1932

Abstract

In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-094019
2024-08-08
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-111020-094019.html?itemId=/content/journals/10.1146/annurev-neuro-111020-094019&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Bock DD, Callaway EM, Denk W, Dulac C, et al. 2020.. The mind of a mouse. . Cell 182::137276
    [Crossref] [Google Scholar]
  2. Ache JM, Namiki S, Lee A, Branson K, Card GM. 2019a.. State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. . Nat. Neurosci. 22::113239
    [Crossref] [Google Scholar]
  3. Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, et al. 2019b.. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. . Curr. Biol. 29::107381.e4
    [Crossref] [Google Scholar]
  4. Aptekar JW, Frye MA. 2013.. Higher-order figure discrimination in fly and human vision. . Curr. Biol. 23::R694700
    [Crossref] [Google Scholar]
  5. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, Gonzalez CR, et al. 2014.. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. . Cell 156::22135
    [Crossref] [Google Scholar]
  6. Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, et al. 2020.. Olfactory receptor and circuit evolution promote host specialization. . Nature 579::4028
    [Crossref] [Google Scholar]
  7. Azevedo A, Lesser E, Mark B, Phelps J, Elabbady L, et al. 2022.. Tools for comprehensive reconstruction and analysis of Drosophila motor circuits. . bioRxiv 2022.12.15.520299. https://doi.org/10.1101/2022.12.15.520299
    [Google Scholar]
  8. Barsotti E, Correia A, Cardona A. 2021.. Neural architectures in the light of comparative connectomics. . Curr. Opin. Neurobiol. 71::13949
    [Crossref] [Google Scholar]
  9. Bastock M, Manning A. 1955.. The courtship of Drosophila melanogaster. . Behaviour 8:(2/3):85111
    [Crossref] [Google Scholar]
  10. Benzer S. 1967.. Behavioral mutants of Drosophila isolated by countercurrent distribution. . PNAS 58::111219
    [Crossref] [Google Scholar]
  11. Brand AH, Perrimon N. 1993.. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. . Development 118::40115
    [Crossref] [Google Scholar]
  12. Bridges CB. 1916.. Non-disjunction as proof of the chromosome theory of heredity. . Genetics 1::152
    [Crossref] [Google Scholar]
  13. Briggman KL, Abarbanel HD, Kristan WB Jr. 2005.. Optical imaging of neuronal populations during decision-making. . Science 307::896901
    [Crossref] [Google Scholar]
  14. Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1992.. The analysis of visual motion: a comparison of neuronal and psychophysical performance. . J. Neurosci. 12::474565
    [Crossref] [Google Scholar]
  15. Buerkle N, Jeanne JM. 2021.. Decision making: an analogue implementation of a drift-diffusion computation in the Drosophila mushroom body. . Curr. Biol. 31::R147982
    [Crossref] [Google Scholar]
  16. Bullock TH. 1984a.. Comparative neuroethology of startle, rapid escape, and giant fiber-mediated responses. . In Neural Mechanisms of Startle Behavior, ed. RC Eaton , pp. 113. Boston, MA:: Springer
    [Google Scholar]
  17. Bullock TH. 1984b.. Comparative neuroscience holds promise for quiet revolutions. . Science 225::47378
    [Crossref] [Google Scholar]
  18. Bullock TH. 1999.. Neuroethology has pregnant agendas. . J. Comp. Physiol. A 185::29195
    [Crossref] [Google Scholar]
  19. Card G, Dickinson MH. 2008a.. Performance trade-offs in the flight initiation of Drosophila. . J. Exp. Biol. 211::34153
    [Crossref] [Google Scholar]
  20. Card G, Dickinson MH. 2008b.. Visually mediated motor planning in the escape response of Drosophila. . Curr. Biol. 18::13007
    [Crossref] [Google Scholar]
  21. Carr CE, Konishi M. 1990.. A circuit for detection of interaural time differences in the brain stem of the barn owl. . J. Neurosci. 10::322746
    [Crossref] [Google Scholar]
  22. Caselli CB, Ayres PHB, Castro SCN, Souto A, Schiel N, Miller CT. 2018.. The role of extragroup encounters in a neotropical, cooperative breeding primate, the common marmoset: a field playback experiment. . Anim. Behav. 136::13746
    [Crossref] [Google Scholar]
  23. Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A, et al. 2002.. Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. . Genome Biol. 3::RESEARCH0079
    [Crossref] [Google Scholar]
  24. Charnov E, Orians GH. 1973.. Optimal Foraging: Some Theoretical Explorations. Albuquerque, NM:: Univ. New Mexico Press
    [Google Scholar]
  25. Cheong HSJ, Eichler K, Stürner T, Asinof SK, Champion AS, et al. 2024.. Transforming descending input into behavior: the organization of premotor circuits in the Drosophila male adult nerve cord connectome. . eLife 13::RP96084
    [Google Scholar]
  26. Churchland AK, Kiani R, Shadlen MN. 2008.. Decision-making with multiple alternatives. . Nat. Neurosci. 11::693702
    [Crossref] [Google Scholar]
  27. Clowney EJ, Iguchi S, Bussell JJ, Scheer E, Ruta V. 2015.. Multimodal chemosensory circuits controlling male courtship in Drosophila. . Neuron 87::103649
    [Crossref] [Google Scholar]
  28. Corfas RA, Sharma T, Dickinson MH. 2019.. Diverse food-sensing neurons trigger idiothetic local search in Drosophila. . Curr. Biol. 29::166068.e4
    [Crossref] [Google Scholar]
  29. DasGupta S, Ferreira CH, Miesenbock G. 2014.. FoxP influences the speed and accuracy of a perceptual decision in Drosophila. . Science 344::9014
    [Crossref] [Google Scholar]
  30. DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, et al. 2013.. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. . Nature 498::48791
    [Crossref] [Google Scholar]
  31. Deng H, Xiao X, Wang Z. 2016.. Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. . J. Neurosci. 36::758088
    [Crossref] [Google Scholar]
  32. Dennis EJ, El Hady A, Michaiel A, Clemens A, Gowan Tervo DR, et al. 2021.. Systems neuroscience of natural behaviors in rodents. . J. Neurosci. 41::91119
    [Crossref] [Google Scholar]
  33. Dickson BJ. 2008.. Wired for sex: the neurobiology of Drosophila mating decisions. . Science 322::9049
    [Crossref] [Google Scholar]
  34. Ding Y, Berrocal A, Morita T, Longden KD, Stern DL. 2016.. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. . Nature 536::32932
    [Crossref] [Google Scholar]
  35. Dombrovski M, Peek MY, Park JY, Vaccari A, Sumathipala M, et al. 2023.. Synaptic gradients transform object location to action. . Nature 613::53442
    [Crossref] [Google Scholar]
  36. Domenici P, Blagburn JM, Bacon JP. 2011.. Animal escapology I: theoretical issues and emerging trends in escape trajectories. . J. Exp. Biol. 214::246373
    [Crossref] [Google Scholar]
  37. Domenici P, Booth D, Blagburn JM, Bacon JP. 2008.. Cockroaches keep predators guessing by using preferred escape trajectories. . Curr. Biol. 18::179296
    [Crossref] [Google Scholar]
  38. Dorkenwald S, McKellar CE, Macrina T, Kemnitz N, Lee K, et al. 2022.. FlyWire: online community for whole-brain connectomics. . Nat. Methods 19::11928
    [Crossref] [Google Scholar]
  39. Driver PM, Humphries DA. 1988.. Protean Behaviour: The Biology of Unpredictability. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  40. Dukas R. 2020.. Natural history of social and sexual behavior in fruit flies. . Sci. Rep. 10::21932
    [Crossref] [Google Scholar]
  41. Ebrahim SAM, Talross GJS, Carlson JR. 2021.. Sight of parasitoid wasps accelerates sexual behavior and upregulates a micropeptide gene in Drosophila. . Nat. Commun. 12::2453
    [Crossref] [Google Scholar]
  42. Edwards DH, Heitler WJ, Krasne FB. 1999.. Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. . Trends Neurosci. 22::15361
    [Crossref] [Google Scholar]
  43. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, et al. 2017.. The complete connectome of a learning and memory centre in an insect brain. . Nature 548::17582
    [Crossref] [Google Scholar]
  44. Esch T, Kristan WB Jr. 2002.. Decision-making in the leech nervous system. . Integr. Comp. Biol. 42::71624
    [Crossref] [Google Scholar]
  45. Esch T, Mesce KA, Kristan WB. 2002.. Evidence for sequential decision making in the medicinal leech. . J. Neurosci. 22::1104554
    [Crossref] [Google Scholar]
  46. Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T. 2018.. A synaptic threshold mechanism for computing escape decisions. . Nature 558::59094
    [Crossref] [Google Scholar]
  47. Fanselow MS. 2022.. Negative valence systems: sustained threat and the predatory imminence continuum. . Emerg. Top. Life Sci. 6::46777
    [Crossref] [Google Scholar]
  48. Fanselow MS, Decola JP, De Oca BM, Landeira-Fernandez J. 1995.. Ventral and dorsolateral regions of the midbrain periaqueductal gray (PAG) control different stages of defensive behavior: Dorsolateral PAG lesions enhance the defensive freezing produced by massed and immediate shock. . Aggress. Behav. 21::6377
    [Crossref] [Google Scholar]
  49. Gibson WT, Gonzalez CR, Fernandez C, Ramasamy L, Tabachnik T, et al. 2015.. Behavioral responses to a repetitive visual threat stimulus express a persistent state of defensive arousal in Drosophila. . Curr. Biol. 25::140115
    [Crossref] [Google Scholar]
  50. Glimcher P. 2002.. Decisions, decisions, decisions: choosing a biological science of choice. . Neuron 36::32332
    [Crossref] [Google Scholar]
  51. Gold JI, Shadlen MN. 2007.. The neural basis of decision making. . Annu. Rev. Neurosci. 30::53574
    [Crossref] [Google Scholar]
  52. Green J, Vijayan V, Mussells Pires P, Adachi A, Maimon G. 2019.. A neural heading estimate is compared with an internal goal to guide oriented navigation. . Nat. Neurosci. 22::146068
    [Crossref] [Google Scholar]
  53. Hall JC. 1994.. The mating of a fly. . Science 264::170214
    [Crossref] [Google Scholar]
  54. Hattori R, Danskin B, Babic Z, Mlynaryk N, Komiyama T. 2019.. Area-specificity and plasticity of history-dependent value coding during learning. . Cell 177::185872.e15
    [Crossref] [Google Scholar]
  55. Heiligenberg W. 1991.. The neural basis of behavior: a neuroethological view. . Annu. Rev. Neurosci. 14::24767
    [Crossref] [Google Scholar]
  56. Hemmi JM, Tomsic D. 2015.. Differences in the escape response of a grapsid crab in the field and in the laboratory. . J. Exp. Biol. 218::3499507
    [Google Scholar]
  57. Herberholz J, Marquart GD. 2012.. Decision making and behavioral choice during predator avoidance. . Front. Neurosci. 6::125
    [Crossref] [Google Scholar]
  58. Hernandez A, Zainos A, Romo R. 2000.. Neuronal correlates of sensory discrimination in the somatosensory cortex. . PNAS 97::619196
    [Crossref] [Google Scholar]
  59. Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, et al. 2021.. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. . eLife 10::e66039
    [Crossref] [Google Scholar]
  60. Humphries DA, Driver PM. 1970.. Protean defence by prey animals. . Oecologia 5::285302
    [Crossref] [Google Scholar]
  61. Itskov PM, Ribeiro C. 2013.. The dilemmas of the gourmet fly: the molecular and neuronal mechanisms of feeding and nutrient decision making in Drosophila. . Front. Neurosci. 7::12
    [Crossref] [Google Scholar]
  62. Jeffress LA. 1948.. A place theory of sound localization. . J. Comp. Physiol. Psychol. 41::3539
    [Crossref] [Google Scholar]
  63. Kennedy A, Kunwar PS, Li LY, Stagkourakis S, Wagenaar DA, Anderson DJ. 2020.. Stimulus-specific hypothalamic encoding of a persistent defensive state. . Nature 586::73034
    [Crossref] [Google Scholar]
  64. Klapoetke NC, Nern A, Peek MY, Rogers EM, Breads P, et al. 2017.. Ultra-selective looming detection from radial motion opponency. . Nature 551::23741
    [Crossref] [Google Scholar]
  65. Klapoetke NC, Nern A, Rogers EM, Rubin GM, Reiser MB, Card GM. 2022.. A functionally ordered visual feature map in the Drosophila brain. . Neuron 110::170011.e6
    [Crossref] [Google Scholar]
  66. Knudsen EI, Konishi M. 1978.. A neural map of auditory space in the owl. . Science 200::79597
    [Crossref] [Google Scholar]
  67. Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, et al. 2007.. Innate versus learned odour processing in the mouse olfactory bulb. . Nature 450::5038
    [Crossref] [Google Scholar]
  68. Konopka RJ. 1987.. Genetics of biological rhythms in Drosophila. . Annu. Rev. Genet. 21::22736
    [Crossref] [Google Scholar]
  69. Kristan WB. 2008.. Neuronal decision-making circuits. . Curr. Biol. 18::R92832
    [Crossref] [Google Scholar]
  70. Lee KH, Tran A, Turan Z, Meister M. 2020.. The sifting of visual information in the superior colliculus. . eLife 9::e50678
    [Crossref] [Google Scholar]
  71. Lefevre T, de Roode JC, Kacsoh BZ, Schlenke TA. 2012.. Defence strategies against a parasitoid wasp in Drosophila: fight or flight?. Biol. Lett. 8::23033
    [Crossref] [Google Scholar]
  72. Lesser E, Azevedo AW, Phelps JS, Elabbady L, Cook A, et al. 2023.. Synaptic architecture of leg and wing motor control networks in Drosophila. . bioRxiv 2023.05.30.542725. https://doi.org/10.1101/2023.05.30.542725
  73. Li F, Lindsey JW, Marin EC, Otto N, Dreher M, et al. 2020.. The connectome of the adult Drosophila mushroom body provides insights into function. . eLife 9::e62576
    [Crossref] [Google Scholar]
  74. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, et al. 2011.. Functional identification of an aggression locus in the mouse hypothalamus. . Nature 470::22126
    [Crossref] [Google Scholar]
  75. Liu YC, Bailey I, Hale ME. 2012.. Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). . J. Comp. Physiol. A 198::1124
    [Crossref] [Google Scholar]
  76. Liu YC, Hale ME. 2017.. Local spinal cord circuits and bilateral Mauthner cell activity function together to drive alternative startle behaviors. . Curr. Biol. 27::697704
    [Crossref] [Google Scholar]
  77. Liu Z, Kariya MJ, Chute CD, Pribadi AK, Leinwand SG, et al. 2018.. Predator-secreted sulfolipids induce defensive responses in C. elegans. . Nat. Commun. 9::1128
    [Crossref] [Google Scholar]
  78. Luan H, Diao F, Scott RL, White BH. 2020.. The Drosophila Split Gal4 system for neural circuit mapping. . Front. Neural Circuits 14::603397
    [Crossref] [Google Scholar]
  79. Luan H, Peabody NC, Vinson CR, White BH. 2006.. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. . Neuron 52::42536
    [Crossref] [Google Scholar]
  80. Luo L, Callaway EM, Svoboda K. 2008.. Genetic dissection of neural circuits. . Neuron 57::63460
    [Crossref] [Google Scholar]
  81. Mansourian S, Enjin A, Jirle EV, Ramesh V, Rehermann G, et al. 2018.. Wild African Drosophila melanogaster are seasonal specialists on marula fruit. . Curr. Biol. 28::396068.e3
    [Crossref] [Google Scholar]
  82. Marin EC, Morris BJ, Stürner T, Champion AS, Krzeminski D, et al. 2024.. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organization. . bioRxiv 2023.06.05.543407. https://doi.org/10.1101/2023.06.05.543407
  83. Markow TA. 2015.. The secret lives of Drosophila flies. . eLife 4::e06793
    [Crossref] [Google Scholar]
  84. Marlin BJ, Mitre M, D'Amour JA, Chao MV, Froemke RC. 2015.. Oxytocin enables maternal behaviour by balancing cortical inhibition. . Nature 520::499504
    [Crossref] [Google Scholar]
  85. Marquart GD, Tabor KM, Bergeron SA, Briggman KL, Burgess HA. 2019.. Prepontine non-giant neurons drive flexible escape behavior in zebrafish. . PLOS Biol. 17::e3000480
    [Crossref] [Google Scholar]
  86. Meissner GW, Nern A, Dorman Z, DePasquale GM, Forster K, et al. 2023.. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. . eLife 12::e80660
    [Crossref] [Google Scholar]
  87. Meissner GW, Vannan A, Jeter J, Atkins M, Bowers S, et al. 2024.. A split-GAL4 driver line resource for Drosophila CNS cell types. . bioRxiv 2024.01.09.574419. https://doi.org/10.1101/2024.01.09.574419
  88. Morcos AS, Harvey CD. 2016.. History-dependent variability in population dynamics during evidence accumulation in cortex. . Nat. Neurosci. 19::167281
    [Crossref] [Google Scholar]
  89. Ofstad TA, Zuker CS, Reiser MB. 2011.. Visual place learning in Drosophila melanogaster. . Nature 474::2047
    [Crossref] [Google Scholar]
  90. Okobi DE Jr., Banerjee A, Matheson AMM, Phelps SM, Long MA. 2019.. Motor cortical control of vocal interaction in neotropical singing mice. . Science 363::98388
    [Crossref] [Google Scholar]
  91. Omoto JJ, Keles MF, Nguyen BM, Bolanos C, Lovick JK, et al. 2017.. Visual input to the Drosophila central complex by developmentally and functionally distinct neuronal populations. . Curr. Biol. 27::1098110
    [Crossref] [Google Scholar]
  92. Oram TB, Card GM. 2022.. Context-dependent control of behavior in Drosophila. . Curr. Opin. Neurobiol. 73::102523
    [Crossref] [Google Scholar]
  93. Orger MB, de Polavieja GG. 2017.. Zebrafish behavior: opportunities and challenges. . Annu. Rev. Neurosci. 40::12547
    [Crossref] [Google Scholar]
  94. O'Shea M, Rowell CH. 1976.. The neuronal basis of a sensory analyser, the acridid movement detector system. II. Response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. . J. Exp. Biol. 65::289308
    [Crossref] [Google Scholar]
  95. Panser K, Tirian L, Schulze F, Villalba S, Jefferis G, et al. 2016.. Automatic segmentation of Drosophila neural compartments using GAL4 expression data reveals novel visual pathways. . Curr. Biol. 26::194354
    [Crossref] [Google Scholar]
  96. Papes F, Logan DW, Stowers L. 2010.. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. . Cell 141::692703
    [Crossref] [Google Scholar]
  97. Peek MY, Card GM. 2016.. Comparative approaches to escape. . Curr. Opin. Neurobiol. 41::16773
    [Crossref] [Google Scholar]
  98. Petrucco L, Lavian H, Wu YK, Svara F, Stih V, Portugues R. 2023.. Neural dynamics and architecture of the heading direction circuit in zebrafish. . Nat. Neurosci. 26::76573
    [Crossref] [Google Scholar]
  99. Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, et al. 2010.. Refinement of tools for targeted gene expression in Drosophila. . Genetics 186::73555
    [Crossref] [Google Scholar]
  100. Platt ML, Glimcher PW. 1999.. Neural correlates of decision variables in parietal cortex. . Nature 400::23338
    [Crossref] [Google Scholar]
  101. Plaza SM, Clements J, Dolafi T, Umayam L, Neubarth NN, et al. 2022.. neuPrint: an open access tool for EM connectomics. . Front. Neuroinform. 16::896292
    [Crossref] [Google Scholar]
  102. Pobbe RL, Zangrossi H Jr., Blanchard DC, Blanchard RJ. 2011.. Involvement of dorsal raphe nucleus and dorsal periaqueductal gray 5-HT receptors in the modulation of mouse defensive behaviors. . Eur. Neuropsychopharmacol. 21::30615
    [Crossref] [Google Scholar]
  103. Potter CJ, Tasic B, Russler EV, Liang L, Luo L. 2010.. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. . Cell 141::53648
    [Crossref] [Google Scholar]
  104. Power ME. 1948.. The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. . J. Comp. Neurol. 88::347409
    [Crossref] [Google Scholar]
  105. Quinn WG, Harris WA, Benzer S. 1974.. Conditioned behavior in Drosophila melanogaster. . PNAS 71::70812
    [Crossref] [Google Scholar]
  106. Resulaj A, Kiani R, Wolpert DM, Shadlen MN. 2009.. Changes of mind in decision-making. . Nature 461::26366
    [Crossref] [Google Scholar]
  107. Ritzmann RE, Tobias ML, Fourtner CR. 1980.. Flight activity initiated via giant interneurons of the cockroach: evidence for bifunctional trigger interneurons. . Science 210::44345
    [Crossref] [Google Scholar]
  108. Root CM, Denny CA, Hen R, Axel R. 2014.. The participation of cortical amygdala in innate, odour-driven behaviour. . Nature 515::26973
    [Crossref] [Google Scholar]
  109. Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, et al. 2020.. A connectome and analysis of the adult Drosophila central brain. . eLife 9::e57443
    [Crossref] [Google Scholar]
  110. Schlegel P, Bates AS, Sturner T, Jagannathan SR, Drummond N, et al. 2021.. Information flow, cell types and stereotypy in a full olfactory connectome. . eLife 10::e66018
    [Crossref] [Google Scholar]
  111. Seeholzer LF, Seppo M, Stern DL, Ruta V. 2018.. Evolution of a central neural circuit underlies Drosophila mate preferences. . Nature 559::56469
    [Crossref] [Google Scholar]
  112. Seelig JD, Jayaraman V. 2015.. Neural dynamics for landmark orientation and angular path integration. . Nature 521::18691
    [Crossref] [Google Scholar]
  113. Shadlen MN, Newsome WT. 1996.. Motion perception: seeing and deciding. . PNAS 93::62833
    [Crossref] [Google Scholar]
  114. Shadlen MN, Newsome WT. 2001.. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. . J. Neurophysiol. 86::191636
    [Crossref] [Google Scholar]
  115. Shang C, Chen Z, Liu A, Li Y, Zhang J, et al. 2018.. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. . Nat. Commun. 9::1232
    [Crossref] [Google Scholar]
  116. Shaw BK, Kristan WB Jr. 1995.. The whole-body shortening reflex of the medicinal leech: motor pattern, sensory basis, and interneuronal pathways. . J. Comp. Physiol. A 177::66781
    [Crossref] [Google Scholar]
  117. Shaw BK, Kristan WB Jr. 1997.. The neuronal basis of the behavioral choice between swimming and shortening in the leech: Control is not selectively exercised at higher circuit levels. . J. Neurosci. 17::78695
    [Crossref] [Google Scholar]
  118. Spiacci A Jr., de Oliveira Sergio T, da Silva GS, Glass ML, Schenberg LC, et al. 2015.. Serotonin in the dorsal periaqueductal gray inhibits panic-like defensive behaviors in rats exposed to acute hypoxia. . Neuroscience 307::19198
    [Crossref] [Google Scholar]
  119. Stephens DW, Krebs JR. 1986.. Foraging Theory. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  120. Stevens CF. 2015.. What the fly's nose tells the fly's brain. . PNAS 112::946065
    [Crossref] [Google Scholar]
  121. Strausfeld NJ, Okamura JY. 2007.. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. . J. Comp. Neurol. 500::16688
    [Crossref] [Google Scholar]
  122. Sun H, Frost BJ. 1998.. Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. . Nat. Neurosci. 1::296303
    [Crossref] [Google Scholar]
  123. Takemura S-Y, Aso Y, Hige T, Wong A, Lu Z, et al. 2017.. A connectome of a learning and memory center in the adult Drosophila brain. . eLife 6::e26975
    [Crossref] [Google Scholar]
  124. Takemura S-Y, Hayworth KJ, Huang GB, Januszewski M, Lu Z, et al. 2023.. A connectome of the male Drosophila ventral nerve cord. . bioRxiv 2023.06.05.543757 https://doi.org/10.1101/2023.06.05.543757
  125. Tammero LF, Dickinson MH. 2002.. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. . J. Exp. Biol. 205::278598
    [Crossref] [Google Scholar]
  126. Taube JS. 2007.. The head direction signal: origins and sensory-motor integration. . Annu. Rev. Neurosci. 30::181207
    [Crossref] [Google Scholar]
  127. ter Hofstede HM, Goerlitz HR, Ratcliffe JM, Holderied MW, Surlykke A. 2013.. The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community. . J. Exp. Biol. 216::395462
    [Google Scholar]
  128. Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, et al. 2016.. Midbrain circuits for defensive behaviour. . Nature 534::20612
    [Crossref] [Google Scholar]
  129. Trimarchi JR, Schneiderman AM. 1993.. Giant fiber activation of an intrinsic muscle in the mesothoracic leg of Drosophila melanogaster. . J. Exp. Biol. 177::14967
    [Crossref] [Google Scholar]
  130. Vale R, Evans DA, Branco T. 2017.. Rapid spatial learning controls instinctive defensive behavior in mice. . Curr. Biol. 27::134249
    [Crossref] [Google Scholar]
  131. van Breugel F. 2021.. Correlated decision making across multiple phases of olfactory-guided search in Drosophila improves search efficiency. . J. Exp. Biol. 224::jeb242267
    [Crossref] [Google Scholar]
  132. Venken KJ, Simpson JH, Bellen HJ. 2011.. Genetic manipulation of genes and cells in the nervous system of the fruit fly. . Neuron 72::20230
    [Crossref] [Google Scholar]
  133. Vijayan V, Wang F, Wang K, Chakravorty A, Adachi A, et al. 2023.. A rise-to-threshold process for a relative-value decision. . Nature 619::56371
    [Crossref] [Google Scholar]
  134. von Reyn CR, Breads P, Peek MY, Zheng GZ, Williamson WR, et al. 2014.. A spike-timing mechanism for action selection. . Nat. Neurosci. 17::96270
    [Crossref] [Google Scholar]
  135. von Reyn CR, Nern A, Williamson WR, Breads P, Wu M, et al. 2017.. Feature integration drives probabilistic behavior in the Drosophila escape response. . Neuron 94::1190204.e6
    [Crossref] [Google Scholar]
  136. Vrontou E, Groschner LN, Szydlowski S, Brain R, Krebbers A, Miesenbock G. 2021.. Response competition between neurons and antineurons in the mushroom body. . Curr. Biol. 31::491122.e4
    [Crossref] [Google Scholar]
  137. Wang L, Chen IZ, Lin D. 2015.. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. . Neuron 85::134458
    [Crossref] [Google Scholar]
  138. Weir PT, Dickinson MH. 2015.. Functional divisions for visual processing in the central brain of flying Drosophila. . PNAS 112::E552332
    [Crossref] [Google Scholar]
  139. Wiersma CA, Ikeda K. 1964.. Interneurons commanding swimmeret movements in the crayfish, Procambarus clarki (girard). . Comp. Biochem. Physiol. 12::50925
    [Crossref] [Google Scholar]
  140. Williamson WR, Peek MY, Breads P, Coop B, Card GM. 2018.. Tools for rapid high-resolution behavioral phenotyping of automatically isolated Drosophila. . Cell Rep. 25::163649.e5
    [Crossref] [Google Scholar]
  141. Winding M, Pedigo BD, Barnes CL, Patsolic HG, Park Y, et al. 2023.. The connectome of an insect brain. . Science 379::eadd9330
    [Crossref] [Google Scholar]
  142. Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, et al. 2016.. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. . eLife 5::e21022
    [Crossref] [Google Scholar]
  143. Wyman RJ, Thomas JB, Salkoff L, King DG. 1984.. The Drosophila giant fiber system. . In Neural Mechanisms of Startle Behavior, ed. RC Eaton , pp. 13361. New York:: Springer
    [Google Scholar]
  144. Yagi R, Mayer F, Basler K. 2010.. Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. . PNAS 107::1616671
    [Crossref] [Google Scholar]
  145. Yang CH, Belawat P, Hafen E, LY Jan, Jan YN. 2008.. Drosophila egg-laying site selection as a system to study simple decision-making processes. . Science 319::167983
    [Crossref] [Google Scholar]
  146. Ydenberg RC, Dill LM. 1986.. The economics of fleeing from predators. . Adv. Study Behav. 16::22949
    [Crossref] [Google Scholar]
  147. Yilmaz M, Meister M. 2013.. Rapid innate defensive responses of mice to looming visual stimuli. . Curr. Biol. 23::201115
    [Crossref] [Google Scholar]
  148. Zacarias R, Namiki S, Card GM, Vasconcelos ML, Moita MA. 2018.. Speed dependent descending control of freezing behavior in Drosophila melanogaster. . Nat. Commun. 9::3697
    [Crossref] [Google Scholar]
  149. Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, et al. 2018.. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. . Cell 174::73043.e22
    [Crossref] [Google Scholar]
  150. Zingg B, Chou XL, Zhang ZG, Mesik L, Liang F, et al. 2017.. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. . Neuron 93::3347
    [Crossref] [Google Scholar]
  151. Zipursky SL, Sanes JR. 2010.. Chemoaffinity revisited: Dscams, protocadherins, and neural circuit assembly. . Cell 143::34353
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-094019
Loading
/content/journals/10.1146/annurev-neuro-111020-094019
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error