1932

Abstract

Over the past few years, new physics methods and algorithms as well as the latest supercomputers have enabled the study of the QCD thermodynamic phase transition using lattice gauge theory numerical simulations and allowing unprecedented control over systematic errors. This progress is largely a consequence of the ability to perform continuum extrapolations with physical quark masses. We review recent progress in lattice QCD thermodynamics, focusing mainly on results that benefit from the use of physical quark masses: the crossover temperature, the equation of state, and fluctuations of the quark number susceptibilities. In addition, we emphasize calculations that are directly relevant to the study of relativistic heavy-ion collisions at RHIC and the LHC.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102014-022157
2015-10-19
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/nucl/65/1/annurev-nucl-102014-022157.html?itemId=/content/journals/10.1146/annurev-nucl-102014-022157&mimeType=html&fmt=ahah

Literature Cited

  1. Gross DJ, Yaffe LG. 1.  Rev. Mod. Phys. 53:43 1981. [Google Scholar]
  2. Shuryak EV. 2.  Phys. Rep. 61:71 1980. [Google Scholar]
  3. Wilson K. 3.  Phys. Rev. D 10:2445 1974. [Google Scholar]
  4. Creutz M. 4.  Phys. Rev. D 21:2308 1980. [Google Scholar]
  5. Symanzik K. 5.  Nucl. Phys. B 226:187 1983. [Google Scholar]
  6. Lüscher M, Weisz P. 6.  Commun. Math. Phys. 97:59 1985. [Google Scholar]
  7. Bernard C. 7.  et al. Phys. Rev. D 75:094505 2007. [Google Scholar]
  8. Cheng M. 8.  et al. Phys. Rev. D 77:014511 2008. [Google Scholar]
  9. Aoki Y. 9.  et al. Phys. Lett. B 643:46 2006. [Google Scholar]
  10. Kaplan D. 10.  Phys. Lett. B 288:342 1992. [Google Scholar]
  11. Furman V, Shamir Y. 11.  Nucl. Phys. B 439:54 1995. [Google Scholar]
  12. Vranas P. 12.  Phys. Rev. D 57:1415 1998. [Google Scholar]
  13. Narayanan R, Neuberger H. 13.  Nucl. Phys. B 443:305 1995. [Google Scholar]
  14. Neuberger H. 14.  Phys. Rev. D 57:5417 1998. [Google Scholar]
  15. Ginsparg PH, Wilson KG. 15.  Phys. Rev. D 25:2649 1982. [Google Scholar]
  16. Lüscher M. 16.  Phys. Lett. B 428:342 1998. [Google Scholar]
  17. Edwards R, Heller U, Narayanan R. 17.  Nucl. Phys. B 535:403 1998. [Google Scholar]
  18. Narayanan R, Vranas PM. 18.  Nucl. Phys. B 506:373 1997. [Google Scholar]
  19. Vranas PM. 19.  Phys. Rev. D 74:034512 2006. [Google Scholar]
  20. Bazavov A. 20.  et al. (HotQCD Collab.) Phys. Rev. D 86:094503 2012. [Google Scholar]
  21. Renfrew D. 21.  et al. Proc. Sci. LATTICE2008:048 2008. [Google Scholar]
  22. Bhattacharya T. 22.  et al. (HotQCD Collab.) Phys. Rev. Lett. 113:082001 2014. [Google Scholar]
  23. Brower RC, Neff H, Orginos K. 23.  arXiv1206.5214 [hep-lat] 2012.
  24. 24.  Borsányi, et al. J. High Energy Phys. 09:10 2012. [Google Scholar]
  25. Brown F. 25.  et al. Phys. Rev. Lett. 65:2491 1990. [Google Scholar]
  26. Peikert A, Karsch F, Laermann E, Sturm B. 26.  Nucl. Phys. B Suppl. 73:468 1999. [Google Scholar]
  27. Aoki Y. 27.  et al. Nature 443:675 2006. [Google Scholar]
  28. Borsányi S. 28.  et al. J. High Energy Phys. 2010:73 2010. [Google Scholar]
  29. Bazavov A. 29.  et al. Phys. Rev. D 85:054503 2012. [Google Scholar]
  30. Pisarski RD, Wilczek F. 30.  Phys. Rev. D 29:338 1984. [Google Scholar]
  31. Engels J, Holtmann S, Mendes T, Schulze T. 31.  Phys. Lett. B 514:299 2001. [Google Scholar]
  32. Engels J, Karsch F. 32.  Phys. Rev. D 85:094506 2012. [Google Scholar]
  33. Ejiri S. 33.  et al. Phys. Rev. D 80:094505 2009. [Google Scholar]
  34. Adler SL. 34.  Phys. Rev. 177:2426 1969. [Google Scholar]
  35. Bell JS, Jackiw R. 35.  Nuovo Cim. A 60:47 1969. [Google Scholar]
  36. ’t Hooft G. 36.  Phys. Rev. Lett. 37:8 1976. [Google Scholar]
  37. Gross DJ, Pisarski RD, Yaffe LG. 37.  Rev. Mod. Phys. 53:43 1981. [Google Scholar]
  38. Butti A, Pelissetto A, Vicari E. 38.  J. High Energy Phys. 0308:029 2003. [Google Scholar]
  39. Pelissetto A, Vicari E. 39.  Phys. Rev. D 88:105018 2013. [Google Scholar]
  40. Grahl M, Rischke DH. 40.  Phys. Rev. D 88:056014 2013. [Google Scholar]
  41. Sharpe SR. 41.  Proc. Sci. LATTICE2006:022 2006. [Google Scholar]
  42. Donald CG, Davies CTH, Follana E, Kronfeld AS. 42.  Phys. Rev. D 84:054504 2011. [Google Scholar]
  43. Furman V, Shamir Y. 43.  Nucl. Phys. B 439:54 1995. [Google Scholar]
  44. Shuryak EV. 44.  Comments Nucl. Part. Phys. 21:235 1994. [Google Scholar]
  45. Bazavov A. 45.  et al. (HotQCD Collab.) Phys. Rev. D 86:094503 2012. [Google Scholar]
  46. Buchoff MI. 46.  et al. Phys. Rev. D 89:054514 2014. [Google Scholar]
  47. Bhattacharya T. 47.  et al. Phys. Rev. Lett. 113:082001 2014. [Google Scholar]
  48. Dick V. 48.  et al. Proc. Sci.LATTICE2013:164 2014. [Google Scholar]
  49. Borsányi S. 49.  et al. Phys. Lett. B 730:99 2014. [Google Scholar]
  50. Bazavov A, Bhattacharya T, DeTar C, Ding HT. 50.  Phys. Rev. D 90:094503 2014. [Google Scholar]
  51. Borsányi S. 51.  et al. J. High Energy Phys. 11:077 2010. [Google Scholar]
  52. Schenke B, Tribedy P, Venugopalan R. 52.  Phys. Rev. Lett. 108:252301 2012. [Google Scholar]
  53. Lisa MA, Pratt S, Soltz R, Wiedemann U. 53.  Annu. Rev. Nucl. Part. Sci. 55:357 2005. [Google Scholar]
  54. Pratt S. 54.  Phys. Rev. Lett. 102:232301 2009. [Google Scholar]
  55. Luzum M, Romatschke P. 55.  Phys. Rev. C 78:034915 2008. [Google Scholar]
  56. Soltz RA. 56.  et al. Phys. Rev. C 87:44901 2013. [Google Scholar]
  57. Novak J. 57.  et al. arXiv1303.5769 [nucl-th] 2013.
  58. Pratt S, Sangaline E, Sorensen P, Wang H. 58.  arXiv1501.04042 [nucl-th] 2015.
  59. Halasz AM. 59.  et al. Phys. Rev. D 58:096007 1998. [Google Scholar]
  60. Berges J, Rajagopal K. 60.  Nucl. Phys. B 538:215 1999. [Google Scholar]
  61. Stephanov MA. 61.  Phys. Rev. Lett. 102:032301 2009. [Google Scholar]
  62. Stephanov MA. 62.  Phys. Rev. Lett. 107:052301 2011. [Google Scholar]
  63. Friman B, Karsch F, Redlich K, Skokov V. 63.  Eur. Phys. J. C 71:1694 2011. [Google Scholar]
  64. Asakawa M, Ejiri S, Kitazawa M. 64.  Phys. Rev. Lett. 103:262301 2009. [Google Scholar]
  65. Jeon S, Koch V. 65.  Quark Gluon Plasma RC Hwa, XN Wang 430 Singapore: World Sci [Google Scholar]
  66. Aggarwal MM. 66.  et al. (STAR Collab.) Phys. Rev. Lett. 105:022302 2010. [Google Scholar]
  67. Adamczyk L. 67.  et al. (STAR Collab.) Phys. Rev. Lett. 112:032302 2014. [Google Scholar]
  68. Adamczyk L. 68.  et al. (STAR Collab.) Phys. Rev. Lett. 113:092301 2014. [Google Scholar]
  69. Bazavov A. 69.  et al. (HotQCD Collab.) Phys. Rev. D 86:034509 2012. [Google Scholar]
  70. Allton CR. 70.  et al. Phys. Rev. D 68:014507 2003. [Google Scholar]
  71. Gavai RV, Gupta S. 71.  Phys. Rev. D 68:034506 2003. [Google Scholar]
  72. Bazavov A. 72.  et al. Phys. Rev. Lett. 109:192302 2012. [Google Scholar]
  73. Mukherjee S, Wagner M. 73.  Proc. Sci. CPOD2013:039 2013. [Google Scholar]
  74. Borsányi. 74.  et al. Phys. Rev. Lett. 111:062005 2013. [Google Scholar]
  75. Borsányi. 75.  et al. Phys. Rev. Lett. 113:052301 2014. [Google Scholar]
  76. Mukherjee S. 76.  Presented at Critical Point and Onset of Deconfinement (CPOD), Bielefeld, Ger 2014.
  77. Andronic A, Braun-Munzinger P, Redlich K, Stachel J. 77.  J. Phys. G 38:124081 2011. [Google Scholar]
  78. Bazavov A. 78.  et al. Phys. Rev. Lett. 113:072001 2014. [Google Scholar]
  79. Bazavov A. 79.  et al. Phys. Lett. B 737:210 2014. [Google Scholar]
  80. Fodor Z, Katz SD. 80.  J. High Energy Phys. 0404:050 2004. [Google Scholar]
  81. Olive KA. 81.  et al. (Part. Data Group) Chin. Phys. C 38:090001 2014. [Google Scholar]
  82. Ejiri S. 82.  Phys. Rev. D 73:054502 2006. [Google Scholar]
  83. de Forcrand P, Philipsen O. 83.  Nucl. Phys. B 642:290 2002. [Google Scholar]
  84. Gavai RV, Gupta S. 84.  Phys. Rev. D 68:034506 2003. [Google Scholar]
  85. Allton CR. 85.  et al. Phys. Rev. D 71:054508 2005. [Google Scholar]
  86. Gavai RV, Gupta S. 86.  Phys. Rev. D 78:114503 2008. [Google Scholar]
  87. Matsui T, Satz H. 87.  Phys. Lett. B 178:416 1986. [Google Scholar]
  88. Bazavov A, Petreczky P. 88.  Eur. Phys. J. A 49:85 2013. [Google Scholar]
  89. Burnier Y, Kaczmarek O, Rothkopf A. 89.  arXiv1410.2546 [hep-lat] 2014.
  90. Asakawa M, Hatsuda T, Nakahara Y. 90.  Prog. Part. Nucl. Phys. 46:459 2001. [Google Scholar]
  91. Rothkopf A. 91.  J. Comput. Phys. 238:106 2013. [Google Scholar]
  92. Ding H-T. 92.  et al. Phys. Rev. D 86:014509 2012. [Google Scholar]
  93. Skullerud JI. 93.  et al. arXiv1501.00018 [nucl-th] 2015.
  94. Borsányi. 94.  et al. J. High Energy Phys. 1404:132 2014. [Google Scholar]
  95. Bazavov A. 95.  et al. arXiv1411.3018 [hep-lat] 2014.
  96. Aarts G. 96.  et al. J. High Energy Phys. 1407:097 2014. [Google Scholar]
  97. Kim S, Petreczky P, Rothkopf A. 97.  arXiv1409.3630 [hep-lat] 2014.
  98. Karsch F, Wyld HW. 98.  Phys. Rev. D 35:2518 1987. [Google Scholar]
  99. Nakamura A, Sakai S. 99.  Phys. Rev. Lett. 94:072305 2005. [Google Scholar]
  100. Meyer HB. 100.  Phys. Rev. D 76:101701 2007. [Google Scholar]
  101. Meyer HB. 101.  Phys. Rev. Lett. 100:162001 2008. [Google Scholar]
  102. Ding H-T. 102.  et al. Phys. Rev. D 83:034504 2011. [Google Scholar]
  103. Ding H-T, Kaczmarek O, Meyer F. 103.  arXiv1412.5869 [hep-lat] 2014.
  104. Brandt BB, Francis A, Meyer HB, Wittig H. 104.  J. High Energy Phys. 1303:100 2013. [Google Scholar]
  105. Amato A. 105.  et al. Phys. Rev. Lett. 111:172001 2013. [Google Scholar]
  106. Aarts G. 106.  et al. arXiv1412.6411 [hep-lat] 2014.
  107. Caron-Huot S, Laine M, Moore GD. 107.  J. High Energy Phys. 0904:053 2009. [Google Scholar]
  108. Banerjee D, Datta S, Gavai R, Majumdar P. 108.  Phys. Rev. D 85:014510 2012. [Google Scholar]
  109. Kaczmarek O. 109.  arXiv1409.3724 [hep-lat] 2014.
  110. Caron-Huot S. 110.  Phys. Rev. D 79:065039 2009. [Google Scholar]
  111. Panero M, Rummukainen K, Schäfer A. 111.  Phys. Rev. Lett. 112:162001 2014. [Google Scholar]
/content/journals/10.1146/annurev-nucl-102014-022157
Loading
/content/journals/10.1146/annurev-nucl-102014-022157
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error