1932

Abstract

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110520-030031
2022-07-08
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-110520-030031.html?itemId=/content/journals/10.1146/annurev-neuro-110520-030031&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, et al. 2019.. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. . Science 365::699704
    [Google Scholar]
  2. Acosta-Ruiz A, Gutzeit VA, Skelly MJ, Meadows S, Lee J, et al. 2020.. Branched photoswitchable tethered ligands enable ultra-efficient optical control and detection of G protein-coupled receptors in vivo. . Neuron 105::44663.e13
    [Google Scholar]
  3. Alich TC, Pabst M, Pothmann L, Szalontai B, Faas GC, Mody I. 2021.. A dark quencher genetically encodable voltage indicator (dqGEVI) exhibits high fidelity and speed. . PNAS 118::e2020235118
    [Google Scholar]
  4. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH. 2004.. Light-activated ion channels for remote control of neuronal firing. . Nat. Neurosci. 7::138186
    [Google Scholar]
  5. Benlian BR, Klier PEZ, Martinez KN, Schwinn MK, Kirkland TA, Miller EW. 2021.. Small molecule-protein hybrid for voltage imaging via quenching of bioluminescence. . ACS Sens. 6::185763
    [Google Scholar]
  6. Berglund K, Birkner E, Augustine GJ, Hochgeschwender U. 2013.. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons. . PLOS ONE 8::e59759
    [Google Scholar]
  7. Berglund K, Clissold K, Li HE, Wen L, Park SY, et al. 2016.. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. . PNAS 113::E35867
    [Google Scholar]
  8. Best M, Porth I, Hauke S, Braun F, Herten DP, Wombacher R. 2016.. Protein-specific localization of a rhodamine-based calcium-sensor in living cells. . Org. Biomol. Chem. 14::560611
    [Google Scholar]
  9. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, et al. 2006.. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. . Neuron 50::2333
    [Google Scholar]
  10. Binns TC, Ayala AX, Grimm JB, Tkachuk AN, Castillon GA, et al. 2020.. Rational design of bioavailable photosensitizers for manipulation and imaging of biological systems. . Cell Chem. Biol. 27::106372.e7
    [Google Scholar]
  11. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 2005.. Millisecond-timescale, genetically targeted optical control of neural activity. . Nat. Neurosci. 8::126368
    [Google Scholar]
  12. Brittin CA, Cook SJ, Hall DH, Emmons SW, Cohen N. 2021.. A multi-scale brain map derived from whole-brain volumetric reconstructions. . Nature 591::10510
    [Google Scholar]
  13. Broichhagen J, Damijonaitis A, Levitz J, Sokol KR, Leippe P, et al. 2015.. Orthogonal optical control of a G protein-coupled receptor with a SNAP-tethered photochromic ligand. . ACS Cent. Sci. 1::38393
    [Google Scholar]
  14. Broichhagen J, Johnston NR, von Ohlen Y, Meyer-Berg H, Jones BJ, et al. 2016.. Allosteric optical control of a class B G-protein-coupled receptor. . Angew. Chem. Int. Ed. Engl. 55::586568
    [Google Scholar]
  15. Brown W, Liu J, Deiters A. 2018.. Genetic code expansion in animals. . ACS Chem. Biol. 13::237586
    [Google Scholar]
  16. Brun MA, Tan KT, Griss R, Kielkowska A, Reymond L, Johnsson K. 2012.. A semisynthetic fluorescent sensor protein for glutamate. . J. Am. Chem. Soc. 134::767678
    [Google Scholar]
  17. Brun MA, Tan KT, Nakata E, Hinner MJ, Johnsson K. 2009.. Semisynthetic fluorescent sensor proteins based on self-labeling protein tags. . J. Am. Chem. Soc. 131::587384
    [Google Scholar]
  18. Chambers JJ, Gouda H, Young DM, Kuntz ID, England PM. 2004.. Photochemically knocking out glutamate receptors in vivo. . J. Am. Chem. Soc. 126::1388687
    [Google Scholar]
  19. Chanda B, Blunck R, Faria LC, Schweizer FE, Mody I, Bezanilla F. 2005.. A hybrid approach to measuring electrical activity in genetically specified neurons. . Nat. Neurosci. 8::161926
    [Google Scholar]
  20. Chen I, Howarth M, Lin W, Ting AY. 2005.. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. . Nat. Methods 2::99104
    [Google Scholar]
  21. Chin JW. 2017.. Expanding and reprogramming the genetic code. . Nature 550::5360
    [Google Scholar]
  22. Clapham DE. 2007.. Calcium signaling. . Cell 131::104758
    [Google Scholar]
  23. Coward P, Wada HG, Falk MS, Chan SD, Meng F, et al. 1998.. Controlling signaling with a specifically designed Gi-coupled receptor. . PNAS 95::35257
    [Google Scholar]
  24. Cruz LA, Estébanez-Perpiñá E, Pfaff S, Borngraeber S, Bao N, et al. 2008.. 6-Azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX) forms an irreversible bond to the active site of the GluR2 AMPA receptor. . J. Med. Chem. 51::585660
    [Google Scholar]
  25. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, et al. 2019.. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. . Nat. Methods 16::64957
    [Google Scholar]
  26. Dance A. 2021.. The hunt for red fluorescent proteins. . Nature 596::15253
    [Google Scholar]
  27. Deal PE, Liu P, Al-Abdullatif SH, Muller VR, Shamardani K, et al. 2020.. Covalently tethered rhodamine voltage reporters for high speed functional imaging in brain tissue. . J. Am. Chem. Soc. 142::61422
    [Google Scholar]
  28. Deo C, Abdelfattah AS, Bhargava HK, Berro AJ, Falco N, et al. 2021.. The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. . Nat. Chem. Biol. 17::71823
    [Google Scholar]
  29. Deo C, Lavis LD. 2018.. Synthetic and genetically encoded fluorescent neural activity indicators. . Curr. Opin. Neurobiol. 50::1018
    [Google Scholar]
  30. Deo C, Sheu SH, Seo J, Clapham DE, Lavis LD. 2019.. Isomeric tuning yields bright and targetable red Ca2+ indicators. . J. Am. Chem. Soc. 141::1373438
    [Google Scholar]
  31. Donthamsetti P, Winter N, Hoagland A, Stanley C, Visel M, et al. 2021.. Cell specific photoswitchable agonist for reversible control of endogenous dopamine receptors. . Nat. Commun. 12::4775
    [Google Scholar]
  32. Donthamsetti PC, Broichhagen J, Vyklicky V, Stanley C, Fu Z, et al. 2019.. Genetically targeted optical control of an endogenous G protein-coupled receptor. . J. Am. Chem. Soc. 141::1152230
    [Google Scholar]
  33. Duca M, Gillingham D, Olsen CA, Sbardella G, Skaanderup PR, et al. 2021.. The chemical biology-medicinal chemistry continuum: EFMC's vision. . ChemBioChem 22::282325
    [Google Scholar]
  34. Durand-de Cuttoli R, Chauhan PS, Petriz Reyes A, Faure P, Mourot A, Ellis-Davies GCR. 2020.. Optofluidic control of rodent learning using cloaked caged glutamate. . PNAS 117::683135
    [Google Scholar]
  35. Ellis-Davies GCR. 2007.. Caged compounds: photorelease technology for control of cellular chemistry and physiology. . Nat. Methods 4::61928
    [Google Scholar]
  36. Ellis-Davies GCR. 2018.. Two-photon uncaging of glutamate. . Front. Synaptic Neurosci. 10::48
    [Google Scholar]
  37. Ellis-Davies GCR. 2020.. Useful caged compounds for cell physiology. . Acc. Chem. Res. 53::1593604
    [Google Scholar]
  38. Erlendsson S, Teilum K. 2020.. Binding revisited—avidity in cellular function and signaling. . Front. Mol. Biosci. 7::615565
    [Google Scholar]
  39. Farrants H, Gutzeit VA, Acosta-Ruiz A, Trauner D, Johnsson K, et al. 2018.. SNAP-tagged nanobodies enable reversible optical control of a G protein-coupled receptor via a remotely tethered photoswitchable ligand. . ACS Chem. Biol. 13::268288
    [Google Scholar]
  40. Fegan A, White B, Carlson JC, Wagner CR. 2010.. Chemically controlled protein assembly: techniques and applications. . Chem. Rev. 110::331536
    [Google Scholar]
  41. Fiala T, Wang J, Dunn M, Sebej P, Choi SJ, et al. 2020.. Chemical targeting of voltage sensitive dyes to specific cells and molecules in the brain. . J. Am. Chem. Soc. 142::9285301
    [Google Scholar]
  42. Fluhler E, Burnham VG, Loew LM. 1985.. Spectra, membrane binding, and potentiometric responses of new charge shift probes. . Biochemistry 24::574955
    [Google Scholar]
  43. Fortin DL, Banghart MR, Dunn TW, Borges K, Wagenaar DA, et al. 2008.. Photochemical control of endogenous ion channels and cellular excitability. . Nat. Methods 5::33138
    [Google Scholar]
  44. Fuchter MJ. 2020.. On the promise of photopharmacology using photoswitches: a medicinal chemist's perspective. . J. Med. Chem. 63::1143647
    [Google Scholar]
  45. Gautier A, Juillerat A, Heinis C, Correa IR Jr., Kindermann M, et al. 2008.. An engineered protein tag for multiprotein labeling in living cells. . Chem. Biol. 15::12836
    [Google Scholar]
  46. Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, et al. 2017.. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. . Science 357::5037
    [Google Scholar]
  47. Gonzalez JE, Tsien RY. 1995.. Voltage sensing by fluorescence resonance energy transfer in single cells. . Biophys. J. 69::127280
    [Google Scholar]
  48. Gorka AP, Nani RR, Zhu J, Mackem S, Schnermann MJ. 2014.. A near-IR uncaging strategy based on cyanine photochemistry. . J. Am. Chem. Soc. 136::1415359
    [Google Scholar]
  49. Gradinaru V, Thompson KR, Deisseroth K. 2008.. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. . Brain Cell Biol. 36::12939
    [Google Scholar]
  50. Greenwald EC, Mehta S, Zhang J. 2018.. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. . Chem. Rev. 118::1170794
    [Google Scholar]
  51. Grenier V, Daws BR, Liu P, Miller EW. 2019.. Spying on neuronal membrane potential with genetically targetable voltage indicators. . J. Am. Chem. Soc. 141::134958
    [Google Scholar]
  52. Griffin BA, Adams SR, Tsien RY. 1998.. Specific covalent labeling of recombinant protein molecules inside live cells. . Science 281::26972
    [Google Scholar]
  53. Grimm JB, Gruber TD, Ortiz G, Brown TA, Lavis LD. 2016.. Virginia Orange: a versatile, red-shifted fluorescein scaffold for single- and dual-input fluorogenic probes. . Bioconjug. Chem. 27::47480
    [Google Scholar]
  54. Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, et al. 2017.. A general method to fine-tune fluorophores for live-cell and in vivo imaging. . Nat. Methods 14::98794
    [Google Scholar]
  55. Grimm JB, Tkachuk AN, Xie L, Choi H, Mohar B, et al. 2020.. A general method to optimize and functionalize red-shifted rhodamine dyes. . Nat. Methods 17::81521
    [Google Scholar]
  56. Gruber TD, Krishnamurthy C, Grimm JB, Tadross MR, Wysocki LM, et al. 2018.. Cell-specific chemical delivery using a selective nitroreductase-nitroaryl pair. . ACS Chem. Biol. 13::288896
    [Google Scholar]
  57. Grynkiewicz G, Poenie M, Tsien RY. 1985.. A new generation of Ca2+ indicators with greatly improved fluorescence properties. . J. Biol. Chem. 260::344050
    [Google Scholar]
  58. Halloran MW, Lumb JP. 2019.. Recent applications of diazirines in chemical proteomics. . Chemistry 25::488598
    [Google Scholar]
  59. Islam K. 2018.. The bump-and-hole tactic: expanding the scope of chemical genetics. . Cell Chem. Biol. 25::117184
    [Google Scholar]
  60. Jansen ABA, Russell TJ. 1965.. Some novel penicillin derivatives. . J. Chem. Soc. 1965::212732
    [Google Scholar]
  61. Kamiya M, Johnsson K. 2010.. Localizable and highly sensitive calcium indicator based on a BODIPY fluorophore. . Anal. Chem. 82::647279
    [Google Scholar]
  62. Karpova AY, Tervo DG, Gray NW, Svoboda K. 2005.. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. . Neuron 48::72735
    [Google Scholar]
  63. Kaskova ZM, Tsarkova AS, Yampolsky IV. 2016.. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. . Chem. Soc. Rev. 45::604877
    [Google Scholar]
  64. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. 2002.. A general method for the covalent labeling of fusion proteins with small molecules in vivo. . Nat. Biotechnol. 21::8689
    [Google Scholar]
  65. Kiyonaka S, Sakamoto S, Wakayama S, Morikawa Y, Tsujikawa M, Hamachi I. 2018.. Ligand-directed chemistry of AMPA receptors confers live-cell fluorescent biosensors. . ACS Chem. Biol. 13::188089
    [Google Scholar]
  66. Klan P, Solomek T, Bochet CG, Blanc A, Givens R, et al. 2013.. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. . Chem. Rev. 113::11991
    [Google Scholar]
  67. Klippenstein V, Hoppmann C, Ye S, Wang L, Paoletti P. 2017.. Optocontrol of glutamate receptor activity by single side-chain photoisomerization. . eLife 6::e25808
    [Google Scholar]
  68. Koya E, Golden SA, Harvey BK, Guez-Barber DH, Berkow A, et al. 2009.. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. . Nat. Neurosci. 12::106973
    [Google Scholar]
  69. Kumar P, Laughlin ST. 2019.. Modular activatable bioorthogonal reagents. . Methods Enzymol. 622::15382
    [Google Scholar]
  70. Lavis LD, Raines RT. 2008.. Bright ideas for chemical biology. . ACS Chem. Biol. 3::14255
    [Google Scholar]
  71. Lavis LD, Raines RT. 2014.. Bright building blocks for chemical biology. . ACS Chem. Biol. 9::85566
    [Google Scholar]
  72. Leopold AV, Shcherbakova DM, Verkhusha VV. 2019.. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications. . Front. Cell Neurosci. 13::474
    [Google Scholar]
  73. Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF. 1980.. A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at electrophorus electroplaques. . J. Gen. Physiol. 75::20732
    [Google Scholar]
  74. Levitz J, Broichhagen J, Leippe P, Konrad D, Trauner D, Isacoff EY. 2017.. Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. . PNAS 114::E354654
    [Google Scholar]
  75. Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, et al. 2013.. Optical control of metabotropic glutamate receptors. . Nat. Neurosci. 16::50716
    [Google Scholar]
  76. Liu P, Grenier V, Hong W, Muller VR, Miller EW. 2017.. Fluorogenic targeting of voltage-sensitive dyes to neurons. . J. Am. Chem. Soc. 139::1733440
    [Google Scholar]
  77. Liu S, Lin C, Xu Y, Luo H, Peng L, et al. 2021.. A far-red hybrid voltage indicator enabled by bioorthogonal engineering of rhodopsin on live neurons. . Nat. Chem. 13::47279
    [Google Scholar]
  78. Loew LM. 2015.. Design and use of organic voltage sensitive dyes. . Adv. Exp. Med. Biol. 859::2753
    [Google Scholar]
  79. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, et al. 2008.. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. . ACS Chem. Biol. 3::37382
    [Google Scholar]
  80. Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM. 2011.. Chemical and genetic engineering of selective ion channel-ligand interactions. . Science 333::129296
    [Google Scholar]
  81. Magnus CJ, Lee PH, Bonaventura J, Zemla R, Gomez JL, et al. 2019.. Ultrapotent chemogenetics for research and potential clinical applications. . Science 364::eaav5282
    [Google Scholar]
  82. Martin BR, Giepmans BN, Adams SR, Tsien RY. 2005.. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. . Nat. Biotechnol. 23::130814
    [Google Scholar]
  83. Martineau M, Somasundaram A, Grimm JB, Gruber TD, Choquet D, et al. 2017.. Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. . Nat. Commun. 8::1412
    [Google Scholar]
  84. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, et al. 2013.. An optimized fluorescent probe for visualizing glutamate neurotransmission. . Nat. Methods 10::16270
    [Google Scholar]
  85. Masharina A, Reymond L, Maurel D, Umezawa K, Johnsson K. 2012.. A fluorescent sensor for GABA and synthetic GABAB receptor ligands. . J. Am. Chem. Soc. 134::1902634
    [Google Scholar]
  86. Matsuzaki M, Ellis-Davies GCR, Nemoto T, Miyashita Y, Iino M, Kasai H. 2001.. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. . Nat. Neurosci. 4::108692
    [Google Scholar]
  87. Matsuzaki M, Hayama T, Kasai H, Ellis-Davies GCR. 2010.. Two-photon uncaging of γ-aminobutyric acid in intact brain tissue. . Nat. Chem. Biol. 6::25557
    [Google Scholar]
  88. Miesenbock G, De Angelis DA, Rothman JE. 1998.. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. . Nature 394::19295
    [Google Scholar]
  89. Miller EW, Lin JY, Frady EP, Steinbach PA, Kristan WB Jr., Tsien RY. 2012.. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. . PNAS 109::211419
    [Google Scholar]
  90. Minta A, Kao JP, Tsien RY. 1989.. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. . J. Biol. Chem. 264:: 817178
    [Google Scholar]
  91. Mondoloni S, Durand-de Cuttoli R, Mourot A. 2019.. Cell-specific neuropharmacology. . Trends Pharmacol. Sci. 40::696710
    [Google Scholar]
  92. Murale DP, Hong SC, Haque MM, Lee JS. 2016.. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). . Proteome Sci. 15::14
    [Google Scholar]
  93. Nagai Y, Miyakawa N, Takuwa H, Hori Y, Oyama K, et al. 2020.. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. . Nat. Neurosci. 23::115767
    [Google Scholar]
  94. Namiki S, Sakamoto H, Iinuma S, Iino M, Hirose K. 2007.. Optical glutamate sensor for spatiotemporal analysis of synaptic transmission. . Eur. J. Neurosci. 25::224959
    [Google Scholar]
  95. Ng DN, Fromherz P. 2011.. Genetic targeting of a voltage-sensitive dye by enzymatic activation of phosphonooxymethyl-ammonium derivative. . ACS Chem. Biol. 6::44451
    [Google Scholar]
  96. Nguyen SS, Prescher JA. 2020.. Developing bioorthogonal probes to span a spectrum of reactivities. . Nat. Rev. Chem. 4::47689
    [Google Scholar]
  97. Ochtrop P, Hackenberger CPR. 2020.. Recent advances of thiol-selective bioconjugation reactions. . Curr. Opin. Chem. Biol. 58::2836
    [Google Scholar]
  98. Ohmiya Y, Hirano T. 1996.. Shining the light: the mechanism of the bioluminescence reaction of calcium-binding photoproteins. . Chem. Biol. 3::33747
    [Google Scholar]
  99. Ojima K, Shiraiwa K, Soga K, Doura T, Takato M, et al. 2021.. Ligand-directed two-step labeling to quantify neuronal glutamate receptor trafficking. . Nat. Commun. 12::831
    [Google Scholar]
  100. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL. 2007.. Sortagging: a versatile method for protein labeling. . Nat Chem Biol. 3::7078
    [Google Scholar]
  101. Raper J, Morrison RD, Daniels JS, Howell L, Bachevalier J, et al. 2017.. Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. . ACS Chem. Neurosci. 8::157076
    [Google Scholar]
  102. Richers MT, Amatrudo JM, Olson JP, Ellis-Davies GCR. 2017.. Cloaked caged compounds: chemical probes for two-photon optoneurobiology. . Angew. Chem. Int. Ed. Engl. 56::19397
    [Google Scholar]
  103. Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, et al. 2017.. The growing and glowing toolbox of fluorescent and photoactive proteins. . Trends Biochem. Sci. 42::11129
    [Google Scholar]
  104. Roth BL. 2016.. DREADDs for neuroscientists. . Neuron 89::68394
    [Google Scholar]
  105. Sallin O, Reymond L, Gondrand C, Raith F, Koch B, Johnsson K. 2018.. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. . eLife 7::e32638
    [Google Scholar]
  106. Schmohl L, Schwarzer D. 2014.. Sortase-mediated ligations for the site-specific modification of proteins. . Curr. Opin. Chem. Biol. 22::12228
    [Google Scholar]
  107. Seitchik JL, Peeler JC, Taylor MT, Blackman ML, Rhoads TW, et al. 2012.. Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. . J. Am. Chem. Soc. 134::2898901
    [Google Scholar]
  108. Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, et al. 2017.. Deconstructing behavioral neuropharmacology with cellular specificity. . Science 356::aaj2161
    [Google Scholar]
  109. Slimko EM, McKinney S, Anderson DJ, Davidson N, Lester HA. 2002.. Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. . J. Neurosci. 22::737379
    [Google Scholar]
  110. Smith E, Collins I. 2015.. Photoaffinity labeling in target- and binding-site identification. . Future Med. Chem. 7::15983
    [Google Scholar]
  111. Song X, Jensen MO, Jogini V, Stein RA, Lee CH, et al. 2018.. Mechanism of NMDA receptor channel block by MK-801 and memantine. . Nature 556::51519
    [Google Scholar]
  112. Stawski P, Sumser M, Trauner D. 2012.. A photochromic agonist of AMPA receptors. . Angew. Chem. Int. Ed. Engl. 51::574851
    [Google Scholar]
  113. Sternson SM, Roth BL. 2014.. Chemogenetic tools to interrogate brain functions. . Annu. Rev. Neurosci. 37::387407
    [Google Scholar]
  114. Takikawa K, Asanuma D, Namiki S, Sakamoto H, Ariyoshi T, et al. 2014.. High-throughput development of a hybrid-type fluorescent glutamate sensor for analysis of synaptic transmission. . Angew. Chem. Int. Ed. Engl. 53::1343943
    [Google Scholar]
  115. Tamura T, Hamachi I. 2019.. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. . J. Am. Chem. Soc. 141::278299
    [Google Scholar]
  116. Tian L, Yang Y, Wysocki LM, Arnold AC, Hu A, et al. 2012.. Selective esterase-ester pair for targeting small molecules with cellular specificity. . PNAS 109::475661
    [Google Scholar]
  117. Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, et al. 2007.. Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. . Nat. Chem. Biol. 3::42331
    [Google Scholar]
  118. Tsien RY. 1980.. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. . Biochemistry 19::2396404
    [Google Scholar]
  119. Tsien RY. 1981.. A non-disruptive technique for loading calcium buffers and indicators into cells. . Nature 290::52728
    [Google Scholar]
  120. Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, et al. 2019.. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. . Cell 179::1590608.e23
    [Google Scholar]
  121. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D. 2006.. Allosteric control of an ionotropic glutamate receptor with an optical switch. . Nat. Chem. Biol. 2::4752
    [Google Scholar]
  122. Wang D, Zhang Z, Chanda B, Jackson MB. 2010.. Improved probes for hybrid voltage sensor imaging. . Biophys. J. 99::235565
    [Google Scholar]
  123. Watanabe S, Mizukami S, Hori Y, Kikuchi K. 2010.. Multicolor protein labeling in living cells using mutant β-lactamase-tag technology. . Bioconjug. Chem. 21::232026
    [Google Scholar]
  124. Xiang Z, Ren H, Hu YS, Coin I, Wei J, et al. 2013.. Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. . Nat. Methods 10::88588
    [Google Scholar]
  125. Xu Y, Deng M, Zhang S, Yang J, Peng L, et al. 2019.. Imaging neuronal activity with fast and sensitive red-shifted electrochromic FRET indicators. . ACS Chem. Neurosci. 10::476875
    [Google Scholar]
  126. Xu Y, Peng L, Wang S, Wang A, Ma R, et al. 2018.. Hybrid indicators for fast and sensitive voltage imaging. . Angew. Chem. Int. Ed. Engl. 57::394953
    [Google Scholar]
  127. Yang Y, Lee P, Sternson SM. 2015.. Cell type-specific pharmacology of NMDA receptors using masked MK801. . eLife 4::e10206
    [Google Scholar]
  128. Yin J, Straight PD, McLoughlin SM, Zhou Z, Lin AJ, et al. 2005.. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. . PNAS 102::1581520
    [Google Scholar]
  129. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, et al. 2012.. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. . PNAS 109::E69097
    [Google Scholar]
  130. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, et al. 2007.. Multimodal fast optical interrogation of neural circuitry. . Nature 446::63339
    [Google Scholar]
  131. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, et al. 2011.. An expanded palette of genetically encoded Ca2+ indicators. . Science 333::188891
    [Google Scholar]
  132. Zhou Z, Cironi P, Lin AJ, Xu Y, Hrvatin S, et al. 2007.. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. . ACS Chem. Biol. 2::33746
    [Google Scholar]
  133. Zou P, Zhao Y, Douglass AD, Hochbaum DR, Brinks D, et al. 2014.. Bright and fast multicoloured voltage reporters via electrochromic FRET. . Nat. Commun. 5::4625
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110520-030031
Loading
/content/journals/10.1146/annurev-neuro-110520-030031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error