1932

Abstract

Four decades after its prediction, the axion remains the most compelling solution to the strong- problem and a well-motivated dark matter candidate, inspiring a host of elegant and ultrasensitive experiments based on axion–photon mixing. This article reviews the experimental situation on several fronts. The microwave cavity experiment is making excellent progress in the search for dark matter axions in the μeV range and may plausibly be extended up to 100 μeV. Within the past several years, however, researchers have realized that axions are pervasive throughout string theories, but with masses that fall naturally in the neV range, for which an NMR-based search is under development. Both searches for axions emitted from the Sun's burning core and purely laboratory experiments based on photon regeneration have recently made great progress, with ambitious projects proposed for the coming decade. Each of these campaigns has pushed the state of the art in technology, enabling large gains in sensitivity and mass reach. Furthermore, each modality has been exploited in order to search for more generalized axion-like particles, which we also discuss in this review. We are hopeful, even optimistic, that the next review of the subject will concern the discovery of the axion, its properties, and its exploitation as a probe of early universe cosmology and structure formation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102014-022120
2015-10-19
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/nucl/65/1/annurev-nucl-102014-022120.html?itemId=/content/journals/10.1146/annurev-nucl-102014-022120&mimeType=html&fmt=ahah

Literature Cited

  1. Weinberg S. 1.  Phys. Rev. Lett. 40:223 1978. [Google Scholar]
  2. Wilczek F. 2.  Phys. Rev. Lett. 40:279 1978. [Google Scholar]
  3. Peccei R, Quinn HR. 3.  Phys. Rev. Lett. 38:1440 1977. [Google Scholar]
  4. Peccei R, Quinn HR. 4.  Phys. Rev. D 16:1791 1977. [Google Scholar]
  5. Asztalos SJ. 5.  et al. Annu. Rev. Nucl. Part. Sci. 56:293 2006. [Google Scholar]
  6. Rosenberg L, van Bibber K. 6.  Phys. Rep. 325:1 2000. [Google Scholar]
  7. Bradley R. 7.  et al. Rev. Mod. Phys. 75:777 2003. [Google Scholar]
  8. Kim JE. 8.  Phys. Rep. 150:1 1987. [Google Scholar]
  9. Cheng HY. 9.  Phys. Rep. 158:1 1988. [Google Scholar]
  10. Turner MS. 10.  Phys. Rep. 197:67 1990. [Google Scholar]
  11. Raffelt GG. 11.  Phys. Rep. 198:1 1990. [Google Scholar]
  12. Kim JE, Carosi G. 12.  Rev. Mod. Phys. 82:557 2010. [Google Scholar]
  13. Khriplovich I, Lamoreaux S. 13.  CP Violation Without Strangeness—Electric Dipole Moments of Particles, Atoms, and Molecules Berlin: Springer 1997. [Google Scholar]
  14. Landau L, Lifshitz E. 14.  Course of Theoretical Physics 2 Oxford, UK: Butterworth-Heinemann 1975. [Google Scholar]
  15. Baluni V. 15.  Phys. Rev. D 19:2227 1979. [Google Scholar]
  16. Crewther R, Vecchia PD, Veneziano G, Witten E. 16.  Phys. Lett. B 88:123 1979. Crewther R, Vecchia PD, Veneziano G, Witten E. Erratum Phys. Lett. B 91:487E 1980. [Google Scholar]
  17. Baker C. 17.  et al. Phys. Rev. Lett. 97:131801 2006. [Google Scholar]
  18. Ellis J, Gaillard MK. 18.  Nucl. Phys. B 150:141 1979. [Google Scholar]
  19. Khriplovich I, Vainshtein A. 19.  Nucl. Phys. B 414:27 1994. [Google Scholar]
  20. Kim JE. 20.  Phys. Rev. Lett. 43:103 1979. [Google Scholar]
  21. Shifman MA, Vainshtein A, Zakharov VI. 21.  Nucl. Phys. B 166:493 1980. [Google Scholar]
  22. Dine M, Fischler W, Srednicki M. 22.  Phys. Lett. B 104:199 1981. [Google Scholar]
  23. Zhitnitsky A. 23.  Sov. J. Nucl. Phys. 31:260 1980. [Google Scholar]
  24. Svrek P, Witten E. 24.  J. High Energy Phys. 0606:051 2006. [Google Scholar]
  25. Jaeckel J, Ringwald A. 25.  Annu. Rev. Nucl. Part. Sci. 60:405 2010. [Google Scholar]
  26. Arias P. 26.  et al. J. Cosmol. Astropart. Phys. 1206:013 2012. [Google Scholar]
  27. Ringwald A. 27.  Phys. Dark Universe 1:116 2012. [Google Scholar]
  28. Meyer M, Horns D, Raue M. 28.  Phys. Rev. D 87:035027 2013. [Google Scholar]
  29. Rubtsov G, Troitsky S. 29.  JETP Lett. 100:397 2014. [Google Scholar]
  30. Ayala A. 30.  et al. Phys. Rev. Lett. 113:191302 2014. [Google Scholar]
  31. Miller Bertolami MM, Melendez BE, Althaus LG, Isern J. 31.  J. Cosmol. Astropart. Phys. 1410:069 2014. [Google Scholar]
  32. Altarelli G. 32.  Nucl. Instrum. Methods A 742:56 2014. [Google Scholar]
  33. Feng JL. 33.  Annu. Rev. Nucl. Part. Sci. 63:351 2013. [Google Scholar]
  34. Sikivie P. 34.  Lect. Notes Phys. 741:19 2008. [Google Scholar]
  35. Raffelt GG. 35.  Lect. Notes Phys. 741:51 2008. [Google Scholar]
  36. Isern J, Garcia-Berro E, Torres S, Catalan S. 36.  Astrophys. J. Lett. 682:109 2008. [Google Scholar]
  37. Isern J, Garcia-Berro E, Althaus L, Corsico A. 37.  Astron. Astrophys. 512:A86 2010. [Google Scholar]
  38. Corsico A. 38.  et al. J. Cosmol. Astropart. Phys. 1212:010 2012. [Google Scholar]
  39. Olive K. 39.  et al. Chin. Phys. C 38:090001 2014. [Google Scholar]
  40. Sikivie P. 40.  Phys. Rev. Lett. 51:1415 1983. [Google Scholar]
  41. Sikivie P. 41.  Phys. Rev. D 32:2988 1985. [Google Scholar]
  42. Dicke R. 42.  Rev. Sci. Instrum. 17:268 1946. [Google Scholar]
  43. Sikivie P. 43.  Phys. Lett. B 695:22 2011. [Google Scholar]
  44. van Bibber K, Kinion S. 44.  Philos. Trans. R. Soc. Lond. A 361:2553 2003. [Google Scholar]
  45. De Panfilis S. 45.  et al. Phys. Rev. Lett. 59:839 1987. [Google Scholar]
  46. Wuensch W. 46.  et al. Phys. Rev. D 40:3153 1989. [Google Scholar]
  47. Hagmann C, Sikivie P, Sullivan N, Tanner D. 47.  Phys. Rev. D 42:1297 1990. [Google Scholar]
  48. Tada M. 48.  et al. Phys. Lett. A 349:488 2006. [Google Scholar]
  49. Mück M. 49.  et al. Appl. Phys. Lett. 72:2885 1998. [Google Scholar]
  50. Mück M. 50.  et al. Appl. Phys. Lett. 75:3545 1999. [Google Scholar]
  51. Mück M, Clarke J. 51.  J. Appl. Phys. 88:6910 2000. [Google Scholar]
  52. Kinion D, Clarke J. 52.  Appl. Phys. Lett. 98:202503 2011. [Google Scholar]
  53. Asztalos S. 53.  et al. Phys. Rev. Lett. 104:041301 2010. [Google Scholar]
  54. Hoskins J. 54.  et al. Phys. Rev. D 84:121302 2011. [Google Scholar]
  55. Shokair T. 55.  et al. Int. J. Mod. Phys. A 29:1443004 2014. [Google Scholar]
  56. Castellanos-Beltran MA, Lehnert KW. 56.  Appl. Phys. Lett. 91:083509 2007. [Google Scholar]
  57. Castellanos-Beltran MA. 57.  et al. Nat. Phys. 4:929 2008. [Google Scholar]
  58. Xi X. 58.  et al. Phys. Rev. Lett. 105:257006 2010. [Google Scholar]
  59. Mallet F. 59.  et al. Phys. Rev. Lett. 106:220502 2011. [Google Scholar]
  60. Lamoreaux S, van Bibber K, Lehnert K, Carosi G. 60.  Phys. Rev. D 88:035020 2013. [Google Scholar]
  61. Schuster DI. 61.  et al. Nature 445:515 2007. [Google Scholar]
  62. Wallraff A. 62.  et al. Nature 431:162 2004. [Google Scholar]
  63. Chen YF. 63.  et al. Phys. Rev. Lett. 107:217401 2011. [Google Scholar]
  64. Rybka G, Wagner A. 64.  arXiv1403.3121 [physics.ins-det] 2014.
  65. Sikivie P, Sullivan N, Tanner D. 65.  Phys. Rev. Lett. 112:131301 2014. [Google Scholar]
  66. Baker OK. 66.  et al. Phys. Rev. D 85:035018 2012. [Google Scholar]
  67. Horns D. 67.  et al. J. Cosmol. Astropart. Phys. 1304:016 2013. [Google Scholar]
  68. Budker D. 68.  et al. Phys. Rev. X 4:021030 2014. [Google Scholar]
  69. Graham PW, Rajendran S. 69.  Phys. Rev. D 88:035023 2013. [Google Scholar]
  70. Linde AD. 70.  Phys. Lett. B 201:437 1988. [Google Scholar]
  71. Wilczek F. 71.  arXiv1204.4683 [hep-th] 2012.
  72. Arvanitaki A, Baryakhtar M, Huang X. 72.  arXiv1411.2263 [hep-ph] 2014.
  73. Arvanitaki A, Dubovsky S. 73.  Phys. Rev. D 83:044026 2011. [Google Scholar]
  74. Arvanitaki A. 74.  et al. Phys. Rev. D 81:123530 2010. [Google Scholar]
  75. Graham PW, Rajendran S. 75.  Phys. Rev. D 84:055013 2011. [Google Scholar]
  76. Stadnik Y, Flambaum V. 76.  Phys. Rev. D 89:043522 2014. [Google Scholar]
  77. Stadnik YV, Flambaum VV. 77.  arXiv1409.2986 [hep-ph] 2014.
  78. Hong J, Kim JE. 78.  Phys. Lett. B265:197 1991. [Google Scholar]
  79. Roberts B. 79.  et al. Phys. Rev. D 90:096005 2014. [Google Scholar]
  80. Roberts B. 80.  et al. Phys. Rev. Lett. 113:081601 2014. [Google Scholar]
  81. Moody J, Wilczek F. 81.  Phys. Rev. D 30:130 1984. [Google Scholar]
  82. Vasilakis G, Brown J, Kornack T, Romalis M. 82.  Phys. Rev. Lett. 103:261801 2009. [Google Scholar]
  83. Burghoff M. 83.  et al. J. Phys. Conf. Ser. 295:012017 2011. [Google Scholar]
  84. Ledbetter M, Romalis M, Jackson-Kimball D. 84.  Phys. Rev. Lett. 110:040402 2013. [Google Scholar]
  85. Heil W. 85.  et al. Annalen Phys. 525:539 2013. [Google Scholar]
  86. Tullney K. 86.  et al. Phys. Rev. Lett. 111:100801 2013. [Google Scholar]
  87. Arvanitaki A, Geraci AA. 87.  Phys. Rev. Lett. 113:161801 2014. [Google Scholar]
  88. Nelson AE, Scholtz J. 88.  Phys. Rev. D 84:103501 2011. [Google Scholar]
  89. Raffelt GG. 89.  Annu. Rev. Nucl. Part. Sci. 49:163 1999. [Google Scholar]
  90. Andriamonje S. 90.  et al. J. Cosmol. Astropart. Phys. 0704:010 2007. [Google Scholar]
  91. Redondo J. 91.  J. Cosmol. Astropart. Phys. 1312:008 2013. [Google Scholar]
  92. Buchmüller W, Hoogeveen F. 92.  Phys. Lett. B 237:278 1990. [Google Scholar]
  93. Paschos EA, Zioutas K. 93.  Phys. Lett. B 323:367 1994. [Google Scholar]
  94. Creswick RJ. 94.  et al. Phys. Lett. B 427:235 1998. [Google Scholar]
  95. Avignone FTI. 95.  et al. Phys. Rev. Lett. 81:5068 1998. [Google Scholar]
  96. Morales A. 96.  et al. Astropart. Phys. 16:325 2002. [Google Scholar]
  97. Bernabei R. 97.  et al. Phys. Lett. B 515:6 2001. [Google Scholar]
  98. Ahmed Z. 98.  et al. Phys. Rev. Lett. 103:141802 2009. [Google Scholar]
  99. Armengaud E. 99.  et al. arXiv1307.1488 [astro-ph.CO] 2013.
  100. Cebrián S. 100.  et al. Astropart. Phys. 10:397 1999. [Google Scholar]
  101. Avignone FT III, Creswick RJ, Nussinov S. 101.  arXiv1002.2718 [astro-ph.CO] 2010.
  102. Ljubičić A, Kekez D, Krečak Z, Ljubičić T. 102.  Phys. Lett. B 599:143 2004. [Google Scholar]
  103. Derbin A. 103.  et al. Phys. Rev. D 83:023505 2011. [Google Scholar]
  104. Derbin A, Muratova V, Semenov D, Unzhakov E. 104.  Phys. At. Nucl. 74:596 2011. [Google Scholar]
  105. Derbin A, Drachnev I, Kayunov A, Muratova V. 105.  JETP Lett. 95:379 2012. [Google Scholar]
  106. Bellini G. 106.  et al. Phys. Rev. D 85:092003 2012. [Google Scholar]
  107. Moriyama S. 107.  Phys. Rev. Lett. 75:3222 1995. [Google Scholar]
  108. Krčmar M. 108.  et al. Phys. Lett. B 442:38 1998. [Google Scholar]
  109. Krčmar M. 109.  et al. Phys. Rev. D 64:115016 2001. [Google Scholar]
  110. Derbin A. 110.  et al. Phys. Lett. B 678:181 2009. [Google Scholar]
  111. Zioutas K. 111.  et al. Phys. Rev. Lett. 94:121301 2005. [Google Scholar]
  112. van Bibber K, McIntyre PM, Morris DE, Raffelt GG. 112.  Phys. Rev. D 39:2089 1989. [Google Scholar]
  113. Arik E. 113.  et al. J. Cosmol. Astropart. Phys. 0902:008 2009. [Google Scholar]
  114. Lazarus DM. 114.  et al. Phys. Rev. Lett. 69:2333 1992. [Google Scholar]
  115. Inoue Y. 115.  et al. Phys. Lett. B 536:18 2002. [Google Scholar]
  116. Moriyama S. 116.  et al. Phys. Lett. B 434:147 1998. [Google Scholar]
  117. Inoue Y. 117.  et al. Phys. Lett. B 668:93 2008. [Google Scholar]
  118. Zioutas K. 118.  et al. Nucl. Instrum. Methods A 425:480 1999. [Google Scholar]
  119. Kuster M. 119.  et al. New J. Phys. 9:169 2007. [Google Scholar]
  120. Abbon P. 120.  et al. New J. Phys. 9:170 2007. [Google Scholar]
  121. Aune S. 121.  et al. J. Instrum. 9:P01001 2014. [Google Scholar]
  122. Aune S. 122.  et al. J. Instrum. 8:C12042 2013. [Google Scholar]
  123. Arik E. 123.  et al. Phys. Rev. Lett. 107:261302 2011. [Google Scholar]
  124. Arik M. 124.  et al. Phys. Rev. Lett. 112:091302 2014. [Google Scholar]
  125. Andriamonje S. 125.  et al. J. Cosmol. Astropart. Phys. 0912:002 2009. [Google Scholar]
  126. Andriamonje S. 126.  et al. arXiv0904.2103 [hep-ex] 2009.
  127. Barth K. 127.  et al. J. Cosmol. Astropart. Phys. 1305:010 2013. [Google Scholar]
  128. Brax P, Lindner A, Zioutas K. 128.  Phys. Rev. D 85:043014 2012. [Google Scholar]
  129. Baum S. 129.  et al. arXiv1409.3852 [astro-ph.IM] 2014.
  130. Irastorza IG. 130.  et al. J. Cosmol. Astropart. Phys. 1106013 2011. [Google Scholar]
  131. Armengaud E. 131.  et al. J. Instrum. 9:T05002 2014. [Google Scholar]
  132. Irastorza IG. 132.  The International Axion Observatory IAXO. Letter of Intent to the CERN SPS Committee. Tech. rep. CERN-SPSC-2013-022, SPSC-I-242 Geneva: CERN 2013. [Google Scholar]
  133. Shilon I, Dudarev A, Silva H, Kate H. 133.  IEEE Trans. Appl. Supercond. 23: 2012. [Google Scholar]
  134. Harrison FA. 134.  et al. Astrophys. J. 770:103 2013. [Google Scholar]
  135. Jakobsen AC, Pivovaroff MJ, Christensen FE. 135.  Proc. SPIE 8861:886113 2013. [Google Scholar]
  136. Irastorza I. 136.  et al. EAS Publ. Ser. 53:147 2012. [Google Scholar]
  137. Dafni T. 137.  et al. J. Phys. Conf. Ser. 375:022003 2012. [Google Scholar]
  138. Dafni T. 138.  et al. J. Phys. Conf. Ser. 347:012030 2012. [Google Scholar]
  139. Isern J, Catalan S, Garcia-Berro E, Torres S. 139.  J. Phys. Conf. Ser. 172:012005 2009. [Google Scholar]
  140. Corsico AH. 140.  et al. arXiv1205.6180 [astro-ph.SR] 2012.
  141. Redondo J. 141.  Presented at Patras Workshop Axions, WIMPs, WISPs, CERN, Geneva. http://axion-wimp2014.desy.de/ 2014.
  142. Ehret K. 142.  et al. Phys. Lett. B 689:149 2010. [Google Scholar]
  143. Ehret K. 143.  et al. Nucl. Instrum. Methods A 612:83 2009. [Google Scholar]
  144. Purcell E. 144.  Phys. Rev. 69:681 1946. [Google Scholar]
  145. Haroche S, Kleppner D. 145.  Phys. Today 42:24 1989. [Google Scholar]
  146. Haroche S. 146.  Phys. World 4N3:33 1991. [Google Scholar]
  147. Hoogeveen F, Ziegenhagen T. 147.  Nucl. Phys. B 358:3 1991. [Google Scholar]
  148. Fukuda Y, Kohmoto T, Nakajima Si, Kunitomo M. 148.  Prog. Cryst. Growth Charact. Mater. 33:363 1996. [Google Scholar]
  149. Mueller G, Sikivie P, Tanner DB, van Bibber K. 149.  Phys. Rev. D 80:072004 2009. [Google Scholar]
  150. Jaeckel J, Ringwald A. 150.  Phys. Lett. B 659:509 2008. [Google Scholar]
  151. Caspers F, Jaeckel J, Ringwald A. 151.  J. Instrum. 4:P11013 2009. [Google Scholar]
  152. Betz M. 152.  et al. Phys. Rev. D 88:075014 2013. [Google Scholar]
  153. Ballou R. 153.  et al. arXiv1410.2566 [hep-ex] 2014.
  154. Battesti R. 154.  et al. Phys. Rev. Lett. 105:250405 2010. [Google Scholar]
  155. Inada T. 155.  et al. Phys. Lett. B 722:301 2013. [Google Scholar]
  156. Bähre R. 156.  et al. arXiv1302.5647 [physics.ins-det] 2013.
  157. Black E. 157.  Am. J. Phys. 69:79 2001. [Google Scholar]
  158. Lita AE. 158.  et al. Proc. SPIE 7681:76810D 2010. [Google Scholar]
  159. Miller AJ. 159.  et al. Opt. Express 10:9102 2011. [Google Scholar]
  160. Dreyling-Eschweiler J. 160.  A superconducting microcalorimeter for low-flux detection of near-infrared single photons PhD thesis, Dep. Phys., Univ. Hamburg. DESY-THESIS:2014-016 230 2014. [Google Scholar]
  161. Dreyling-Eschweiler J. 161.  Proceedings of the 10th Patras Workshop on Axions, WIMPs, and WISPs E Tsesmelis, M Maroudas, p. 63 Hamburg, Ger: DESY 2014. [Google Scholar]
  162. Dreyling-Eschweiler J. 162.  et al. J. Mod. Opt. In press. doi:10.1080/09500340.2015.1021723 2015. [Google Scholar]
  163. Bottura L, de Rijk G, Rossi L, Todesco E. 163.  IEEE Trans. Appl. Supercond. 22:4002008 2012. [Google Scholar]
  164. Todesco E, Bottura L, de Rijk G, Rossi L. 164.  IEEE Trans. Appl. Supercond. 24:4004306 2014. [Google Scholar]
  165. Arias P, Jaeckel J, Redondo J, Ringwald A. 165.  Phys. Rev. D 82:115018 2010. [Google Scholar]
/content/journals/10.1146/annurev-nucl-102014-022120
Loading
/content/journals/10.1146/annurev-nucl-102014-022120
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error