1932

Abstract

We present an introductory review of the early-time dynamics of high-energy heavy-ion collisions and the kinetics of high-temperature quantum chromodynamic matter. The equilibration mechanisms in the quark–gluon plasma uniquely reflect the nonabelian and ultrarelativistic character of the many-body system. Starting with a brief exposé of the key theoretical and experimental questions, we provide an overview of the theoretical tools employed in weak coupling studies of the early-time nonequilibrium dynamics. We highlight theoretical progress in understanding different thermalization mechanisms in weakly coupled nonabelian plasmas, and discuss their relevance in describing the approach to local thermal equilibrium during the first fm/ of a heavy-ion collision. We also briefly discuss some important connections to the phenomenology of heavy-ion collisions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023825
2019-10-19
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/nucl/69/1/annurev-nucl-101918-023825.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023825&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Heinz U, Snellings R. Annu. Rev. Nucl. Part. Sci. 63:123 2013.
    [Google Scholar]
  2. 2. 
    Dusling K, Li W, Schenke B Int. J. Mod. Phys. E 25:1630002 2016.
    [Google Scholar]
  3. 3. 
    Nagle JL, Zajc WA Annu. Rev. Nucl. Part. Sci. 68:211 2018.
    [Google Scholar]
  4. 4. 
    Keegan L J. High Energy Phys. 2016:31 2016.
    [Google Scholar]
  5. 5. 
    Heller MP Acta Phys. Pol. B 47:2581 2016.
    [Google Scholar]
  6. 6. 
    Baier R, Mueller AH, Schiff D, Son DT Phys. Lett. B 502:51 2001.
    [Google Scholar]
  7. 7. 
    Bjorken JD Phys. Rev. D 27:140 1983.
    [Google Scholar]
  8. 8. 
    Gelis F, Schenke B Annu. Rev. Nucl. Part. Sci. 66:73 2016.
    [Google Scholar]
  9. 9. 
    McLerran LD, Venugopalan R Phys. Rev. D 49:2233 1994.
    [Google Scholar]
  10. 10. 
    Kovner A, McLerran LD, Weigert H Phys. Rev. D 52:3809 1995.
    [Google Scholar]
  11. 11. 
    Kovner A, McLerran LD, Weigert H Phys. Rev. D 52:6231 1995.
    [Google Scholar]
  12. 12. 
    Lappi T, McLerran L Nucl. Phys. A 772:200 2006.
    [Google Scholar]
  13. 13. 
    Mazeliauskas A, Teaney D Phys. Rev. C 91:044902 2015.
    [Google Scholar]
  14. 14. 
    Iancu E, Venugopalan R Quark–Gluon Plasma 4 RC Hwa, X-N Wang249 Singapore: World Sci. 2003.
    [Google Scholar]
  15. 15. 
    Gelis F, Iancu E, Jalilian-Marian J, Venugopalan R Annu. Rev. Nucl. Part. Sci. 60:463 2010.
    [Google Scholar]
  16. 16. 
    Krasnitz A, Venugopalan R Phys. Rev. Lett. 84:4309 2000.
    [Google Scholar]
  17. 17. 
    Krasnitz A, Venugopalan R Phys. Rev. Lett. 86:1717 2001.
    [Google Scholar]
  18. 18. 
    Epelbaum T, Gelis F Phys. Rev. D 88:085015 2013.
    [Google Scholar]
  19. 19. 
    Romatschke P, Venugopalan R Phys. Rev. Lett. 96:062302 2006.
    [Google Scholar]
  20. 20. 
    Romatschke P, Venugopalan R Phys. Rev. D 74:045011 2006.
    [Google Scholar]
  21. 21. 
    Berges J, Schlichting S Phys. Rev. D 87:014026 2013.
    [Google Scholar]
  22. 22. 
    Schenke B, Tribedy P, Venugopalan R Phys. Rev. Lett. 108:252301 2012.
    [Google Scholar]
  23. 23. 
    Schenke B, Tribedy P, Venugopalan R Phys. Rev. C 86:034908 2012.
    [Google Scholar]
  24. 24. 
    Mueller AH, Son DT Phys. Lett. B 582:279 2004.
    [Google Scholar]
  25. 25. 
    Aarts G, Smit J Nucl. Phys. B 511:451 1998.
    [Google Scholar]
  26. 26. 
    Jeon S Phys. Rev. C 72:014907 2005.
    [Google Scholar]
  27. 27. 
    Berges J, Schlichting S, Sexty D Phys. Rev. D 86:074006 2012.
    [Google Scholar]
  28. 28. 
    Berges J, Boguslavski K, Schlichting S, Venugopalan R Phys. Rev. D 89:074011 2014.
    [Google Scholar]
  29. 29. 
    Greif M Phys. Rev. D 96:091504 2017.
    [Google Scholar]
  30. 30. 
    Kurkela A arXiv:1805.00961 [hep-ph] 2018.
  31. 31. 
    Arnold PB, Cantrell S, Xiao W Phys. Rev. D 81:045017 2010.
    [Google Scholar]
  32. 32. 
    Blaizot JP, Iancu E, Mehtar-Tani Y Phys. Rev. Lett. 111:052001 2013.
    [Google Scholar]
  33. 33. 
    Arnold PB, Moore GD, Yaffe LG J. High Energy Phys. 01:030 2003.
    [Google Scholar]
  34. 34. 
    Arnold PB, Moore GD, Yaffe LG J. High Energy Phys. 05:051 2003.
    [Google Scholar]
  35. 35. 
    Ghiglieri J, Moore GD, Teaney D J. High Energy Phys. 03:179 2018.
    [Google Scholar]
  36. 36. 
    Kurkela A, Moore GD J. High Energy Phys. 12:044 2011.
    [Google Scholar]
  37. 37. 
    Blaizot JP, Iancu E Phys. Rep. 359:355 2002.
    [Google Scholar]
  38. 38. 
    Landau L, Lifshitz EStatistical Physics I. St. Louis, MO: Elsevier Sci. 2013.
  39. 39. 
    Ghiglieri J, Teaney D Int. J. Mod. Phys. E 24:1530013 2015.); Ghiglieri J, Teaney D Quark–Gluon Plasma 5 Wang XN271 Singapore: World Sci. 2016.
    [Google Scholar]
  40. 40. 
    Ghiglieri J, Moore GD, Teaney D J. High Energy Phys. 03:095 2016.
    [Google Scholar]
  41. 41. 
    Arnold PB Phys. Rev. D 79:065025 2009.
    [Google Scholar]
  42. 42. 
    Arnold PB, Xiao W Phys. Rev. D 78:125008 2008.
    [Google Scholar]
  43. 43. 
    Baier R Nucl. Phys. B 483:291 1997.
    [Google Scholar]
  44. 44. 
    Zakharov BG JETP Lett. 65:615 1997.
    [Google Scholar]
  45. 45. 
    Gunion JF, Bertsch G Phys. Rev. D 25:746 1982.
    [Google Scholar]
  46. 46. 
    Arnold PB, Dogan C Phys. Rev. D 78:065008 2008.
    [Google Scholar]
  47. 47. 
    Blaizot JP Nucl. Phys. A 873:68 2012.
    [Google Scholar]
  48. 48. 
    Berges J, Boguslavski K, Schlichting S, Venugopalan R Phys. Rev. D 89:114007 2014.
    [Google Scholar]
  49. 49. 
    Kurkela A, Lu E Phys. Rev. Lett. 113:182301 2014.
    [Google Scholar]
  50. 50. 
    Nazarenko SWave Turbulence. Berlin/Heidelberg: Springer 2011.
  51. 51. 
    Kurkela A, Moore GD Phys. Rev. D 86:056008 2012.
    [Google Scholar]
  52. 52. 
    Schlichting S Phys. Rev. D 86:065008 2012.
    [Google Scholar]
  53. 53. 
    Abraao York MC, Kurkela A, Lu E, Moore GD Phys. Rev. D 89:074036 2014.
    [Google Scholar]
  54. 54. 
    Berges J, Mace M, Schlichting S Phys. Rev. Lett. 118:192005 2017.
    [Google Scholar]
  55. 55. 
    Mace M, Schlichting S, Venugopalan R Phys. Rev. D 93:074036 2016.
    [Google Scholar]
  56. 56. 
    Boguslavski K, Kurkela A, Lappi T, Peuron J Phys. Rev. D 98:014006 2018.
    [Google Scholar]
  57. 57. 
    Blaizot JP, Mehtar-Tani Y Ann. Phys. 368:148 2016.
    [Google Scholar]
  58. 58. 
    Zakharov V, L'vov V, Falkovich G Kolmogorov Spectra of Turbulence Berlin/Heidelberg: Springer 2012.
    [Google Scholar]
  59. 59. 
    Mehtar-Tani Y, Schlichting S J. High Energy Phys. 09:144 2018.
    [Google Scholar]
  60. 60. 
    Mrowczynski S Phys. Lett. B 314:118 1993.
    [Google Scholar]
  61. 61. 
    Romatschke P, Strickland M Phys. Rev. D 68:036004 2003.
    [Google Scholar]
  62. 62. 
    Arnold PB, Lenaghan J, Moore GD J. High Energy Phys. 08:002 2003.
    [Google Scholar]
  63. 63. 
    Kurkela A, Moore GD J. High Energy Phys. 11:120 2011.
    [Google Scholar]
  64. 64. 
    Bodeker D J. High Energy Phys. 10:092 2005.
    [Google Scholar]
  65. 65. 
    Rebhan A, Romatschke P, Strickland M Phys. Rev. Lett. 94:102303 2005.
    [Google Scholar]
  66. 66. 
    Arnold PB, Moore GD, Yaffe LG Phys. Rev. D 72:054003 2005.
    [Google Scholar]
  67. 67. 
    Kurkela A, Zhu Y Phys. Rev. Lett. 115:182301 2015.
    [Google Scholar]
  68. 68. 
    Baym G Phys. Lett. B 138:18 1984.
    [Google Scholar]
  69. 69. 
    Xu Z, Greiner C Phys. Rev. C 71:064901 2005.
    [Google Scholar]
  70. 70. 
    El A, Xu Z, Greiner C Nucl. Phys. A 806:287 2008.
    [Google Scholar]
  71. 71. 
    Keegan L, Kurkela A, Mazeliauskas A, Teaney D J. High Energy Phys. 08:171 2016.
    [Google Scholar]
  72. 72. 
    Kurkela A arXiv:1805.01604 [hep-ph] 2018.
  73. 73. 
    Kurkela A, Mazeliauskas A arXiv:1811.03040 [hep-ph] 2018.
  74. 74. 
    Kurkela A, Mazeliauskas A arXiv:1811.03068 [hep-ph] 2018.
  75. 75. 
    Heller MP, Janik RA, Witaszczyk P Phys. Rev. Lett. 108:201602 2012.
    [Google Scholar]
  76. 76. 
    Florkowski W, Heller MP, Spalinski M Rep. Prog. Phys. 81:046001 2018.
    [Google Scholar]
  77. 77. 
    Romatschke P Phys. Rev. Lett. 120:012301 2018.
    [Google Scholar]
  78. 78. 
    Strickland M, Noronha J, Denicol G Phys. Rev. D 97:036020 2018.
    [Google Scholar]
  79. 79. 
    Gelis F, Kajantie K, Lappi T Phys. Rev. Lett. 96:032304 2006.
    [Google Scholar]
  80. 80. 
    Gelis F, Tanji N J. High Energy Phys. 02:126 2016.
    [Google Scholar]
  81. 81. 
    Müller N, Schlichting S, Sharma S Phys. Rev. Lett. 117:142301 2016.
    [Google Scholar]
  82. 82. 
    Tanji N, Berges J Phys. Rev. D 97:034013 2018.
    [Google Scholar]
  83. 83. 
    Berges J, Reygers K, Tanji N, Venugopalan R Phys. Rev. C 95:054904 2017.
    [Google Scholar]
  84. 84. 
    Vredevoogd J, Pratt S Phys. Rev. C 79:044915 2009.
    [Google Scholar]
  85. 85. 
    Loizides C Nucl. Phys. A 956:200 2016.
    [Google Scholar]
  86. 86. 
    Borghini N, Feld S, Kersting N Eur. Phys. J. C 78:832 2018.
    [Google Scholar]
  87. 87. 
    Kurkela A, Wiedemann UA, Wu B Phys. Lett. B 783:274 2018.
    [Google Scholar]
  88. 88. 
    Yan L, Ollitrault JY Phys. Rev. Lett. 112:082301 2014.
    [Google Scholar]
  89. 89. 
    Mace M, Skokov VV, Tribedy P, Venugopalan R Phys. Lett. B 788:161 2019.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101918-023825
Loading
/content/journals/10.1146/annurev-nucl-101918-023825
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error