1932

Abstract

Will neutrinos find uses outside basic science? It may be too early to say, but neutrino physicists have already imagined a variety of possibilities from the relatively modest to the more blue-sky. In this review, we survey the range of proposed applications, most involving nuclear reactors and other fission sources. We give special attention to the most recent proposals, including verifying submarine reactor integrity, safeguarding advanced nuclear power plants, and monitoring spent nuclear fuel. All of these concepts take advantage of the fact that neutrinos pass through barriers other signals cannot penetrate. That same fact creates the central challenge for neutrino applications: the size and complexity of detectors needed to collect a signal. Although the weakly interacting nature of neutrinos makes them fundamentally difficult to use, developments in detector technology are making some ideas more feasible.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102122-023751
2024-09-26
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/nucl/74/1/annurev-nucl-102122-023751.html?itemId=/content/journals/10.1146/annurev-nucl-102122-023751&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cohen IB. Proc. Am. Philos. Soc. 131::177 ( 1987.)
    [Google Scholar]
  2. 2.
    Akindele O, et al. Report PNNL-31870 , Pac. Northwest Natl. Lab., Richland, WA: ( 2021.)
  3. 3.
    Bernstein A, et al. Sci. Glob. Sec. 18::127 ( 2010.)
    [Crossref] [Google Scholar]
  4. 4.
    Bernstein A, et al. Rev. Mod. Phys. 92::011003 ( 2020.)
    [Crossref] [Google Scholar]
  5. 5.
    Borovoi AA, Mikaelyan LA. Sov. At. Energy 44::589 ( 1978.)
    [Crossref] [Google Scholar]
  6. 6.
    Littlejohn B, et al. Phys. Rev. D 97::073007 ( 2018.)
    [Crossref] [Google Scholar]
  7. 7.
    Huber P. Global project overview: Where do we go from here? Presented at the 2023 Applied Antineutrino Workshop, York, UK: ( 2023.)
    [Google Scholar]
  8. 8.
    Conant A, Mumm H, Erickson A. In Proceedings of the International Conference on Physics of Reactors (PHYSOR 2018): Reactor Physics Paving the Way Towards More Efficient Systems, pp. 264453. Red Hook, NY:: Curran ( 2018.)
    [Google Scholar]
  9. 9.
    Dye S, Barna A. arXiv:1510.05633 [physics.ins-det] ( 2015.)
  10. 10.
    World Nucl. Assoc. Technical Report 2023/001 , World Nucl. Assoc., London: ( 2023.)
  11. 11.
    Int. At. Energy Agency. Research Reactor Database , International Atomic Energy Agency, Vienna:, accessed June 2023–Jan. 2024. https://nucleus.iaea.org/rrdb/#/home ( 2023–2024.)
  12. 12.
    World Nucl. Assoc. Nuclear-powered ships. . World Nuclear Association. https://world-nuclear.org/information-library/non-power-nuclear-applications/transport/nuclear-powered-ships.aspx ( 2023.)
    [Google Scholar]
  13. 13.
    Mills R, et al. Nucl. Eng. Technol. 52::2130 ( 2020.)
    [Crossref] [Google Scholar]
  14. 14.
    Bowden NS, et al. Nucl. Instrum. Methods A 572::985 ( 2007.)
    [Crossref] [Google Scholar]
  15. 15.
    Detwiler JA, Gratta G, Tolich N, Uchida Y. Phys. Rev. Lett. 89::191802 ( 2002.)
    [Crossref] [Google Scholar]
  16. 16.
    Carr R, Dalnoki-Veress F, Bernstein A. Phys. Rev. Appl. 10::024014 ( 2018.)
    [Crossref] [Google Scholar]
  17. 17.
    Wittel M, Göttsche M. Int. J. Nucl. Safeguards Non-Prolif. 60::20 ( 2020.)
    [Google Scholar]
  18. 18.
    Brdar V, Huber P, Kopp J. Phys. Rev. Appl. 8::054050 ( 2017.)
    [Crossref] [Google Scholar]
  19. 19.
    Andriamirado M, et al. Phys. Rev. Lett. 131::021802 ( 2023.)
    [Crossref] [Google Scholar]
  20. 20.
    Seo H, et al. (RENO Collab.) J. Phys. Conf. Ser. 1216::012003 ( 2019.)
    [Crossref] [Google Scholar]
  21. 21.
    Allega A, et al. Phys. Rev. Lett. 130::091801 ( 2023.)
    [Crossref] [Google Scholar]
  22. 22.
    JUNO Collab. Prog. Part. Nucl. Phys. 123::103927 ( 2022.)
    [Crossref] [Google Scholar]
  23. 23.
    Ashenfelter J, et al. Nucl. Instrum. Methods Phys. Res. A 922::287 ( 2019.)
    [Crossref] [Google Scholar]
  24. 24.
    Acero MA, Aguilar-Arevalo AA, Polo-Toledo DJ. Adv. High Energy Phys. 2020::8526034 ( 2020.)
    [Crossref] [Google Scholar]
  25. 25.
    Kamdin K. (SNO Collab.) Phys. Procedia 61::719 ( 2015.)
    [Crossref] [Google Scholar]
  26. 26.
    Abusleme A, et al. (JUNO Collab.) Eur. Phys. J. C 81::887 ( 2021.)
    [Crossref] [Google Scholar]
  27. 27.
    Eguchi K, et al. Phys. Rev. Lett. 90::021802 ( 2003.)
    [Crossref] [Google Scholar]
  28. 28.
    An FP, et al. Phys. Rev. Lett. 108::171803 ( 2012.)
    [Crossref] [Google Scholar]
  29. 29.
    Ahn JK, et al. Phys. Rev. Lett. 108::191802 ( 2012.)
    [Crossref] [Google Scholar]
  30. 30.
    Abe Y, et al. Phys. Rev. Lett. 108::131801 ( 2012.)
    [Crossref] [Google Scholar]
  31. 31.
    Vogel P, Beacom JF. Phys. Rev. D 60::053003 ( 1999.)
    [Crossref] [Google Scholar]
  32. 32.
    Ashenfelter J, et al. J. Phys. G 43::113001 ( 2016.)
    [Crossref] [Google Scholar]
  33. 33.
    Huber P, et al. J. Phys. Conf. Ser. 1216::012014 ( 2019.)
    [Crossref] [Google Scholar]
  34. 34.
    Sutanto F, et al. Nucl. Instrum. Methods Phys. Res. A 1006::165409 ( 2021.)
    [Crossref] [Google Scholar]
  35. 35.
    Giampaolo A, et al. Proc. Sci. ICRC2021::1154 ( 2021.)
    [Google Scholar]
  36. 36.
    Yeh M, et al. Nucl. Instrum. Methods Phys. Res. A 660::51 ( 2011.)
    [Crossref] [Google Scholar]
  37. 37.
    Freedman DZ. Phys. Rev. D 9::1389 ( 1974.)
    [Crossref] [Google Scholar]
  38. 38.
    Radermacher T, et al. Nucl. Instrum. Methods Phys. Res. A 1054::168426 ( 2023.)
    [Crossref] [Google Scholar]
  39. 39.
    Lenardo B, et al. Phys. Rev. Lett. 123::231106 ( 2019.)
    [Crossref] [Google Scholar]
  40. 40.
    Akimov D, et al. Science 357::1123 ( 2017.)
    [Crossref] [Google Scholar]
  41. 41.
    Akimov D, et al. Phys. Rev. Lett. 126::012002 ( 2021.)
    [Crossref] [Google Scholar]
  42. 42.
    Colaresi J, et al. Phys. Rev. Lett. 129::211802 ( 2022.)
    [Crossref] [Google Scholar]
  43. 43.
    Callan C, Dyson F, Treiman S. Report JSR-84-105 , JASON/MITRE Corp., McLean, VA: ( 1988.)
  44. 44.
    Bowen M, Huber P. Phys. Rev. D 102::053008 ( 2020.)
    [Crossref] [Google Scholar]
  45. 45.
    Cogswell BK, Goel A, Huber P. Phys. Rev. Appl. 16::064060 ( 2021.)
    [Crossref] [Google Scholar]
  46. 46.
    Reines F, Gurr HS, Sobel HW. Phys. Rev. Lett. 37::315 ( 1976.)
    [Crossref] [Google Scholar]
  47. 47.
    Hellfeld D, Bernstein A, Dazeley S, Marianno C. Nucl. Instrum. Methods A 841::130 ( 2017.)
    [Crossref] [Google Scholar]
  48. 48.
    Ahmad QR, et al. Phys. Rev. Lett. 89::011301 ( 2002.)
    [Crossref] [Google Scholar]
  49. 49.
    Scholberg K. Annu. Rev. Nucl. Part. Sci. 62::81 ( 2012.)
    [Crossref] [Google Scholar]
  50. 50.
    Haxton WC, Robertson RGH, Serenelli AM. Annu. Rev. Astron. Astrophys. 51::21 ( 2013.)
    [Crossref] [Google Scholar]
  51. 51.
    Bellini G, et al. Phys. Lett. B 722::295 ( 2013.)
    [Crossref] [Google Scholar]
  52. 52.
    Gutt GM. Navigation system based on neutrino detection. US Patent Appl. 2009/0228210A1 ( 2007.)
    [Google Scholar]
  53. 53.
    Bellini G, et al. Riv. Nuovo Cim. 45::1 ( 2022.)
    [Crossref] [Google Scholar]
  54. 54.
    Capozzi F, Li SW, Zhu G, Beacom JF. Phys. Rev. Lett. 123::131803 ( 2019.)
    [Crossref] [Google Scholar]
  55. 55.
    Argüelles CA, Bustamante M, Gago AM. Mod. Phys. Lett. A 30::1550146 ( 2015.)
    [Crossref] [Google Scholar]
  56. 56.
    Int. At. Energy Agency. IAEA Safeguards Glossary. Vienna:: Int. At. Energy Agency ( 2022.)
    [Google Scholar]
  57. 57.
    Christensen E, Huber P, Jaffke P. Sci. Glob. Secur. 23::20 ( 2015.)
    [Crossref] [Google Scholar]
  58. 58.
    Holt M. Technical Report R45706 , Congr. Res. Serv., Washington, DC: ( 2021.)
  59. 59.
    Cipiti BB, et al. Technical Report SAND2022-11143R , Sandia Natl. Lab., Livermore, CA: ( 2022.)
  60. 60.
    Houston E, Bogetic S. Trans. Am. Nucl. Soc. 128::621 ( 2023.)
    [Google Scholar]
  61. 61.
    Helz B, et al. arXiv:2308.08627 [physics.soc-ph] ( 2023.)
  62. 62.
    Akindele OA, Bernstein A, Norman EB. J. Appl. Phys. 120::124902 ( 2016.)
    [Crossref] [Google Scholar]
  63. 63.
    Bernstein A, Bowden NS, Erickson AS. Phys. Rev. Appl. 9::014003 ( 2018.)
    [Crossref] [Google Scholar]
  64. 64.
    Agreed framework of 21 October 1994 between the United States of America and the Democratic People's Republic of Korea. US Department of State. https://2001-2009.state.gov/t/ac/rls/or/2004/31009.htm ( 1994.)
    [Google Scholar]
  65. 65.
    Agreement between the Government of the United States of America and the Government of the Russian Federation concerning the management and disposition of plutonium designated as no longer required for defense purposes and related cooperation. US Department of State. https://2009-2017.state.gov/documents/organization/182684.pdf ( 2000.)
    [Google Scholar]
  66. 66.
    Joint Comprehensive Plan of Action. US Department of State. https://2009-2017.state.gov/e/eb/tfs/spi/iran/jcpoa/ ( 2015.)
    [Google Scholar]
  67. 67.
    Carr R, et al. Sci. Glob. Secur. 27::15 ( 2019.)
    [Crossref] [Google Scholar]
  68. 68.
    Christensen E, Huber P, Jaffke P, Shea TE. Phys. Rev. Lett. 113::042503 ( 2014.)
    [Crossref] [Google Scholar]
  69. 69.
    Cogswell BK, Huber P. Sci. Glob. Secur. 24::114 ( 2016.)
    [Crossref] [Google Scholar]
  70. 70.
    Moric I. Sci. Glob. Secur. 30::22 ( 2022.)
    [Crossref] [Google Scholar]
  71. 71.
    Bukharin O. Int. Secur. 21::126 ( 1997.)
    [Crossref] [Google Scholar]
  72. 72.
    Cochran TB. Making the Russian Bomb: From Stalin to Yeltsin. London:: Routledge ( 2019.)
    [Google Scholar]
  73. 73.
    Li VA, Dazeley SA, Bergevin M, Bernstein A. Phys. Rev. Appl. 18::034059 ( 2022.)
    [Crossref] [Google Scholar]
  74. 74.
    Akindele O, et al. Phys. Rev. Appl. 19::034060 ( 2023.)
    [Crossref] [Google Scholar]
  75. 75.
    Jocher GR, et al. Phys. Rep. 527::131 ( 2013.)
    [Crossref] [Google Scholar]
  76. 76.
    Gando A, et al. Phys. Rev. D 88::033001 ( 2013.)
    [Crossref] [Google Scholar]
  77. 77.
    Cogswell BK, Huber P. Phys. Rev. Lett. 128::241803 ( 2022.)
    [Crossref] [Google Scholar]
  78. 78.
    Gaebler P, Ceranna L. Pure Appl. Geophys. 178::2419 ( 2021.)
    [Crossref] [Google Scholar]
  79. 79.
    Bernstein A, West T, Gupta V. Sci. Glob. Secur. 9::235 ( 2001.)
    [Crossref] [Google Scholar]
  80. 80.
    Assink J, et al. Seismol. Res. Lett. 89::2025 ( 2018.)
    [Crossref] [Google Scholar]
  81. 81.
    Abe K, et al. (Hyper-Kamiokande Proto-Collab.) arXiv:1805.04163 [physics.ins-det] ( 2018.)
  82. 82.
    Fukuda Y, et al. Nucl. Instrum. Methods A 501::418 ( 2003.)
    [Crossref] [Google Scholar]
  83. 83.
    Askins M, et al. arXiv:1502.01132 [physics.ins-det] ( 2015.)
  84. 84.
    Foxe M, et al. Pure Appl. Geophys. 178::2753 ( 2021.)
    [Crossref] [Google Scholar]
  85. 85.
    von Raesfeld C, Huber P. Phys. Rev. D 105::056002 ( 2022.)
    [Crossref] [Google Scholar]
  86. 86.
    Saenz AW, et al. Science 198::295 ( 1977.)
    [Crossref] [Google Scholar]
  87. 87.
    Huber P. Phys. Lett. B 692::268 ( 2010.)
    [Crossref] [Google Scholar]
  88. 88.
    Prieto JF, et al. arXiv:2207.09231 [physics.ins-det] ( 2022.)
  89. [Google Scholar]
  90. 90.
    Pasachoff JM, Kutner ML. Cosmic Search 1::2 ( 1979.)
    [Google Scholar]
  91. 91.
    Learned JG, Pakvasa S, Zee A. Phys. Lett. B 671::15 ( 2009.)
    [Crossref] [Google Scholar]
  92. 92.
    Stancil DD, et al. Mod. Phys. Lett. A 27::1250077 ( 2012.)
    [Crossref] [Google Scholar]
  93. 93.
    Buongiorno J, Jurewicz J, Golay M, Todreas N. Nucl. Technol. 194::1 ( 2016.)
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nucl-102122-023751
Loading
/content/journals/10.1146/annurev-nucl-102122-023751
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error