54
    [Google Scholar]
  67. Hutchinson JB, Turk-Browne NB. 2012. Memory-guided attention: control from multiple memory systems. Trends Cogn. Sci. 16:12576–79
    [Google Scholar]
  68. Joel D, Niv Y, Ruppin E. 2002. Actor–critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15:4–6535–47
    [Google Scholar]
  69. Jones M, Cañas F. 2010. Integrating reinforcement learning with models of representation learning. Proceedings of the 32nd Annual Meeting of the Cognitive Science Society 2010, Vol. 1 S Ohlsson, R Catrambone 1258–63 Red Hook, NY: Curan
    [Google Scholar]
  70. Kaelbling LP, Littman ML, Cassandra AR. 1998. Planning and acting in partially observable stochastic domains. Artif. Intell. 101:1–299–134
    [Google Scholar]
  71. Kampis D, Southgate V. 2020. Altercentric cognition: how others influence our cognitive processing. Trends Cogn. Sci. 24:11945–59
    [Google Scholar]
  72. Kemp C, Perfors A, Tenenbaum JB. 2007. Learning overhypotheses with hierarchical Bayesian models. Dev. Sci. 10:3307–21
    [Google Scholar]
  73. Khetarpal K, Ahmed Z, Comanici G, Abel D, Precup D 2020. What can I do here? A theory of affordances in reinforcement learning. arXiv:2006.15085 [cs.LG]
  74. Kleiman-Weiner M, Ho MK, Austerweil JL, Littman ML, Tenenbaum JB 2016. Coordinate to cooperate or compete: abstract goals and joint intentions in social interaction. Proceedings of the 38th Annual Conference of the Cognitive Science Society A Papafragou, D Grodner, D Mirman, JC Trueswell Austin, TX: Cogn. Sci. Soc.
    [Google Scholar]
  75. Kruschke JK. 1992. ALCOVE: an exemplar-based connectionist model of category learning. Psychol. Rev. 99:122–44
    [Google Scholar]
  76. Kumaran D, Banino A, Blundell C, Hassabis D, Dayan P. 2016. Computations underlying social hierarchy learning: distinct neural mechanisms for updating and representing self-relevant information. Neuron 92:51135–47
    [Google Scholar]
  77. Kumaran D, McClelland JL. 2012. Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychol. Rev. 119:3573–616
    [Google Scholar]
  78. Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ. 2017. Building machines that learn and think like people. Behav. Brain Sci. 40:e253
    [Google Scholar]
  79. Landrum AR, Eaves BS, Shafto P. 2015. Learning to trust and trusting to learn: a theoretical framework. Trends Cogn. Sci. 19:3109–11
    [Google Scholar]
  80. Lau T, Gershman SJ, Cikara M. 2020. Social structure learning in human anterior insula. eLife 9:e53162
    [Google Scholar]
  81. Lee J, Wang W, Sabatini BL. 2020. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci. 23:1388–98
    [Google Scholar]
  82. Leong YC, Radulescu A, Daniel R, Dewoskin V, Niv Y et al. 2017. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93:2451–63
    [Google Scholar]
  83. Lindsay GW. 2020. Attention in psychology, neuroscience, and machine learning. Front. Comput. Neurosci. 14:29
    [Google Scholar]
  84. Love BC, Medin DL, Gureckis TM 2004. SUSTAIN: a network model of category learning. Psychol. Rev 111:230932
    [Google Scholar]
  85. Luck SJ, Vogel EK. 1997. The capacity of visual working memory for features and conjunctions. Nature 390:6657279–81
    [Google Scholar]
  86. Mack ML, Love BC, Preston AR 2016. Dynamic updating of hippocampal object representations reflects new conceptual knowledge. PNAS 113:4613203–8
    [Google Scholar]
  87. Mackintosh NJ. 1975. A theory of attention: variations in the associability of stimuli with reinforcement. Psychol. Rev. 82:4276–98
    [Google Scholar]
  88. Mark S, Moran R, Parr T, Kennerley SW, Behrens TE. 2020. Transferring structural knowledge across cognitive maps in humans and models. Nat. Commun. 11:4783
    [Google Scholar]
  89. Marković D, Gläscher J, Bossaerts P, O'Doherty J, Kiebel SJ 2015. Modeling the evolution of beliefs using an attentional focus mechanism. PLOS Comput. Biol. 11:10e1004558
    [Google Scholar]
  90. Mascaro O, Sperber D. 2009. The moral, epistemic, and mindreading components of children's vigilance towards deception. Cognition 112:3367–80
    [Google Scholar]
  91. McCallum R. 1997. Reinforcement learning with selective perception and hidden state PhD thesis, Univ. Rochester Rochester, NY:
  92. Medin DL, Goldstone RL, Gentner D. 1993. Respects for similarity. Psychol. Rev. 100:2254–78
    [Google Scholar]
  93. Melchers KG, Shanks DR, Lachnit H. 2008. Stimulus coding in human associative learning: flexible representations of parts and wholes. Behav. Process. 77:3413–27
    [Google Scholar]
  94. Mildner J, Tamir D. 2018. The people around you are inside your head: social context shapes spontaneous thought. PsyArXiv https://doi.org/10.31234/osf.io/xmzh7
    [Crossref] [Google Scholar]
  95. Milner B. 1963. Effects of different brain lesions on card sorting: the role of the frontal lobes. Arch. Neurol. 9:190–100
    [Google Scholar]
  96. Montague PR, Dayan P, Sejnowski TJ. 1996. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16:51936–47
    [Google Scholar]
  97. Myers NE, Stokes MG, Nobre AC. 2017. Prioritizing information during working memory: beyond sustained internal attention. Trends Cogn. Sci. 21:6449–61
    [Google Scholar]
  98. Nastase SA, Goldstein A, Hasson U. 2020. Keep it real: rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage 222:117254
    [Google Scholar]
  99. Navarro D 2006. From natural kinds to complex categories. Proceedings of the 28th Annual Conference of the Cognitive Science Society R Sun, GW Cottrell, N Miyake 621–26 Mahwah, NJ: Lawrence Erlbaum Assoc.
    [Google Scholar]
  100. Niv Y. 2009. Reinforcement learning in the brain. J. Math. Psychol. 53:3139–54
    [Google Scholar]
  101. Niv Y. 2019. Learning task-state representations. Nat. Neurosci. 22:101544–53
    [Google Scholar]
  102. Niv Y, Daniel R, Geana A, Gershman SJ, Leong YC et al. 2015. Reinforcement learning in multidimensional environments relies on attention mechanisms. J. Neurosci. 35:218145–57
    [Google Scholar]
  103. Nosofsky RM, Gluck MA, Palmeri TJ, McKinley SC, Glauthier P. 1994. Comparing modes of rule-based classification learning: a replication and extension of Shepard, Hovland, and Jenkins (1961). Mem. Cogn. 22:3352–69
    [Google Scholar]
  104. Olson KR, Shutts K, Kinzler KD, Weisman KG. 2012. Children associate racial groups with wealth: evidence from South Africa. Child Dev 83:61884–99
    [Google Scholar]
  105. Orhan AE, Gupta VV, Lake BM. 2020. Self-supervised learning through the eyes of a child. arXiv:2007.16189 [cs.CV]
  106. Park SA, Miller DS, Nili H, Ranganath C, Boorman ED. 2020. Map making: constructing, combining, and inferring on abstract cognitive maps. Neuron 107:61226–38.e8
    [Google Scholar]
  107. Parkinson C, Du M. 2020. How does the brain infer hidden social structures?. Trends Cogn. Sci. 24:7497–98
    [Google Scholar]
  108. Parkinson C, Kleinbaum AM, Wheatley T. 2017. Spontaneous neural encoding of social network position. Nat. Hum. Behav. 1:50072
    [Google Scholar]
  109. Pearce JM, Hall G. 1980. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87:6532–52
    [Google Scholar]
  110. Plaks JE, Stroessner SJ, Dweck CS, Sherman JW. 2001. Person theories and attention allocation: preferences for stereotypic versus counterstereotypic information. J. Personal. Soc. Psychol. 80:6876–93
    [Google Scholar]
  111. Radulescu A, Niv Y, Ballard I. 2019a. Holistic reinforcement learning: the role of structure and attention. Trends Cogn. Sci. 23:4278–92
    [Google Scholar]
  112. Radulescu A, Niv Y, Daw N. 2019b. A particle filtering account of selective attention during learning Poster presented at the 2019 Conference on Cognitive Computational Neuroscience Berlin: Sept. 14
  113. Radulescu A, van Opheusden B, Callaway F, Griffiths T, Hillis J. 2020. From heuristic to optimal models in naturalistic visual search Paper presented at the Eighth International Conference on Learning Representations, April 26
  114. Rehder B, Hoffman AB. 2005. Eyetracking and selective attention in category learning. Cogn. Psychol. 51:11–41
    [Google Scholar]
  115. Rendell L, Boyd R, Cownden D, Enquist M, Eriksson K et al. 2010. Why copy others? Insights from the social learning strategies tournament. Science 328:5975208–13
    [Google Scholar]
  116. Roelfsema PR, van Ooyen A. 2005. Attention-gated reinforcement learning of internal representations for classification. Neural Comput 17:102176–214
    [Google Scholar]
  117. Rouhani N, Norman KA, Niv Y. 2018. Dissociable effects of surprising rewards on learning and memory. J. Exp. Psychol. Learn. Mem. Cogn. 44:91430–43
    [Google Scholar]
  118. Rouhani N, Norman KA, Niv Y, Bornstein AM. 2020. Reward prediction errors create event boundaries in memory. Cognition 203:104269
    [Google Scholar]
  119. Roy N, Gordon G, Thrun S 2005. Finding approximate POMDP solutions through belief compression. J. Artif. Intell. Res. 23:1–40
    [Google Scholar]
  120. Russell S, Norvig P. 2002. Artificial Intelligence: A Modern Approach Upper Saddle River, NJ: Prentice Hall
  121. Russell S, Wefald E. 1992.. Principles of metareasoning. Artif. Intell. 49:1–3361–95
    [Google Scholar]
  122. Sanborn A, Chater N. 2016. Bayesian brains without probabilities. Trends Cogn. Sci. 20:12883–93
    [Google Scholar]
  123. Sanborn A, Chater N, Heller KA 2009. Hierarchical learning of dimensional biases in human categorization. Advances in Neural Information Processing Systems 22 Y Bengio, D Schuurmans, J Lafferty, C Williams, A Culotta 727–735 San Diego, CA: NeurIPS
    [Google Scholar]
  124. Sanborn A, Griffiths TL, Navarro DJ. 2010. Rational approximations to rational models: alternative algorithms for category learning. Psychol. Rev. 117:41144–67
    [Google Scholar]
  125. Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, Botvinick MM 2013. Neural representations of events arise from temporal community structure. Nat. Neurosci. 16:4486–92
    [Google Scholar]
  126. Schneegans S, Taylor R, Bays PM 2020. Stochastic sampling provides a unifying account of visual working memory limits. PNAS 117:3420959–68
    [Google Scholar]
  127. Schuck NW, Gaschler R, Wenke D, Heinzle J, Frensch PA et al. 2015. Medial prefrontal cortex predicts internally driven strategy shifts. Neuron 86:1331–40
    [Google Scholar]
  128. Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward. Science 275:53061593–99
    [Google Scholar]
  129. Scolari M, Seidl-Rathkopf KN, Kastner S 2015. Functions of the human frontoparietal attention network: evidence from neuroimaging. Curr. Opin. Behav. Sci. 1:32–39
    [Google Scholar]
  130. Seger CA. 2013. The visual corticostriatal loop through the tail of the caudate: circuitry and function. Front. Syst. Neurosci. 7:104
    [Google Scholar]
  131. Shadlen MN, Shohamy D. 2016. Decision making and sequential sampling from memory. Neuron 90:5927–39
    [Google Scholar]
  132. Shafto P, Eaves B, Navarro DJ, Perfors A. 2012. Epistemic trust: modeling children's reasoning about others’ knowledge and intent. Dev. Sci. 15:3436–47
    [Google Scholar]
  133. Shepard R. 1987. Toward a universal law of generalization for psychological science. Science 237:48201317–23
    [Google Scholar]
  134. Shepard R, Hovland C, Jenkins H. 1961. Learning and memorization of classifications. Psychol. Monogr. Gen. Appl. 75:131–42
    [Google Scholar]
  135. Sherman SJ, Castelli L, Hamilton DL. 2002. The spontaneous use of a group typology as an organizing principle in memory. J. Pers. Soc. Psychol. 82:3328–42
    [Google Scholar]
  136. Shin YS, DuBrow S. 2021. Structuring memory through inference-based event segmentation. Top. Cogn. Sci. 13:110627
    [Google Scholar]
  137. Shin YS, Niv Y. 2021. Biased evaluations emerge from inferring hidden causes. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01065-0
    [Crossref] [Google Scholar]
  138. Sitzmann V, Zollhöfer M, Wetzstein G 2019. Scene representation networks: continuous 3D-structure-aware neural scene representations. Advances in Neural Information Processing Systems 32 H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox, R Garnett 1121–32 San Diego, CA: NeurIPS
    [Google Scholar]
  139. Smith LB, Yu C, Pereira AF. 2011. Not your mother's view: the dynamics of toddler visual experience. Dev. Sci. 14:19–17
    [Google Scholar]
  140. Song M, Niv Y, Cai MB. 2020. Learning what is relevant for rewards via value-based serial hypothesis testing Paper presented at the 42nd Annual Meeting of the Cognitive Science Society, July 29
  141. Soto FA, Gershman SJ, Niv Y. 2014. Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization. Psychol. Rev. 121:3526–58
    [Google Scholar]
  142. Speekenbrink M. 2016. A tutorial on particle filters. J. Math. Psychol. 73:140–52
    [Google Scholar]
  143. Steinke A, Lange F, Seer C, Kopp B. 2018. Toward a computational cognitive neuropsychology of Wisconsin card sorts: a showcase study in Parkinson's disease. Comput. Brain Behav. 1:2137–50
    [Google Scholar]
  144. Sutton RS. 1988. Learning to predict by the methods of temporal differences. Mach. Learn. 3:19–44
    [Google Scholar]
  145. Sutton RS, Barto AG. 2018. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press
  146. Tamir DI, Thornton MA. 2018. Modeling the predictive social mind. Trends Cogn. Sci. 22:3201–12
    [Google Scholar]
  147. Tavares RM, Mendelsohn A, Grossman Y, Williams CH, Shapiro M et al. 2015. A map for social navigation in the human brain. Neuron 87:1231–43
    [Google Scholar]
  148. Todd MT, Niv Y, Cohen JD 2009. Learning to use working memory in partially observable environments through dopaminergic reinforcement. Advances in Neural Information Processing Systems D Koller, D Schuurmans, Y Bengio, L Bottou 1689–96 San Diego, CA: NeurIPS
    [Google Scholar]
  149. Tomov MS, Dorfman HM, Gershman SJ. 2018. Neural computations underlying causal structure learning. J. Neurosci. 38:327143–57
    [Google Scholar]
  150. Ungerleider LG, Kastner S. 2000. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23:315–41
    [Google Scholar]
  151. van den Oord A, Li Y, Vinyals O. 2018. Representation learning with contrastive predictive coding. arXiv:1807.03748 [cs.LG]
  152. Vélez N, Gweon H. 2020. Learning from other minds: an optimistic critique of reinforcement learning models of social learning. Curr. Opin. Behav. Sci In press
    [Google Scholar]
  153. Whittington JC, Muller TH, Mark S, Chen G, Barry C et al. 2020. The Tolman-Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183:51249–63
    [Google Scholar]
  154. Wilson RC, Collins AGE. 2019. Ten simple rules for the computational modeling of behavioral data. eLife 8:e49547
    [Google Scholar]
  155. Wilson RC, Niv Y. 2012. Inferring relevance in a changing world. Front. Hum. Neurosci. 5:189
    [Google Scholar]
  156. Winter L, Uleman JS. 1984. When are social judgments made? Evidence for the spontaneousness of trait inferences. J. Pers. Soc. Psychol. 47:2237–52
    [Google Scholar]
  157. Wu CM, Schulz E, Garvert MM, Meder B, Schuck NW. 2020. Similarities and differences in spatial and non-spatial cognitive maps. PLOS Comput. Biol. 16:9e1008149
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-092920-120559
Loading
/content/journals/10.1146/annurev-neuro-092920-120559
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error