1932

Abstract

The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable—the allocentric position of the animal—with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-101323-112047
2024-08-08
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-101323-112047.html?itemId=/content/journals/10.1146/annurev-neuro-101323-112047&mimeType=html&fmt=ahah

Literature Cited

  1. Almog N, Tocker G, Bonnevie T, Moser EI, Moser M-B, Derdikman D. 2019.. During hippocampal inactivation, grid cells maintain synchrony, even when the grid pattern is lost. . eLife 8::e47147
    [Crossref] [Google Scholar]
  2. Amari SI, Arbib MA. 1977.. Competition and cooperation in neural nets. . In Systems Neuroscience, ed. J Metzler , pp. 11965. Cambridge, MA:: Academic
    [Google Scholar]
  3. Aronov D, Nevers R, Tank DW. 2017.. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. . Nature 543:(7647):71922
    [Crossref] [Google Scholar]
  4. Baldassano C, Chen J, Zadbood A, Pillow JW, Hasson U, Norman KA. 2017.. Discovering event structure in continuous narrative perception and memory. . Neuron 95:(3):70921.e5
    [Crossref] [Google Scholar]
  5. Banino A, Barry C, Uria B, Blundell C, Lillicrap T, et al. 2018.. Vector-based navigation using grid-like representations in artificial agents. . Nature 557:(7705):42933
    [Crossref] [Google Scholar]
  6. Barry C, Hayman R, Burgess N, Jeffery KJ. 2007.. Experience-dependent rescaling of entorhinal grids. . Nat. Neurosci. 10:(6):68284
    [Crossref] [Google Scholar]
  7. Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, et al. 2013.. Grid cells require excitatory drive from the hippocampus. . Nat. Neurosci. 16::30917
    [Crossref] [Google Scholar]
  8. Burak Y, Fiete IR. 2006.. Do we understand the emergent dynamics of grid cell activity?. J. Neurosci. 26:(37):935254
    [Crossref] [Google Scholar]
  9. Burak Y, Fiete IR. 2009.. Accurate path integration in continuous attractor network models of grid cells. . PLOS Comput. Biol. 5:(2):e1000291
    [Crossref] [Google Scholar]
  10. Burgalossi A, Herfst L, von Heimendahl M, Förste H, Haskic K, et al. 2011.. Microcircuits of functionally identified neurons in the rat medial entorhinal cortex. . Neuron 70:(4):77386
    [Crossref] [Google Scholar]
  11. Burgess N. 2008.. Grid cells and theta as oscillatory interference: theory and predictions. . Hippocampus 18:(12):115774
    [Crossref] [Google Scholar]
  12. Burgess N, Barry C, O'Keefe J. 2007.. An oscillatory interference model of grid cell firing. . Hippocampus 17:(9):80112
    [Crossref] [Google Scholar]
  13. Butler WN, Hardcastle K, Giocomo LM. 2019.. Remembered reward locations restructure entorhinal spatial maps. . Science 363:(6434):144752
    [Crossref] [Google Scholar]
  14. Campbell MG, Ocko SA, Mallory CS, Low IIC, Ganguli S, Giocomo LM. 2018.. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. . Nat. Neurosci. 21:(8):1096106
    [Crossref] [Google Scholar]
  15. Canto CB, Koganezawa N, Beed P, Moser EI, Witter MP. 2012.. All layers of medial entorhinal cortex receive presubicular and parasubicular inputs. . J. Neurosci. 32:(49):1762031
    [Crossref] [Google Scholar]
  16. Canto CB, Wouterlood FG, Witter MP. 2008.. What does the anatomical organization of the entorhinal cortex tell us?. Neural Plast. 2008::381243
    [Crossref] [Google Scholar]
  17. Carpenter F, Manson D, Jeffery K, Burgess N, Barry C. 2015.. Grid cells form a global representation of connected environments. . Curr. Biol. 25:(9):117682
    [Crossref] [Google Scholar]
  18. Chaudhuri R, Gercek B, Pandey B, Peyrache A, Fiete I. 2019.. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. . Nat. Neurosci. 22:(9):151220
    [Crossref] [Google Scholar]
  19. Colgin LL, Moser EI, Moser M-B. 2008.. Understanding memory through hippocampal remapping. . Trends Neurosci. 31:(9):46977
    [Crossref] [Google Scholar]
  20. Constantinescu AO, O'Reilly JX, Behrens TEJ. 2016.. Organizing conceptual knowledge in humans with a gridlike code. . Science 352:(6292):146468
    [Crossref] [Google Scholar]
  21. Couey JJ, Witoelar A, Zhang S, Zheng K, Ye J, et al. 2013.. Recurrent inhibitory circuitry as a mechanism for grid formation. . Nat. Neurosci. 16:(3):31824
    [Crossref] [Google Scholar]
  22. Cueva CJ, Wei XX. 2018.. Emergence of grid-like representations by training recurrent neural networks to perform spatial localization. . arXiv:1803.07770 [q-bio.NC]
  23. Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, et al. 2009.. Fragmentation of grid cell maps in a multicompartment environment. . Nat. Neurosci. 12:(10):132532
    [Crossref] [Google Scholar]
  24. Doeller CF, Barry C, Burgess N. 2010.. Evidence for grid cells in a human memory network. . Nature 463:(7281):65761
    [Crossref] [Google Scholar]
  25. Domnisoru C, Kinkhabwala AA, Tank DA. 2013.. Membrane potential dynamics of grid cells. . Nature 495:(7440):199204
    [Crossref] [Google Scholar]
  26. Dordek Y, Soudry D, Meir R, Derdikman D. 2016.. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. . eLife 5::e10094
    [Crossref] [Google Scholar]
  27. Du AT, Schuff N, Zhu XP, Jagust WJ, Miller BL, et al. 2003.. Atrophy rates of entorhinal cortex in AD and normal aging. . Neurology 60:(3):48186
    [Crossref] [Google Scholar]
  28. Eichenbaum H. 2018.. What versus where: non-spatial aspects of memory representation by the hippocampus. . Curr. Top. Behav. Neurosci. 37::10117
    [Crossref] [Google Scholar]
  29. Ermentrout B. 1998.. Linearization of F-I curves by adaptation. . Neural Comput. 10::172129
    [Crossref] [Google Scholar]
  30. Ezzyat Y, Davachi L. 2011.. What constitutes an episode in episodic memory?. Psychol. Sci. 22:(2):24352
    [Crossref] [Google Scholar]
  31. Fiete IR, Burak Y, Brookings T. 2008.. What grid cells convey about rat location. . J. Neurosci. 28:(27):685871
    [Crossref] [Google Scholar]
  32. Fuhs MC, Touretzky DS. 2006.. A spin glass model of path integration in rat medial entorhinal cortex. . J. Neurosci. 26:(16):426676
    [Crossref] [Google Scholar]
  33. Fyhn M, Hafting T, Treves A, Moser M-B, Moser EI. 2007.. Hippocampal remapping and grid realignment in entorhinal cortex. . Nature 446:(7132):19094
    [Crossref] [Google Scholar]
  34. Fyhn M, Hafting T, Witter MP, Moser EI, Moser M-B. 2008.. Grid cells in mice. . Hippocampus 18:(12):123038
    [Crossref] [Google Scholar]
  35. Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, et al. 2022.. Toroidal topology of population activity in grid cells. . Nature (602):12328
    [Crossref] [Google Scholar]
  36. Gardner RJ, Lu L, Wernle T, Moser M-B, Moser EI. 2019.. Correlation structure of grid cells is preserved during sleep. . Nat. Neurosci. 22:(4):598608
    [Crossref] [Google Scholar]
  37. George D, Rikhye RV, Gothoskar N, Guntupalli JS, Dedieu A, Lázaro-Gredilla M. 2021.. Clone-structured graph representations enable flexible learning and vicarious evaluation of cognitive maps. . Nat. Commun. 12:(1):2392
    [Crossref] [Google Scholar]
  38. Ginosar G, Aljadeff J, Burak Y, Sompolinsky H, Las L, Ulanovsky N. 2021.. Locally ordered representation of 3D space in the entorhinal cortex. . Nature 596:(7872):4049
    [Crossref] [Google Scholar]
  39. Giocomo LM, Moser M-B, Moser EI. 2011.. Computational models of grid cells. . Neuron 71:(4):589603
    [Crossref] [Google Scholar]
  40. Grah G, Wehner R, Ronacher B. 2005.. Path integration in a three-dimensional maze: Ground distance estimation keeps desert ants Cataglyphis fortis on course. . J. Exp. Biol. 208:(21):400511
    [Crossref] [Google Scholar]
  41. Green J, Adachi A, Shah KK, Hirokawa JD, Magani PS, Maimon G. 2017.. A neural circuit architecture for angular integration in Drosophila. . Nature 546:(7656):1016
    [Crossref] [Google Scholar]
  42. Grieves RM, Jedidi-Ayoub S, Mishchanchuk K, Liu A, Renaudineau S, et al. 2021.. Irregular distribution of grid cell firing fields in rats exploring a 3D volumetric space. . Nat. Neurosci. 24::156773
    [Crossref] [Google Scholar]
  43. Gu Y, Lewallen S, Kinkhabwala AA, Domnisoru C, Yoon K, et al. 2018.. A map-like micro-organization of grid cells in the medial entorhinal cortex. . Cell 175:(3):73650.e30
    [Crossref] [Google Scholar]
  44. Guanella A, Kiper D, Verschure P. 2007.. A model of grid cells based on a twisted torus topology. . Int. J. Neural Syst. 17:(4):23140
    [Crossref] [Google Scholar]
  45. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI. 2005.. Microstructure of a spatial map in the entorhinal cortex. . Nature 436:(7052):8016
    [Crossref] [Google Scholar]
  46. Hardcastle K, Ganguli S, Giocomo LM. 2015.. Environmental boundaries as an error correction mechanism for grid cells. . Neuron 86:(3):82739
    [Crossref] [Google Scholar]
  47. Harvey CD, Collman F, Dombeck DA, Tank DW. 2009.. Intracellular dynamics of hippocampal place cells during virtual navigation. . Nature 461:(7266):94146
    [Crossref] [Google Scholar]
  48. Hasselmo ME, Giocomo LM, Zilli EA. 2007.. Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. . Hippocampus 17:(12):125271
    [Crossref] [Google Scholar]
  49. Heys J, Dombeck D. 2014.. Cellular resolution optical imaging of medial entorhinal cortex. Poster presented at the Annual Meeting of the Society for Neuroscience, Washington, DC:, Novemb. 15–19
    [Google Scholar]
  50. Kanitscheider I, Fiete I. 2017.. Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems. . In Advances in Neural Information Processing Systems 30 (NIPS 2017), ed. I Guyon, U Von Luxburg, S Bengio, H Wallach, R Fergus , et al. La Jolla, CA:: NeurIPS. https://proceedings.neurips.cc/paper/2017/file/5f14615696649541a025d3d0f8e0447f-Paper.pdf
    [Google Scholar]
  51. Khona M, Chandra S, Fiete I. 2021.. Spontaneous emergence of topologically robust grid cell modules: a multiscale instability theory. . bioRxiv 2021.10.28.466284. https://doi.org/10.1101/2021.10.28.466284
  52. Khona M, Fiete IR. 2021.. Attractor and integrator networks in the brain. . arXiv:2112.03978 [q-bio.NC]
  53. Khona M, Fiete IR. 2022.. Attractor and integrator networks in the brain. . Nat. Rev. Neurosci. 23:(12):74466
    [Crossref] [Google Scholar]
  54. Killian NJ, Jutras MJ, Buffalo EA. 2012.. A map of visual space in the primate entorhinal cortex. . Nature 491:(7426):76164
    [Crossref] [Google Scholar]
  55. Kinkhabwala AA, Gu Y, Aronov D, Tank DW. 2020.. Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality. . eLife 9::e43140
    [Crossref] [Google Scholar]
  56. Klukas M, Lewis M, Fiete I. 2019.. Flexible representation of higher-dimensional cognitive variables with grid cells. . bioRxiv 578641. https://doi.org/10.1101/578641
  57. Klukas M, Lewis M, Fiete I. 2020.. Efficient and flexible representation of higher-dimensional cognitive variables with grid cells. . PLOS Comput. Biol. 16:(4):e1007796
    [Crossref] [Google Scholar]
  58. Klukas M, Sharma S, Du Y, Lozano-Perez T, Kaelbling L, Fiete I. 2021.. Fragmented spatial maps: state abstraction and efficient planning from surprisal. . bioRxiv 2021.10.29.466499. https://doi.org/10.1101/2021.10.29.466499
  59. Kropff E, Carmichael JE, Moser M-B, Moser EI. 2015.. Speed cells in the medial entorhinal cortex. . Nature 523:(7561):41924
    [Crossref] [Google Scholar]
  60. Kropff E, Treves A. 2008.. The emergence of grid cells: intelligent design or just adaptation?. Hippocampus 18:(12):125669
    [Crossref] [Google Scholar]
  61. Krupic J, Bauza M, Burton S, Barry C, O'Keefe J. 2015.. Grid cell symmetry is shaped by environmental geometry. . Nature 518:(7538):23235
    [Crossref] [Google Scholar]
  62. Krupic J, Burgess N, O'Keefe J. 2012.. Neural representations of location composed of spatially periodic bands. . Science 337:(6096):85357
    [Crossref] [Google Scholar]
  63. Lever C, Burton S, Jeewajee A, O'Keefe J, Burgess N. 2009.. Boundary vector cells in the subiculum of the hippocampal formation. . J. Neurosci. 29:(31):977177
    [Crossref] [Google Scholar]
  64. Low RJ, Gu Y, Tank DW. 2014.. Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex. . PNAS 111:(52):1873944
    [Crossref] [Google Scholar]
  65. Mathis A, Herz A, Stemmler M. 2012.. Optimal population codes for space: grid cells outperform place cells. . Neural Comput. 24::2280317
    [Crossref] [Google Scholar]
  66. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B. 2006.. Path integration and the neural basis of the ‘cognitive map.’. Nat. Rev. Neurosci. 7:(8):66378
    [Crossref] [Google Scholar]
  67. Melton AW. 1950.. Learning. . Annu. Rev. Psychol. 1::930
    [Crossref] [Google Scholar]
  68. Milner B. 2005.. The medial temporal-lobe amnesic syndrome. . Psychiatr. Clin. North Am. 28:(3):599611
    [Crossref] [Google Scholar]
  69. Monaco JD, Abbott LF. 2011.. Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping. . J. Neurosci. 31:(25):941425
    [Crossref] [Google Scholar]
  70. Moser EI, Kropff E, Moser M-B. 2008.. Place cells, grid cells, and the brain's spatial representation system. . Annu. Rev. Neurosci. 31::6989
    [Crossref] [Google Scholar]
  71. Moser EI, Moser M-B, Lipa P, Newton M, Houston FP, et al. 2005.. A test of the reverberatory activity hypothesis for hippocampal ‘place’ cells. . Neuroscience 130:(2):51926
    [Crossref] [Google Scholar]
  72. Moser EI, Roudi Y, Witter MP, Kentros C, Bonhoeffer T, Moser M-B. 2014.. Grid cells and cortical representation. . Nat. Rev. Neurosci. 15:(7):46681
    [Crossref] [Google Scholar]
  73. Mosheiff N, Burak Y. 2019.. Velocity coupling of grid cell modules enables stable embedding of a low dimensional variable in a high dimensional neural attractor. . eLife 8::e48494
    [Crossref] [Google Scholar]
  74. Naumann RK, Preston-Ferrer P, Brecht M, Burgalossi A. 2018.. Structural modularity and grid activity in the medial entorhinal cortex. . J. Neurophysiol. 119:(6):212944
    [Crossref] [Google Scholar]
  75. Neupane S, Fiete IR, Jazayeri M. 2022.. Vector production via mental navigation in the entorhinal cortex. . bioRxiv 2022.12.15.520640. https://doi.org/10.1101/2022.12.15.520640
  76. O'Keefe J. 1999.. Do hippocampal pyramidal cells signal non-spatial as well as spatial information?. Hippocampus 9:(4):35264
    [Crossref] [Google Scholar]
  77. O'Keefe J, Nadel L. 1978.. The Hippocampus as a Cognitive Map. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  78. Ray S, Naumann R, Burgalossi A, Tang Q, Schmidt H, Brecht M. 2014.. Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. . Science 343:(6173):89196
    [Crossref] [Google Scholar]
  79. Remondes M, Schuman EM. 2003.. Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammonic-CA1 synapse. . Learn. Mem. 10:(4):24752
    [Crossref] [Google Scholar]
  80. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, et al. 2013.. The importance of mixed selectivity in complex cognitive tasks. . Nature 497:(7451):58590
    [Crossref] [Google Scholar]
  81. Rowland DC, Roudi Y, Moser M-B, Moser EI. 2016.. Ten years of grid cells. . Annu. Rev. Neurosci. 39::1940
    [Crossref] [Google Scholar]
  82. Rybakken E, Baas N, Dunn B. 2019.. Decoding of neural data using cohomological feature extraction. . Neural Comput. 31:(1):6893
    [Crossref] [Google Scholar]
  83. Sanders H, Wilson MA, Gershman SJ. 2020.. Hippocampal remapping as hidden state inference. . eLife 9::e51140
    [Crossref] [Google Scholar]
  84. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, et al. 2006.. Conjunctive representation of position, direction, and velocity in entorhinal cortex. . Science 312:(5774):75862
    [Crossref] [Google Scholar]
  85. Schaeffer R, Khona M, Fiete I. 2022.. No free lunch from deep learning in neuroscience: a case study through models of the entorhinal-hippocampal circuit. . Adv. Neural Inform. Proc. Syst. 35::1605267
    [Google Scholar]
  86. Schaeffer R, Khona M, Ma T, Eyzaguirre C, Koyejo S, Fiete I. 2023.. Self-supervised learning of representations for space generates multi-modular grid cells. . In Advances in Neural Information Processing Systems 36 (NeurIPS 2023), ed. A Oh, T Neumann, A Globerson, K Saenko, M Hardt, S Levine. La Jolla , CA:: NeurIPS. https://proceedings.neurips.cc/paper_files/paper/2023/file/4846257e355f6923fc2a1fbe35099e91-Paper-Conference.pdf
    [Google Scholar]
  87. Sharma S, Curtis A, Kryven M, Tenenbaum J, Fiete I. 2022.. Map induction: compositional spatial submap learning for efficient exploration in novel environments. . arXiv:2110.12301 [cs.LG]
  88. Sobel D. 2007.. Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time. New York:: Bloomsbury. , 1st ed..
    [Google Scholar]
  89. Solstad T, Boccara CN, Kropff E, Moser M-B, Moser EI. 2008.. Representation of geometric borders in the entorhinal cortex. . Science 322::186568
    [Crossref] [Google Scholar]
  90. Sorscher B, Mel G, Ganguli S, Ocko S. 2019.. A unified theory for the origin of grid cells through the lens of pattern formation. . Adv. Neural Inf. Process. Syst. 32::111
    [Google Scholar]
  91. Sorscher B, Mel GC, Ocko SA, Giocomo LM, Ganguli S. 2023.. A unified theory for the computational and mechanistic origins of grid cells. . Neuron 111:(1):12137
    [Crossref] [Google Scholar]
  92. Sreenivasan S, Fiete I. 2011.. Grid cells generate an analog error-correcting code for singularly precise neural computation. . Nat. Neurosci. 14:(10):133037
    [Crossref] [Google Scholar]
  93. Stachenfeld KL, Botvinick MM, Gershman SJ. 2017.. The hippocampus as a predictive map. . Nat. Neurosci. 20:(11):164353
    [Crossref] [Google Scholar]
  94. Stensola H, Stensola T, Solstad T, Fröland K, Moser M-B, Moser EI. 2012.. The entorhinal grid map is discretized. . Nature 492:(7427):7278
    [Crossref] [Google Scholar]
  95. Stensola T, Stensola H, Moser M-B, Moser EI. 2015.. Shearing-induced asymmetry in entorhinal grid cells. . Nature 518:(7538):20712
    [Crossref] [Google Scholar]
  96. Swallow KM, Zacks JM, Abrams RA. 2009.. Event boundaries in perception affect memory encoding and updating. . J. Exp. Psychol. Gen. 138:(2):23657
    [Crossref] [Google Scholar]
  97. Taube JS, Muller RU, Ranck JB Jr. 1990.. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. . J. Neurosci. 10:(2):43647
    [Crossref] [Google Scholar]
  98. Tolman EC. 1948.. Cognitive maps in rats and men. . Psychol. Rev. 55:(4):189208
    [Crossref] [Google Scholar]
  99. Tolman EC, Ritchie BF, Kalish D. 1946.. Studies in spatial learning. II. Place learning versus response learning. . J. Exp. Psychol. 36:(3):22129
    [Crossref] [Google Scholar]
  100. Trettel SG, Trimper JB, Hwaun E, Fiete IR, Colgin LL. 2019.. Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors. . Nat. Neurosci. 22:(4):60917
    [Crossref] [Google Scholar]
  101. Turing AM. 1952.. The chemical basis of morphogenesis. . Philos. Trans. R. Soc. B 237:(641):3772
    [Google Scholar]
  102. Turner-Evans D, Wegener S, Rouault H, Franconville R, Wolff T, et al. 2017.. Angular velocity integration in a fly heading circuit. . eLife 6::e23496
    [Crossref] [Google Scholar]
  103. van Strien NM, Cappaert NLM, Witter MP. 2009.. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. . Nat. Rev. Neurosci. 10:(4):27282
    [Crossref] [Google Scholar]
  104. Wei XX, Prentice J, Balasubramanian V. 2015.. A principle of economy predicts the functional architecture of grid cells. . eLife 4::e08362
    [Crossref] [Google Scholar]
  105. Welinder PE, Burak Y, Fiete IR. 2008.. Grid cells: the position code, neural network models of activity, and the problem of learning. . Hippocampus 18:(12):1283300
    [Crossref] [Google Scholar]
  106. Whittington JCR, Muller TH, Mark S, Chen G, Barry C, et al. 2020.. The Tolman-Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. . Cell 183:(5):124963.e23
    [Crossref] [Google Scholar]
  107. Whittington M, Traub R, Kopell N, Ermentrout B, Buhl E. 2000.. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. . Int. J. Psychophysiol. 38:(3):31536
    [Crossref] [Google Scholar]
  108. Widloski J, Fiete IR. 2014.. A model of grid cell development through spatial exploration and spike time-dependent plasticity. . Neuron 83:(2):48195
    [Crossref] [Google Scholar]
  109. Wilming N, König P, König S, Buffalo EA. 2018.. Entorhinal cortex receptive fields are modulated by spatial attention, even without movement. . eLife 7::e31745
    [Crossref] [Google Scholar]
  110. Witter MP, Amaral DG. 1991.. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. . J. Comp. Neurol. 307:(3):43759
    [Crossref] [Google Scholar]
  111. Yartsev MM, Witter MP, Ulanovsky N. 2011.. Grid cells without theta oscillations in the entorhinal cortex of bats. . Nature 479:(7371):1037
    [Crossref] [Google Scholar]
  112. Yoon K, Buice MA, Barry C, Hayman R, Burgess N, Fiete IR. 2013.. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. . Nat. Neurosci. 16:(8):107784
    [Crossref] [Google Scholar]
  113. Yoon KJ, Lewallen S, Kinkhabwala AA, Tank DW, Fiete IR. 2016.. Grid cell responses in 1D environments assessed as slices through a 2D lattice. . Neuron 89:(5):108699
    [Crossref] [Google Scholar]
  114. Zhang K. 1996.. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. . J. Neurosci. 15::211226
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-101323-112047
Loading
/content/journals/10.1146/annurev-neuro-101323-112047
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error