1932

Abstract

Developmental abnormalities of the cerebellum are among the most recognized structural brain malformations in human prenatal imaging. Yet reliable information regarding their cause in humans is sparse, and few outcome studies are available to inform prognosis. We know very little about human cerebellar development, in stark contrast to the wealth of knowledge from decades of research on cerebellar developmental biology of model organisms, especially mice. Recent studies show that multiple aspects of human cerebellar development significantly differ from mice and even rhesus macaques, a nonhuman primate. These discoveries challenge many current mouse-centric models of normal human cerebellar development and models regarding the pathogenesis of several neurodevelopmental phenotypes affecting the cerebellum, including Dandy-Walker malformation and medulloblastoma. Since we cannot model what we do not know, additional normative and pathological human developmental data are essential, and new models are needed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-091953
2022-07-08
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-111020-091953.html?itemId=/content/journals/10.1146/annurev-neuro-111020-091953&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham H, Tornoczky T, Kosztolanyi G, Seress L. 2001. Cell formation in the cortical layers of the developing human cerebellum. Int. J. Dev. Neurosci. 19:53–62
    [Google Scholar]
  2. Aguilar A, Meunier A, Strehl L, Martinovic J, Bonniere M et al. 2012. Analysis of human samples reveals impaired SHH-dependent cerebellar development in Joubert syndrome/Meckel syndrome. PNAS 109:16951–56
    [Google Scholar]
  3. Aldinger KA, Dempsey JC, Tully HM, Grout ME, Mehaffey MG et al. 2018. Rhombencephalosynapsis: fused cerebellum, confused geneticists. Am. J. Med. Genet. C Semin. Med. Genet. 178:432–39
    [Google Scholar]
  4. Aldinger KA, Doherty D. 2016. The genetics of cerebellar malformations. Semin. Fetal Neonatal Med. 21:321–32
    [Google Scholar]
  5. Aldinger KA, Thomson Z, Phelps IG, Haldipur P, Deng M et al. 2021. Spatial and cell type transcriptional landscape of human cerebellar development. Nat. Neurosci. 24:1163–75
    [Google Scholar]
  6. Aldinger KA, Timms AE, Thomson Z, Mirzaa GM, Bennett JT et al. 2019. Redefining the etiologic landscape of cerebellar malformations. Am. J. Hum. Genet. 105:606–15
    [Google Scholar]
  7. Allen NJ, Lyons DA. 2018. Glia as architects of central nervous system formation and function. Science 362:181–85
    [Google Scholar]
  8. Astle DE, Holmes J, Kievit R, Gathercole SE. 2022. Annual research review: The transdiagnostic revolution in neurodevelopmental disorders. J. Child Psychol. Psychiatry 63:397417
    [Google Scholar]
  9. Bachmann-Gagescu R, Dempsey JC, Bulgheroni S, Chen ML, D'Arrigo S et al. 2020. Healthcare recommendations for Joubert syndrome. Am. J. Med. Genet. A 182:229–49
    [Google Scholar]
  10. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E et al. 2020. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat. Commun. 11:583
    [Google Scholar]
  11. Bauman ML, Kemper TL. 2005. Neuroanatomic observations of the brain in autism: a review and future directions. Int. J. Dev. Neurosci. 23:183–87
    [Google Scholar]
  12. Beckinghausen J, Sillitoe RV. 2019. Insights into cerebellar development and connectivity. Neurosci. Lett. 688:2–13
    [Google Scholar]
  13. Behesti H, Kocabas A, Buchholz DE, Carroll TS, Hatten ME. 2021. Altered temporal sequence of transcriptional regulators in the generation of human cerebellar granule cells. eLife 10:e67074
    [Google Scholar]
  14. Bolduc ME, Du Plessis AJ, Sullivan N, Khwaja OS, Zhang X et al. 2011. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev. Med. Child Neurol. 53:409–16
    [Google Scholar]
  15. Bolduc ME, Limperopoulos C. 2009. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev. Med. Child Neurol. 51:256–67
    [Google Scholar]
  16. Boswinkel V, Steggerda SJ, Fumagalli M, Parodi A, Ramenghi LA et al. 2019. The CHOPIn study: a multicenter study on cerebellar hemorrhage and outcome in preterm infants. Cerebellum 18:989–98
    [Google Scholar]
  17. Buchholz DE, Carroll TS, Kocabas A, Zhu X, Behesti H et al. 2020. Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics. PNAS 117:15085–95
    [Google Scholar]
  18. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. 2019. Cerebellar modulation of the reward circuitry and social behavior. Science 363:aav0581
    [Google Scholar]
  19. Carter RA, Bihannic L, Rosencrance C, Hadley JL, Tong Y et al. 2018. A single-cell transcriptional atlas of the developing murine cerebellum. Curr. Biol. 28:2910–20.e2
    [Google Scholar]
  20. Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA et al. 2010. Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. PNAS 107:10725–30
    [Google Scholar]
  21. Chizhikov VV, Millen KJ 2013. Chapter 22: Neurogenesis in the cerebellum. Comprehensive Developmental Neuroscience: Patterning and Cell Type Specification in the Developing CNS and PNS JL Rubenstein, P Rakic 417–34 London: Academic
    [Google Scholar]
  22. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL. 2004. Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development 131:5581–90
    [Google Scholar]
  23. Dahmane N, Ruiz i Altaba A. 1999. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–100
    [Google Scholar]
  24. Dijkshoorn ABC, Turk E, Hortensius LM, van der Aa NE, Hoebeek FE et al. 2020. Preterm infants with isolated cerebellar hemorrhage show bilateral cortical alterations at term equivalent age. Sci. Rep. 10:5283
    [Google Scholar]
  25. Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C et al. 2006. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J. Neurosci. 26:9184–95
    [Google Scholar]
  26. Fiez JA, Petersen SE. 1998. Neuroimaging studies of word reading. PNAS 95:914–21
    [Google Scholar]
  27. Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. 2021. Deconstructing sonic hedgehog medulloblastoma: molecular subtypes, drivers, and beyond. Trends Genet 37:235–50
    [Google Scholar]
  28. Guldal CG, Ahmad A, Korshunov A, Squatrito M, Awan A et al. 2012. An essential role for p38 MAPK in cerebellar granule neuron precursor proliferation. Acta Neuropathol. 123:573–86
    [Google Scholar]
  29. Haldipur P, Aldinger KA, Bernardo S, Deng M, Timms AE et al. 2019. Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science 366:454–60
    [Google Scholar]
  30. Haldipur P, Bernardo S, Aldinger KA, Sivakumar T, Millman J et al. 2021. Evidence of disrupted rhombic lip development in the pathogenesis of Dandy-Walker malformation. Acta Neuropathol. 142:761–76
    [Google Scholar]
  31. Haldipur P, Bharti U, Alberti C, Sarkar C, Gulati G et al. 2011. Preterm delivery disrupts the developmental program of the cerebellum. PLOS ONE 6:e23449
    [Google Scholar]
  32. Haldipur P, Bharti U, Govindan S, Sarkar C, Iyengar S et al. 2012. Expression of Sonic hedgehog during cell proliferation in the human cerebellum. Stem Cells Dev 21:1059–68
    [Google Scholar]
  33. Haldipur P, Dang D, Aldinger KA, Janson OK, Guimiot F et al. 2017. Phenotypic outcomes in mouse and human Foxc1 dependent Dandy-Walker cerebellar malformation suggest shared mechanisms. eLife 6:e20898
    [Google Scholar]
  34. Haldipur P, Gillies GS, Janson OK, Chizhikov VV, Mithal DS et al. 2014. Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth. eLife 3:e03962
    [Google Scholar]
  35. Haldipur P, Millen KJ. 2019. What cerebellar malformations tell us about cerebellar development. Neurosci. Lett. 688:14–25
    [Google Scholar]
  36. Hatten ME. 1999. Central nervous system neuronal migration. Annu. Rev. Neurosci. 22:511–39
    [Google Scholar]
  37. Hatten ME. 2020. Adding cognitive connections to the cerebellum. Science 370:1411–12
    [Google Scholar]
  38. Hovestadt V, Ayrault O, Swartling FJ, Robinson GW, Pfister SM, Northcott PA. 2020. Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nat. Rev. Cancer 20:42–56
    [Google Scholar]
  39. Hovestadt V, Smith KS, Bihannic L, Filbin MG, Shaw ML et al. 2019. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 572:74–79
    [Google Scholar]
  40. Hua TT, Bejoy J, Song L, Wang Z, Zeng Z et al. 2021. Cerebellar differentiation from human stem cells through retinoid, Wnt, and Sonic hedgehog pathways. Tissue Eng. Part A 27:881–93
    [Google Scholar]
  41. Huang X, Liu J, Ketova T, Fleming JT, Grover VK et al. 2010. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. PNAS 107:8422–27
    [Google Scholar]
  42. Hughes LJ, Park R, Lee MJ, Terry BK, Lee DJ et al. 2020. Yap/Taz are required for establishing the cerebellar radial glia scaffold and proper foliation. Dev. Biol. 457:150–62
    [Google Scholar]
  43. Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC et al. 2020. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat. Genet. 52:1046–56
    [Google Scholar]
  44. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X et al. 2011. Spatio-temporal transcriptome of the human brain. Nature 478:483–89
    [Google Scholar]
  45. Kebschull JM, Richman EB, Ringach N, Friedmann D, Albarran E et al. 2020. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science 370:abd5059
    [Google Scholar]
  46. Lange W. 1975. Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 157:115–24
    [Google Scholar]
  47. Larsell O, Jansen J. 1972. The Comparative Anatomy and Histology of the Cerebellum: The Human Cerebellum, Cerebellar Connections and Cerebellar Cortex Minneapolis: Univ. Minn. Press
    [Google Scholar]
  48. Larsell O, Stotler WA. 1947. Some morphological features of the human cerebellum. Anat. Rec. 97:352
    [Google Scholar]
  49. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A et al. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–76
    [Google Scholar]
  50. Leto K, Arancillo M, Becker EB, Buffo A, Chiang C et al. 2016. Consensus paper: cerebellar development. Cerebellum 15:789–828
    [Google Scholar]
  51. Leto K, Rolando C, Rossi F 2012. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front. Neuroanat. 6:6
    [Google Scholar]
  52. Li JYH, Lao Z, Joyner AL. 2002. Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 36:31–43
    [Google Scholar]
  53. Limperopoulos C, Benson CB, Bassan H, Disalvo DN, Kinnamon DD et al. 2005a. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116:717–24
    [Google Scholar]
  54. Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. 2014. Injury to the premature cerebellum: Outcome is related to remote cortical development. Cereb. Cortex 24:728–36
    [Google Scholar]
  55. Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK et al. 2005b. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 115:688–95
    [Google Scholar]
  56. Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H et al. 2005c. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics 116:844–50
    [Google Scholar]
  57. Luo W, Lin GN, Song W, Zhang Y, Lai H et al. 2021. Single-cell spatial transcriptomic analysis reveals common and divergent features of developing postnatal granule cerebellar cells and medulloblastoma. BMC Biol 19:135
    [Google Scholar]
  58. Machold R, Fishell G. 2005. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24
    [Google Scholar]
  59. Mak CCY, Doherty D, Lin AE, Vegas N, Cho MT et al. 2020. MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis. Brain 143:55–68
    [Google Scholar]
  60. Marek S, Siegel JS, Gordon EM, Raut RV, Gratton C et al. 2018. Spatial and temporal organization of the individual human cerebellum. Neuron 100:977–93.e7
    [Google Scholar]
  61. May HJ, Fasheun JA, Bain JM, Baugh EH, Bier LE et al. 2021. Genetic testing in individuals with cerebral palsy. Dev. Med. Child Neurol. 63:121448–55
    [Google Scholar]
  62. Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L et al. 2014. Transcriptional landscape of the prenatal human brain. Nature 508:199–206
    [Google Scholar]
  63. Moreno-De-Luca A, Millan F, Pesacreta DR, Elloumi HZ, Oetjens MT et al. 2021. Molecular diagnostic yield of exome sequencing in patients with cerebral palsy. JAMA 325:467–75
    [Google Scholar]
  64. Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. 2015. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10:537–50
    [Google Scholar]
  65. Murray JC, Johnson JA, Bird TD. 1985. Dandy-Walker malformation: etiologic heterogeneity and empiric recurrence risks. Clin. Genet. 28:272–83
    [Google Scholar]
  66. Nayler S, Agarwal D, Curion F, Bowden R, Becker EBE. 2021. High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci. Rep. 11:12959
    [Google Scholar]
  67. Nguyen V, Sabeur K, Maltepe E, Ameri K, Bayraktar O, Rowitch DH. 2018. Sonic hedgehog agonist protects against complex neonatal cerebellar injury. Cerebellum 17:213–27
    [Google Scholar]
  68. Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL et al. 2019. Medulloblastoma. Nat. Rev. Dis. Primers 5:11
    [Google Scholar]
  69. Ocasio J, Babcock B, Malawsky D, Weir SJ, Loo L et al. 2019. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nat. Commun. 10:5829
    [Google Scholar]
  70. Ong T, Trivedi N, Wakefield R, Frase S, Solecki DJ. 2020. Siah2 integrates mitogenic and extracellular matrix signals linking neuronal progenitor ciliogenesis with germinal zone occupancy. Nat. Commun. 11:5312
    [Google Scholar]
  71. Oristaglio J, Hyman West S, Ghaffari M, Lech MS, Verma BR et al. 2013. Children with autism spectrum disorders show abnormal conditioned response timing on delay, but not trace, eyeblink conditioning. Neuroscience 248:708–18
    [Google Scholar]
  72. Paprocka J, Jezela-Stanek A, Tylki-Szymanska A, Grunewald S. 2021. Congenital disorders of glycosylation from a neurological perspective. Brain Sci 11:88
    [Google Scholar]
  73. Parisi M, Glass I 1993. Joubert syndrome. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash.
    [Google Scholar]
  74. Pichiecchio A, Decio A, Di Perri C, Parazzini C, Rossi A, Signorini S. 2016.. “ Acquired” Dandy-Walker malformation and cerebellar hemorrhage: usefulness of serial MRI. Eur. J. Paediatr. Neurol. 20:188–91
    [Google Scholar]
  75. Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA et al. 2021. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep 36:109721
    [Google Scholar]
  76. Rakic P, Sidman RL. 1970. Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J. Comp. Neurol. 139:473–500
    [Google Scholar]
  77. Reeder MR, Botto LD, Keppler-Noreuil KM, Carey JC, Byrne JL et al. 2015. Risk factors for Dandy-Walker malformation: a population-based assessment. Am. J. Med. Genet. A 167A:2009–16
    [Google Scholar]
  78. Reefhuis J, Honein MA, Schieve LA, Rasmussen SA, Natl. Birth Defects Prev. Study. 2011. Use of clomiphene citrate and birth defects, National Birth Defects Prevention Study, 1997–2005. Hum. Reprod. 26:451–57
    [Google Scholar]
  79. Sajan SA, Fernandez L, Nieh SE, Rider E, Bukshpun P et al. 2013. Both rare and de novo copy number variants are prevalent in agenesis of the corpus callosum but not in cerebellar hypoplasia or polymicrogyria. PLOS Genet 9:e1003823
    [Google Scholar]
  80. Sarropoulos I, Sepp M, Fromel R, Leiss K, Trost N et al. 2021. Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells. Science 373:abg4696
    [Google Scholar]
  81. Schmahmann JD. 2019. The cerebellum and cognition. Neurosci. Lett. 688:62–75
    [Google Scholar]
  82. Sereno MI, Diedrichsen J, Tachrount M, Testa-Silva G, d'Arceuil H, De Zeeuw C. 2020. The human cerebellum has almost 80% of the surface area of the neocortex. PNAS 117:19538–43
    [Google Scholar]
  83. Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M et al. 2014. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat. Commun. 5:3337
    [Google Scholar]
  84. Shiohama T, Ando R, Fujii K, Mukai H, Naruke Y et al. 2017. An acquired form of Dandy-Walker malformation with enveloping hemosiderin deposits. Case Rep. Pediatr. 2017:3861608
    [Google Scholar]
  85. Silva TP, Bekman EP, Fernandes TG, Vaz SH, Rodrigues CAV et al. 2020a. Maturation of human pluripotent stem cell-derived cerebellar neurons in the absence of co-culture. Front. Bioeng. Biotechnol. 8:70
    [Google Scholar]
  86. Silva TP, Fernandes TG, Nogueira DES, Rodrigues CAV, Bekman EP et al. 2020b. Scalable generation of mature cerebellar organoids from human pluripotent stem cells and characterization by immunostaining. J. Vis. Exp. 160:e61143
    [Google Scholar]
  87. Skefos J, Cummings C, Enzer K, Holiday J, Weed K et al. 2014. Regional alterations in Purkinje cell density in patients with autism. PLOS ONE 9:e81255
    [Google Scholar]
  88. Smaers JB, Turner AH, Gomez-Robles A, Sherwood CC. 2018. A cerebellar substrate for cognition evolved multiple times independently in mammals. eLife 7:e35696
    [Google Scholar]
  89. Solecki DJ, Trivedi N, Govek EE, Kerekes RA, Gleason SS, Hatten ME. 2009. Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 63:63–80
    [Google Scholar]
  90. Stambolliu E, Ioakeim-Ioannidou M, Kontokostas K, Dakoutrou M, Kousoulis AA. 2017. The most common comorbidities in Dandy-Walker syndrome patients: a systematic review of case reports. J. Child Neurol. 32:886–902
    [Google Scholar]
  91. Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL. 2011. Ascl1 genetics reveals insights into cerebellum local circuit assembly. J. Neurosci. 31:11055–69
    [Google Scholar]
  92. Thompson CL, Ng L, Menon V, Martinez S, Lee CK et al. 2014. A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83:309–23
    [Google Scholar]
  93. van der Heijden ME, Lackey EP, Perez R, Isleyen FS, Brown AM et al. 2021. Maturation of Purkinje cell firing properties relies on neurogenesis of excitatory neurons. eLife 10:e68045
    [Google Scholar]
  94. van Dijk T, Baas F, Barth PG, Poll-The BT. 2018. What's new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet J. Rare Dis. 13:92
    [Google Scholar]
  95. Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL et al. 2019. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 572:67–73
    [Google Scholar]
  96. Volpe JJ. 2009. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J. Child Neurol. 24:1085–104
    [Google Scholar]
  97. Willett RT, Bayin NS, Lee AS, Krishnamurthy A, Wojcinski A et al. 2019. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. eLife 8:e50617
    [Google Scholar]
  98. Wilson PM, Fryer RH, Fang Y, Hatten ME. 2010. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J. Neurosci. 30:8529–40
    [Google Scholar]
  99. Wizeman JW, Guo Q, Wilion EM, Li JYH. 2019. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. eLife 8:e42388
    [Google Scholar]
  100. Yang Z, Joyner AL. 2019. YAP1 is involved in replenishment of granule cell precursors following injury to the neonatal cerebellum. Dev. Biol. 455:458–72
    [Google Scholar]
  101. Yeung J, Ha TJ, Swanson DJ, Choi K, Tong Y, Goldowitz D. 2014. Wls provides a new compartmental view of the rhombic lip in mouse cerebellar development. J. Neurosci. 34:12527–37
    [Google Scholar]
  102. Yoo JY, Mak GK, Goldowitz D. 2014. The effect of hemorrhage on the development of the postnatal mouse cerebellum. Exp. Neurol. 252:85–94
    [Google Scholar]
  103. Zecevic N, Chen Y, Filipovic R. 2005. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol. 491:109–22
    [Google Scholar]
  104. Zecevic N, Rakic P. 1976. Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man. J. Comp. Neurol. 167:27–47
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-091953
Loading
/content/journals/10.1146/annurev-neuro-111020-091953
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error