1932

Abstract

We review dark matter (DM) candidates of a very low mass appearing in the window below the traditional weakly interacting massive particle ( ≲ 10 GeV) and extending down to ≳ 1 meV, somewhat below the mass limit at which DM becomes wavelike. Such candidates are motivated by hidden sectors such as hidden valleys, which feature hidden forces and rich dynamics, but have evaded traditional accelerator searches for New Physics because of their relatively weak coupling to the Standard Model (SM). Such sectors can still be detected through dedicated low-energy colliders, which, through their intense beams, can have sensitivity to smaller couplings, or through astrophysical observations of the evolution of DM halos and stellar structures, which, through the Universe's epochs, can be sensitive to small DM interactions. We also consider mechanisms whereby the DM abundance is fixed through the interaction with the SM, which directly motivates the search for light DM in terrestrial experiments. The bulk of this review is dedicated to the new ideas that have been proposed for direct detection of such DM candidates of a low mass through nuclear recoils, electronic excitations, or collective modes such as phonons and magnons. The rich tapestry of materials and modes in the condensed matter landscape is reviewed along with specific prospects for detection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023542
2024-09-26
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/nucl/74/1/annurev-nucl-101918-023542.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023542&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bertone G, Hooper D, Silk J. Phys. Rep. 405::279 ( 2005.); Bertone G, Hooper D, Silk J. arXiv:hep-ph/0404175 ( 2004.)
    [Crossref] [Google Scholar]
  2. 2.
    Cooley J, et al. arXiv:2209.07426 [hep-ph] ( 2022.)
  3. 3.
    Adams CB, et al. arXiv:2203.14923 [hep-ex] ( 2022.)
  4. 4.
    Afshordi N, McDonald P, Spergel DN. Astrophys. J. Lett. 594::L71 ( 2003.); Afshordi N, McDonald P, Spergel DN. arXiv:astro-ph/0302035 ( 2003.)
    [Crossref] [Google Scholar]
  5. 5.
    Ramani H, Trickle T, Zurek KM. J. Cosmol. Astropart. Phys. 2012::033 ( 2020.); Ramani H, Trickle T, Zurek KM. arXiv:2005.03030 [astro-ph.CO] ( 2020.)
    [Google Scholar]
  6. 6.
    Van Tilburg K, Taki AM, Weiner N. J. Cosmol. Astropart. Phys. 1807::041 ( 2018.); Van Tilburg K, Taki AM, Weiner N. arXiv:1804.01991 [astro-ph.CO] ( 2018.)
    [Google Scholar]
  7. 7.
    Gresham MI, Lee VSH, Zurek KM. J. Cosmol. Astropart. Phys. 2302::048 ( 2023.); Gresham MI, Lee VSH, Zurek KM. arXiv:2209.03963 [astro-ph.HE] ( 2022.)
    [Google Scholar]
  8. 8.
    Battaglieri M, et al. arXiv:1707.04591 [hep-ph] ( 2017.)
  9. 9.
    Nadler EO, et al. (DES Collab.) Phys. Rev. Lett. 126::091101 ( 2021.); Nadler EO , et al. (DES Collab.) arXiv:2008.00022 [astro-ph.CO] ( 2020.)
    [Crossref] [Google Scholar]
  10. 10.
    Strassler MJ, Zurek KM. Phys. Lett. B 651::374 ( 2007.); Strassler MJ, Zurek KM. arXiv:hep-ph/0604261 ( 2006.)
    [Crossref] [Google Scholar]
  11. 11.
    Strassler MJ, Zurek KM. Phys. Lett. B 661::263 ( 2008.); Strassler MJ, Zurek KM. arXiv:hep-ph/0605193 ( 2006.)
    [Crossref] [Google Scholar]
  12. 12.
    Boehm C, Fayet P. Nucl. Phys. B 683::219 ( 2004.); Boehm C, Fayet P. arXiv:hep-ph/0305261 (2003.)
    [Crossref] [Google Scholar]
  13. 13.
    Pospelov M, Ritz A, Voloshin MB. Phys. Lett. B 662::53 ( 2008.); Pospelov M, Ritz A, Voloshin MB. arXiv:0711.4866 [hep-ph] ( 2007.)
    [Crossref] [Google Scholar]
  14. 14.
    Pospelov M, Ritz A. Phys. Lett. B 671::391 ( 2009.); Pospelov M, Ritz A. arXiv:0810.1502 [hep-ph] ( 2008.)
    [Crossref] [Google Scholar]
  15. 15.
    Kaplan DE, Luty MA, Zurek KM. Phys. Rev. D 79::115016 ( 2009.); Kaplan DE, Luty MA, Zurek KM. arXiv:0901.4117 [hep-ph] ( 2009.)
    [Crossref] [Google Scholar]
  16. 16.
    Zurek KM. Phys. Rep. 537::91 ( 2014.); Zurek KM. arXiv:1308.0338 [hep-ph] ( 2013.)
    [Crossref] [Google Scholar]
  17. 17.
    Kaplan DE, Krnjaic GZ, Rehermann KR, Wells CM. J. Cosmol. Astropart. Phys. 1005::021 ( 2010.); Kaplan DE, Krnjaic GZ, Rehermann KR, Wells CM. arXiv:0909.0753 [hep-ph] ( 2009.)
    [Google Scholar]
  18. 18.
    Kribs GD, Roy TS, Terning J, Zurek KM. Phys. Rev. D 81::095001 ( 2010.); Kribs GD, Roy TS, Terning J, Zurek KM. arXiv:0909.2034 [hep-ph] ( 2009.)
    [Crossref] [Google Scholar]
  19. 19.
    Boddy KK, Feng JL, Kaplinghat M, Tait TMP. Phys. Rev. D 89:(11):115017 ( 2014.); Boddy KK, Feng JL, Kaplinghat M, Tait TMP. arXiv:1402.3629 [hep-ph] (2014.)
    [Crossref] [Google Scholar]
  20. 20.
    Feng JL, Kumar J. Phys. Rev. Lett. 101::231301 ( 2008.); Feng JL, Kumar J. arXiv:0803.4196 [hep-ph] ( 2008.)
    [Crossref] [Google Scholar]
  21. 21.
    Hochberg Y, et al. Phys. Rev. Lett. 115:(2):021301 ( 2015.); Hochberg Y , et al. arXiv:1411.3727 [hep-ph] ( 2014.)
    [Crossref] [Google Scholar]
  22. 22.
    Holdom B. Phys. Lett. B 166::196 ( 1986.)
    [Crossref] [Google Scholar]
  23. 23.
    Hooper D, Zurek KM. Phys. Rev. D 77::087302 ( 2008.); Hooper D, Zurek KM. arXiv:0801.3686 [hep-ph] ( 2008.)
    [Crossref] [Google Scholar]
  24. 24.
    Knapen S, Lin T, Zurek KM. Phys. Rev. D 96:(11):115021 ( 2017.); Knapen S, Lin T, Zurek KM. arXiv:1709.07882 [hep-ph] ( 2017.)
    [Crossref] [Google Scholar]
  25. 25.
    Patt B, Wilczek F. arXiv:hep-ph/0605188 ( 2006.)
  26. 26.
    Hooper D, March-Russell J, West SM. Phys. Lett. B 605::228 ( 2005.); Hooper D, March-Russell J, West SM. arXiv:hep-ph/0410114 ( 2004.)
    [Crossref] [Google Scholar]
  27. 27.
    Alekhin S, et al. Rep. Prog. Phys. 79:(12):124201 ( 2016.); Alekhin S , et al. arXiv:1504.04855 [hep-ph] ( 2015.)
    [Crossref] [Google Scholar]
  28. 28.
    Murgui C, Zurek KM. Phys. Rev. D 105:(9):095002 ( 2022.); Murgui C, Zurek KM. arXiv:2112.08374 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  29. 29.
    Cohen T, Phalen DJ, Pierce A, Zurek KM. Phys. Rev. D 82::056001 ( 2010.); Cohen T, Phalen DJ, Pierce A, Zurek KM. arXiv:1005.1655 [hep-ph] ( 2010.)
    [Crossref] [Google Scholar]
  30. 30.
    Galli S, Iocco F, Bertone G, Melchiorri A. Phys. Rev. D 84::027302 ( 2011.); Galli S, Iocco F, Bertone G, Melchiorri A. arXiv:1106.1528 [astro-ph.CO] ( 2011.)
    [Crossref] [Google Scholar]
  31. 31.
    Finkbeiner DP, Galli S, Lin T, Slatyer TR. Phys. Rev. D 85::043522 ( 2012.); Finkbeiner DP, Galli S, Lin T, Slatyer TR. arXiv:1109.6322 [astro-ph.CO] ( 2011.)
    [Crossref] [Google Scholar]
  32. 32.
    Lin T, Yu HB, Zurek KM. Phys. Rev. D 85::063503 ( 2012.); Lin T, Yu HB, Zurek KM. arXiv:1111.0293 [hep-ph] ( 2011.)
    [Crossref] [Google Scholar]
  33. 33.
    Madhavacheril MS, Sehgal N, Slatyer TR. Phys. Rev. D 89::103508 ( 2014.); Madhavacheril MS, Sehgal N, Slatyer TR. arXiv:1310.3815 [astro-ph.CO] ( 2013.)
    [Crossref] [Google Scholar]
  34. 34.
    Boehm C, Fayet P, Silk J. Phys. Rev. D 69::101302 ( 2004.); Boehm C, Fayet P, Silk J. arXiv:hep-ph/0311143 ( 2003.)
    [Crossref] [Google Scholar]
  35. 35.
    Hooper D, Kaplinghat M, Strigari LE, Zurek KM. Phys. Rev. D 76::103515 ( 2007.); Hooper D, Kaplinghat M, Strigari LE, Zurek KM. arXiv:0704.2558 [astro-ph] ( 2007.)
    [Crossref] [Google Scholar]
  36. 36.
    Graesser ML, Shoemaker IM, Vecchi L. J. High Energy Phys. 1110::110 ( 2011.); Graesser ML, Shoemaker IM, Vecchi L. arXiv:1103.2771 [hep-ph] ( 2011.)
    [Google Scholar]
  37. 37.
    Hall LJ, Jedamzik K, March-Russell J, West SM. J. High Energy Phys. 1003::80 ( 2010.); Hall LJ, Jedamzik K, March-Russell J, West SM. arXiv:0911.1120 [hep-ph] ( 2009.)
    [Google Scholar]
  38. 38.
    Dvorkin C, Lin T, Schutz K. Phys. Rev. D 99:(11):115009 ( 2019.). Erratum. Phys. Rev. D 105::119901 ( 2022.); Dvorkin C, Lin T, Schutz K. arXiv:1902.08623 [hep-ph] ( 2019.)
    [Google Scholar]
  39. 39.
    Chu X, Hambye T, Tytgat MHG. J. Cosmol. Astropart. Phys. 1205::034 ( 2012.); Chu X, Hambye T, Tytgat MHG. arXiv:1112.0493 [hep-ph] ( 2011.)
    [Google Scholar]
  40. 40.
    Hochberg Y, Kuflik E, Volansky T, Wacker JG. Phys. Rev. Lett. 113::171301 ( 2014.); Hochberg Y, Kuflik E, Volansky T, Wacker JG. arXiv:1402.5143 [hep-ph] ( 2014.)
    [Crossref] [Google Scholar]
  41. 41.
    Kuflik E, Perelstein M, Lorier NRL, Tsai YD. J. High Energy Phys. 1708::78 ( 2017.); Kuflik E, Perelstein M, Lorier NRL, Tsai YD. arXiv:1706.05381 [hep-ph] ( 2017.)
    [Google Scholar]
  42. 42.
    Carlson ED, Machacek ME, Hall LJ. Astrophys. J. 398::43 ( 1992.)
    [Crossref] [Google Scholar]
  43. 43.
    de Laix AA, Scherrer RJ, Schaefer RK. Astrophys. J. 452::495 ( 1995.); de Laix AA, Scherrer RJ, Schaefer RK. arXiv:astro-ph/9502087 ( 1995.)
    [Crossref] [Google Scholar]
  44. 44.
    Kuflik E, Perelstein M, Lorier NRL, Tsai YD. Phys. Rev. Lett. 116:(22):221302 ( 2016.); Kuflik E, Perelstein M, Lorier NRL, Tsai YD. arXiv:1512.04545 [hep-ph] ( 2015.)
    [Crossref] [Google Scholar]
  45. 45.
    Yeh TH, Olive KA, Fields BD. J. Cosmol. Astropart. Phys. 2103::046 ( 2021.); Yeh TH, Olive KA, Fields BD. arXiv:2011.13874 [astro-ph.CO] ( 2020.)
    [Google Scholar]
  46. 46.
    Yeh TH, Shelton J, Olive KA, Fields BD. J. Cosmol. Astropart. Phys. 2210::046 ( 2022.); Yeh TH, Shelton J, Olive KA, Fields BD. arXiv:2207.13133 [astro-ph.CO] ( 2022.)
    [Google Scholar]
  47. 47.
    Enzi W, et al. Mon. Not. R. Astron. Soc. 506:(4):5848 ( 2021.); Enzi W , et al. arXiv:2010.13802 [astro-ph.CO] ( 2020.)
    [Crossref] [Google Scholar]
  48. 48.
    Nelson AE, Scholtz J. Phys. Rev. D 84::103501 ( 2011.); Nelson AE, Scholtz J. arXiv:1105.2812 [hep-ph] ( 2011.)
    [Crossref] [Google Scholar]
  49. 49.
    Graham PW, Mardon J, Rajendran S. Phys. Rev. D 93:(10):103520 ( 2016.); Graham PW, Mardon J, Rajendran S. arXiv:1504.02102 [hep-ph] ( 2015.)
    [Crossref] [Google Scholar]
  50. 50.
    Tulin S, Yu HB. Phys. Rep. 730::1 ( 2018.); Tulin S, Yu HB. arXiv:1705.02358 [hep-ph] ( 2017.)
    [Crossref] [Google Scholar]
  51. 51.
    Hochberg Y, Pyle M, Zhao Y, Zurek KM. J. High Energy Phys. 1608::57 ( 2016.); Hochberg Y, Pyle M, Zhao Y, Zurek KM. arXiv:1512.04533 [hep-ph] ( 2015.)
    [Google Scholar]
  52. 52.
    Knapen S, Lin T, Pyle M, Zurek KM. Phys. Lett. B 785::386 ( 2018.); Knapen S, Lin T, Pyle M, Zurek KM. arXiv:1712.06598 [hep-ph] ( 2017.)
    [Crossref] [Google Scholar]
  53. 53.
    Raffelt GG. Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles. Chicago:: Univ. Chicago Press ( 1996.)
    [Google Scholar]
  54. 54.
    Chang JH, Essig R, McDermott SD. J. High Energy Phys. 1809::51 ( 2018.); Chang JH, Essig R, McDermott SD. arXiv:1803.00993 [hep-ph] ( 2018.)
    [Google Scholar]
  55. 55.
    Baryakhtar M, et al. Phys. Rev. Lett. 119:(13):131801 ( 2017.); Baryakhtar M , et al. arXiv:1704.01577 [hep-ph] ( 2017.)
    [Crossref] [Google Scholar]
  56. 56.
    Taoso M, et al. Phys. Rev. D 82::083509 ( 2010.); Taoso M , et al. arXiv:1005.5711 [astro-ph.CO] ( 2010.)
    [Crossref] [Google Scholar]
  57. 57.
    Zentner AR, Hearin AP. Phys. Rev. D 84::101302 ( 2011.); Zentner AR, Hearin AP. arXiv:1110.5919 [astro-ph.CO] ( 2011.)
    [Crossref] [Google Scholar]
  58. 58.
    Leung SC, Chu MC, Lin LM, Wong KW. Phys. Rev. D 87:(12):123506 ( 2013.); Leung SC, Chu MC, Lin LM, Wong KW. arXiv:1305.6142 [astro-ph.CO] ( 2013.)
    [Crossref] [Google Scholar]
  59. 59.
    Graham PW, et al. Phys. Rev. D 98:(11):115027 ( 2018.); Graham PW , et al. arXiv:1805.07381 [hep-ph] ( 2018.)
    [Crossref] [Google Scholar]
  60. 60.
    Joglekar A, Raj N, Tanedo P, Yu HB. Phys. Rev. D 102:(12):123002 ( 2020.); Joglekar A, Raj N, Tanedo P, Yu HB. arXiv:2004.09539 [hep-ph] ( 2020.)
    [Crossref] [Google Scholar]
  61. 61.
    Izaguirre E, Krnjaic G, Schuster P, Toro N. Phys. Rev. D 88::114015 ( 2013.); Izaguirre E, Krnjaic G, Schuster P, Toro N. arXiv:1307.6554 [hep-ph] ( 2013.)
    [Crossref] [Google Scholar]
  62. 62.
    Izaguirre E, Krnjaic G, Schuster P, Toro N. Phys. Rev. D 91:(9):094026 ( 2015.); Izaguirre E, Krnjaic G, Schuster P, Toro N. arXiv:1411.1404 [hep-ph] ( 2014.)
    [Crossref] [Google Scholar]
  63. 63.
    Bjorken JD, Essig R, Schuster P, Toro N. Phys. Rev. D 80::075018 ( 2009.); Bjorken JD, Essig R, Schuster P, Toro N. arXiv:0906.0580 [hep-ph] ( 2009.)
    [Crossref] [Google Scholar]
  64. 64.
    Andreas S, Niebuhr C, Ringwald A. Phys. Rev. D 86::095019 ( 2012.); Andreas S, Niebuhr C, Ringwald A. arXiv:1209.6083 [hep-ph] ( 2012.)
    [Crossref] [Google Scholar]
  65. 65.
    Trickle T, et al. J. High Energy Phys. 2003::36 ( 2020.); Trickle T , et al. arXiv:1910.08092 [hep-ph] ( 2019.)
    [Google Scholar]
  66. 66.
    Essig R, Mardon J, Volansky T. Phys. Rev. D 85::076007 ( 2012.); Essig R, Mardon J, Volansky T. arXiv:1108.5383 [hep-ph] ( 2011.)
    [Crossref] [Google Scholar]
  67. 67.
    Graham PW, Kaplan DE, Rajendran S, Walters MT. Phys. Dark Univ. 1::32 ( 2012.); Graham PW, Kaplan DE, Rajendran S, Walters MT. arXiv:1203.2531 [hep-ph] ( 2012.)
    [Crossref] [Google Scholar]
  68. 68.
    Essig R, et al. J. High Energy Phys. 1605::46 ( 2016.); Essig R , et al. arXiv:1509.01598 [hep-ph] ( 2015.)
    [Google Scholar]
  69. 69.
    Hochberg Y, et al. Phys. Rev. D 97:(1):015004 ( 2018.); Hochberg Y , et al. arXiv:1708.08929 [hep-ph] ( 2017.)
    [Crossref] [Google Scholar]
  70. 70.
    Essig R, Mardon J, Slone O, Volansky T. Phys. Rev. D 95:(5):056011 ( 2017.); Essig R, Mardon J, Slone O, Volansky T. arXiv:1608.02940 [hep-ph] ( 2016.)
    [Crossref] [Google Scholar]
  71. 71.
    Griffin SM, et al. Phys. Rev. D 101:(5):055004 ( 2020.); Griffin SM , et al. arXiv:1910.10716 [hep-ph] ( 2019.)
    [Crossref] [Google Scholar]
  72. 72.
    Anthony-Petersen R, et al. arXiv:2208.02790 [physics.ins-det] ( 2022.)
  73. 73.
    Trickle T, Zhang Z, Zurek KM. Phys. Rev. Lett. 124:(20):201801 ( 2020.); Trickle T, Zhang Z, Zurek KM. arXiv:1905.13744 [hep-ph] ( 2019.)
    [Crossref] [Google Scholar]
  74. 74.
    Blanco C, Collar JI, Kahn Y, Lillard B. Phys. Rev. D 101:(5):056001 ( 2020.); Blanco C, Collar JI, Kahn Y, Lillard B. arXiv:1912.02822 [hep-ph] ( 2019.)
    [Crossref] [Google Scholar]
  75. 75.
    Hochberg Y, Zhao Y, Zurek KM. Phys. Rev. Lett. 116:(1):011301 ( 2016.); Hochberg Y, Zhao Y, Zurek KM. arXiv:1504.07237 [hep-ph] ( 2015.)
    [Crossref] [Google Scholar]
  76. 76.
    Chen HY, et al. Phys. Rev. D 106:(1):015024 ( 2022.); Chen HY , et al. arXiv:2202.11716 [hep-ph] ( 2022.)
    [Crossref] [Google Scholar]
  77. 77.
    Hochberg Y, et al. Phys. Rev. Lett. 127:(15):151802 ( 2021.); Hochberg Y , et al. arXiv:2101.08263 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  78. 78.
    Du P, Egaña-Ugrinovic D, Essig R, Sholapurkar M. arXiv:2212.04504 [hep-ph] ( 2022.)
  79. 79.
    Trickle T, Zhang Z, Zurek KM. Phys. Rev. D 105:(1):015001 ( 2022.); Trickle T, Zhang Z, Zurek KM. arXiv:2009.13534 [hep-ph] ( 2020.)
    [Crossref] [Google Scholar]
  80. 80.
    Griffin SM, et al. Phys. Rev. D 104:(9):095015 ( 2021.); Griffin SM , et al. arXiv:2105.05253 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  81. 81.
    Lee SK, Lisanti M, Mishra-Sharma S, Safdi BR. Phys. Rev. D 92:(8):083517 ( 2015.); Lee SK, Lisanti M, Mishra-Sharma S, Safdi BR. arXiv:1508.07361 [hep-ph] ( 2015.)
    [Crossref] [Google Scholar]
  82. 82.
    Hochberg Y, et al. Phys. Lett. B 772::239 ( 2017.); Hochberg Y , et al. arXiv:1606.08849 [hep-ph] ( 2016.)
    [Crossref] [Google Scholar]
  83. 83.
    Dreyer CE, et al. arXiv:2306.14944 [hep-ph] ( 2023.)
  84. 84.
    Trickle T. Phys. Rev. D 107:(3):035035 ( 2023.); Trickle T. arXiv:2210.14917 [hep-ph] ( 2022.)
    [Crossref] [Google Scholar]
  85. 85.
    Knapen S, Kozaczuk J, Lin T. Phys. Rev. D 105:(1):015014 ( 2022.); Knapen S, Kozaczuk J, Lin T. arXiv:2104.12786 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  86. 86.
    Knapen S, Kozaczuk J, Lin T. Phys. Rev. D 104:(1):015031 ( 2021.); Knapen S, Kozaczuk J, Lin T. arXiv:2101.08275 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  87. 87.
    Hochberg Y, et al. Phys. Rev. D 106:(11):112005 ( 2022.); Hochberg Y , et al. arXiv:2110.01586 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  88. 88.
    Essig R, et al. arXiv:2203.08297 [hep-ph] ( 2022.)
  89. 89.
    Griffin S, Knapen S, Lin T, Zurek KM. Phys. Rev. D 98:(11):115034 ( 2018.); Griffin S, Knapen S, Lin T, Zurek KM. arXiv:1807.10291 [hep-ph] ( 2018.)
    [Crossref] [Google Scholar]
  90. 90.
    Togo A, Chaput L, Tadano T, Tanaka I. J. Phys. Condens. Matter 35:(35):353001 ( 2023.)
    [Crossref] [Google Scholar]
  91. 91.
    Togo A. J. Phys. Soc. Jpn. 92:(1):012001 ( 2023.)
    [Crossref] [Google Scholar]
  92. 92.
    Mitridate A, Pardo K, Trickle T, Zurek KM. arXiv:2308.06314 [hep-ph] ( 2023.)
  93. 93.
    Mitridate A, Trickle T, Zhang Z, Zurek KM. Phys. Rev. D 102:(9):095005 (2020.); Mitridate A, Trickle T, Zhang Z, Zurek KM. arXiv:2005.10256 [hep-ph] ( 2020.)
    [Crossref] [Google Scholar]
  94. 94.
    Crescini N, et al. (QUAX Collab.) Phys. Rev. Lett. 124:(17):171801 ( 2020.); Crescini N , et al. arXiv:2001.08940 [hep-ex] ( 2020.)
    [Crossref] [Google Scholar]
  95. 95.
    Schutz K, Zurek KM. Phys. Rev. Lett. 117:(12):121302 ( 2016.); Schutz K, Zurek KM. arXiv:1604.08206 [hep-ph] ( 2016.)
    [Crossref] [Google Scholar]
  96. 96.
    Knapen S, Lin T, Zurek KM. Phys. Rev. D 95:(5):056019 ( 2017.); Knapen S, Lin T, Zurek KM. arXiv:1611.06228 [hep-ph] (2016.)
    [Crossref] [Google Scholar]
  97. 97.
    Caputo A, Esposito A, Polosa AD. J. Phys. Conf. Ser. 1468:(1):012060 ( 2020.); Caputo A, Esposito A, Polosa AD. arXiv:1911.07867 [hep-ph] ( 2019.)
    [Google Scholar]
  98. 98.
    Acanfora F, Esposito A, Polosa AD. Eur. Phys. J. C 79:(7):549 ( 2019.); Acanfora F, Esposito A, Polosa AD. arXiv:1902.02361 [hep-ph] ( 2019.)
    [Crossref] [Google Scholar]
  99. 99.
    Campbell-Deem B, Knapen S, Lin T, Villarama E. Phys. Rev. D 106:(3):036019 ( 2022.); Campbell-Deem B, Knapen S, Lin T, Villarama E. arXiv:2205.02250 [hep-ph] ( 2022.)
    [Crossref] [Google Scholar]
  100. 100.
    Lin T, Shen CH, Sholapurkar M, Villarama E. arXiv:2309.10839 [hep-ph] ( 2023.)
  101. 101.
    Baym G, et al. Phys. Rev. D 102:(3):035014 ( 2020.). Erratum. Phys. Rev. D 104::019901 ( 2021.); Baym G , et al. arXiv:2005.08824 [hep-ph] ( 2020.)
    [Google Scholar]
  102. 102.
    Coskuner A, Mitridate A, Olivares A, Zurek KM. Phys. Rev. D 103:(1):016006 ( 2021.); Coskuner A, Mitridate A, Olivares A, Zurek KM. arXiv:1909.09170 [hep-ph] ( 2019.)
    [Crossref] [Google Scholar]
  103. 103.
    Dimopoulos S, Starkman GD, Lynn BW. Mod. Phys. Lett. A 1::491 ( 1986.)
    [Crossref] [Google Scholar]
  104. 104.
    Gelmini G, et al. In Proceedings of the 13th Texas Symposium on Relativistic Astrophysics, pp. 26870. Singapore:: World Sci. ( 1987.)
    [Google Scholar]
  105. 105.
    Pospelov M, Ritz A, Voloshin MB. Phys. Rev. D 78::115012 ( 2008.); Pospelov M, Ritz A, Voloshin MB. arXiv:0807.3279 [hep-ph] ( 2008.)
    [Crossref] [Google Scholar]
  106. 106.
    An H, Pospelov M, Pradler J, Ritz A. Phys. Lett. B 747::331 ( 2015.); An H, Pospelov M, Pradler J, Ritz A. arXiv:1412.8378 [hep-ph] ( 2014.)
    [Crossref] [Google Scholar]
  107. 107.
    Hochberg Y, Lin T, Zurek KM. Phys. Rev. D 94:(1):015019 ( 2016.); Hochberg Y, Lin T, Zurek KM. arXiv:1604.06800 [hep-ph] ( 2016.)
    [Crossref] [Google Scholar]
  108. 108.
    Hochberg Y, Lin T, Zurek KM. Phys. Rev. D 95:(2):023013 ( 2017.); Hochberg Y, Lin T, Zurek KM. arXiv:1608.01994 [hep-ph] ( 2016.)
    [Crossref] [Google Scholar]
  109. 109.
    Murgui C, Wang Y, Zurek KM. arXiv:2211.08432 [hep-ph] ( 2022.)
  110. 110.
    Krnjaic G, Trickle T. Phys. Rev. D 108:(1):015024 ( 2023.); Krnjaic G, Trickle T. arXiv:2303.11344 [hep-ph] ( 2023.)
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nucl-101918-023542
Loading
/content/journals/10.1146/annurev-nucl-101918-023542
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error