1932

Abstract

We review the ab initio symmetry-adapted (SA) framework for determining the structure of stable and unstable nuclei, along with related electroweak, decay, and reaction processes. This framework utilizes the dominant symmetry of nuclear dynamics, the shape-related symplectic symmetry, which has been shown to emerge from first principles and to expose dominant degrees of freedom that are collective in nature, even in the lightest species or seemingly spherical states. This feature is illustrated for a broad scope of nuclei ranging from helium to titanium isotopes, enabled by recent developments of the ab initio SA no-core shell model expanded to the continuum through the use of the SA basis and that of the resonating group method. The review focuses on energies, electromagnetic transitions, quadrupole and magnetic moments, radii, form factors, and response function moments for ground-state rotational bands and giant resonances. The method also determines the structure of reaction fragments that is used to calculate decay widths and α-capture reactions for simulated X-ray burst abundance patterns, as well as nucleon–nucleus interactions for cross sections and other reaction observables.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-033316
2021-09-21
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-033316.html?itemId=/content/journals/10.1146/annurev-nucl-102419-033316&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dytrych T et al. Phys. Rev. Lett. 124:042501 2020.
    [Google Scholar]
  2. 2. 
    Rowe DJ. Rep. Prog. Phys. 48:1419 1985.
    [Google Scholar]
  3. 3. 
    Draayer JP, Akiyama Y. J. Math. Phys. 14:1904 1973.
    [Google Scholar]
  4. 4. 
    Draayer J, Weeks K, Rosensteel G. Nucl. Phys. A 413:215 1984.
    [Google Scholar]
  5. 5. 
    Blokhin A, Bahri C, Draayer J. Phys. Rev. Lett. 74:4149 1995.
    [Google Scholar]
  6. 6. 
    Launey KD, Dytrych T, Draayer JP. Prog. Part. Nucl. Phys. 89:101 2016.
    [Google Scholar]
  7. 7. 
    Rosensteel G, Rowe DJ. Phys. Rev. Lett. 38:10 1977.
    [Google Scholar]
  8. 8. 
    Rosensteel G, Rowe DJ. Ann. Phys. N. Y. 126:343 1980.
    [Google Scholar]
  9. 9. 
    Rowe DJ. Prog. Part. Nucl. Phys. 37:265 1996.
    [Google Scholar]
  10. 10. 
    Heyde K, Wood JL. Rev. Mod. Phys. 83:1467 2011.
    [Google Scholar]
  11. 11. 
    Wood JL. Emergent Phenomena in Atomic Nuclei from Large-Scale Modeling: A Symmetry-Guided Perspective KD Launey 1 Singapore: World Sci 2017.
    [Google Scholar]
  12. 12. 
    Rowe DJ, Wood JL. J. Phys. G 45:06LT01 2018.
    [Google Scholar]
  13. 13. 
    Elliott JP. Proc. R. Soc. A 245:128 1958.
    [Google Scholar]
  14. 14. 
    Elliott JP. Proc. R. Soc. A 245:562 1958.
    [Google Scholar]
  15. 15. 
    Elliott JP, Harvey M. Proc. R. Soc. A 272:557 1963.
    [Google Scholar]
  16. 16. 
    Hecht KT, Adler A. Nucl. Phys. A 137:129 1969.
    [Google Scholar]
  17. 17. 
    Hecht KT, Zahn W. Nucl. Phys. A 318:1 1979.
    [Google Scholar]
  18. 18. 
    Dytrych T et al. Phys. Rev. Lett. 98:162503 2007.
    [Google Scholar]
  19. 19. 
    Dytrych T et al. Phys. Rev. Lett. 111:252501 2013.
    [Google Scholar]
  20. 20. 
    Bedaque PF, van Kolck U. Annu. Rev. Nucl. Part. Sci. 52:339 2002.
    [Google Scholar]
  21. 21. 
    Epelbaum E et al. Phys. Rev. C 66:064001 2002.
    [Google Scholar]
  22. 22. 
    Entem DR, Machleidt R. Phys. Rev. C 68:041001 2003.
    [Google Scholar]
  23. 23. 
    Rowe D. AIP Conf. Proc. 1541:104 2013.
    [Google Scholar]
  24. 24. 
    Dytrych T et al. Comput. Phys. Commun. 207:202 2016.
    [Google Scholar]
  25. 25. 
    Dytrych T et al. Phys. Rev. C 91:024326 2015.
    [Google Scholar]
  26. 26. 
    Baker RB et al. Phys. Rev. C 102:014320 2020.
    [Google Scholar]
  27. 27. 
    Ruotsalainen P et al. Phys. Rev. C 99:051301 2019.
    [Google Scholar]
  28. 28. 
    Henderson J et al. Phys. Lett. B 782:468 2018.
    [Google Scholar]
  29. 29. 
    Williams J et al. Phys. Rev. C 100:014322 2019.
    [Google Scholar]
  30. 30. 
    Launey KD et al. AIP Conf. Proc. 2038:020004 2018.
    [Google Scholar]
  31. 31. 
    Johnson CW et al. J. Phys. G 47:123001 2020.
    [Google Scholar]
  32. 32. 
    Nollett K et al. Phys. Rev. Lett. 99:022502 2007.
    [Google Scholar]
  33. 33. 
    Hagen G, Dean D, Hjorth-Jensen M, Papenbrock T. Phys. Lett. B 656:169 2007.
    [Google Scholar]
  34. 34. 
    Quaglioni S, Navrátil P. Phys. Rev. Lett. 101:092501 2008.
    [Google Scholar]
  35. 35. 
    Elhatisari S et al. Nature 528:111 2015.
    [Google Scholar]
  36. 36. 
    Zhang X et al. Phys. Rev. Lett. 125:112503 2020.
    [Google Scholar]
  37. 37. 
    Bacca S et al. Phys. Rev. C 90:064619 2014.
    [Google Scholar]
  38. 38. 
    Navrátil P, Quaglioni S. Phys. Rev. Lett. 108:042503 2012.
    [Google Scholar]
  39. 39. 
    Girlanda L et al. Phys. Rev. Lett. 105:232502 2010.
    [Google Scholar]
  40. 40. 
    Hupin G, Quaglioni S, Navrátil P. Nat. Commun. 10:351 2019.
    [Google Scholar]
  41. 41. 
    Dreyfuss AC et al. Phys. Rev. C 102:044608 2020.
    [Google Scholar]
  42. 42. 
    Mercenne A et al. Recent Progress in Few-Body Physics: Proceedings of the 22nd International Conference on Few-Body Problems in Physics N Orr, M Płoszajczak, F Marqués, J Carbonell 253 Berlin: Springer. Springer Proc. Phys 238 2020.
    [Google Scholar]
  43. 43. 
    Mercenne A et al. Proceedings of the 6th International Workshop on Compound-Nuclear Reactions and Related Topics (CNR*18) J Escher et al.73 Berlin: Springer 2021.
    [Google Scholar]
  44. 44. 
    Wildermuth K, Tang Y. A Unified Theory of the Nucleus Braunschweig, Ger: Vieweg 1977.
    [Google Scholar]
  45. 45. 
    Quaglioni S, Navrátil P. Phys. Rev. C 79:044606 2009.
    [Google Scholar]
  46. 46. 
    Elster C, Weppner S, Chinn C. Phys. Rev. C 56:2080 1997.
    [Google Scholar]
  47. 47. 
    Dussan H et al. Phys. Rev. C 90:061603 2014.
    [Google Scholar]
  48. 48. 
    Burrows M et al. Phys. Rev. C 102:034606 2020.
    [Google Scholar]
  49. 49. 
    Burrows M et al. Phys. Rev. C 97:024325 2018.
    [Google Scholar]
  50. 50. 
    Cyburt RH et al. Astrophys. J. Suppl. 189:240 2010.
    [Google Scholar]
  51. 51. 
    Wolf C et al. Phys. Rev. Lett. 122:232701 2019.
    [Google Scholar]
  52. 52. 
    Galloway DK et al. Astrophys. J. Suppl. 179:360 2008.
    [Google Scholar]
  53. 53. 
    Brune CR, Davids B. Annu. Rev. Nucl. Part. Sci. 65:87 2015.
    [Google Scholar]
  54. 54. 
    Wiescher M, Käppeler F, Langanke K. Annu. Rev. Astron. Astrophys. 50:165 2012.
    [Google Scholar]
  55. 55. 
    deBoer RJ et al. Rev. Mod. Phys. 89:035007 2017.
    [Google Scholar]
  56. 56. 
    Farmer R et al. Astrophys. J. Lett. 902:L36 2020.
    [Google Scholar]
  57. 57. 
    Croon D, McDermott SD, Sakstein J. arXiv:2007.07889 [gr-qc] 2020.
  58. 58. 
    Abbott BP et al. Phys. Rev. Lett. 119:161101 2017.
    [Google Scholar]
  59. 59. 
    Surman R, Beun J, McLaughlin GC, Hix WR. Phys. Rev. C 79:045809 2009.
    [Google Scholar]
  60. 60. 
    Escher JE et al. Rev. Mod. Phys. 84:353 2012.
    [Google Scholar]
  61. 61. 
    Escher JE et al. Phys. Rev. Lett. 121:052501 2018.
    [Google Scholar]
  62. 62. 
    Mahzoon MH, Atkinson MC, Charity RJ, Dickhoff WH. Phys. Rev. Lett. 119:222503 2017.
    [Google Scholar]
  63. 63. 
    Fattoyev FJ, Piekarewicz J, Horowitz CJ. Phys. Rev. Lett. 120:172702 2018.
    [Google Scholar]
  64. 64. 
    Furumoto T, Tsubakihara K, Ebata S, Horiuchi W. Phys. Rev. C 99:034605 2019.
    [Google Scholar]
  65. 65. 
    Weppner S, Penney R, Diffendale G, Vittorini G. Phys. Rev. C 80:034608 2009.
    [Google Scholar]
  66. 66. 
    Koning A, Delaroche J. Nucl. Phys. A 713:231 2003.
    [Google Scholar]
  67. 67. 
    Idini A, Barbieri C, Navrátil P. Phys. Rev. Lett. 123:092501 2019.
    [Google Scholar]
  68. 68. 
    Rotureau J et al. Phys. Rev. C 95:024315 2017.
    [Google Scholar]
  69. 69. 
    Michel N, Nazarewicz W, Płoszajczak M, Bennaceur K. Phys. Rev. Lett. 89:042502 2002.
    [Google Scholar]
  70. 70. 
    Mercenne A, Michel N, Płoszajczak M. Phys. Rev. C 99:044606 2019.
    [Google Scholar]
  71. 71. 
    Arcones A et al. Prog. Part. Nucl. Phys. 94:1 2017.
    [Google Scholar]
  72. 72. 
    Carlson J et al. Prog. Part. Nucl. Phys. 94:68 2017.
    [Google Scholar]
  73. 73. 
    Fonseca AC, Deltuva A. Few-Body Syst. 58:46 2017.
    [Google Scholar]
  74. 74. 
    Deltuva A, Fonseca AC. Phys. Rev. C 95:024003 2017.
    [Google Scholar]
  75. 75. 
    Lazauskas R. Phys. Rev. C 97:044002 2018.
    [Google Scholar]
  76. 76. 
    Viviani M et al. Phys. Rev. C 95:034003 2017.
    [Google Scholar]
  77. 77. 
    Lovell A, Nunes F. J. Phys. G 42:034014 2015.
    [Google Scholar]
  78. 78. 
    Hergert H. Front. Phys. 8:379 2020.
    [Google Scholar]
  79. 79. 
    Rotureau J et al. Phys. Rev. Lett. 97:110603 2006.
    [Google Scholar]
  80. 80. 
    Fossez K, Rotureau J, Michel N, Płoszajczak M. Phys. Rev. Lett. 119:032501 2017.
    [Google Scholar]
  81. 81. 
    De Grancey F et al. Phys. Lett. B 758:26 2016.
    [Google Scholar]
  82. 82. 
    Navrátil P, Vary JP, Barrett BR. Phys. Rev. Lett. 84:5728 2000.
    [Google Scholar]
  83. 83. 
    Barrett B, Navrátil P, Vary J. Prog. Part. Nucl. Phys. 69:131 2013.
    [Google Scholar]
  84. 84. 
    Shirokov A, Vary J, Mazur A, Weber T. Phys. Lett. B 644:33 2007.
    [Google Scholar]
  85. 85. 
    Wiringa RB, Stoks VGJ, Schiavilla R. Phys. Rev. C 51:38 1995.
    [Google Scholar]
  86. 86. 
    Ekström A et al. Phys. Rev. Lett. 110:192502 2013.
    [Google Scholar]
  87. 87. 
    Ekström A et al. Phys. Rev. C 91:051301 2015.
    [Google Scholar]
  88. 88. 
    Launey KD et al. Eur. Phys. J. Spec. Top. 229:2429 2020.
    [Google Scholar]
  89. 89. 
    Verhaar BJ. Nucl. Phys. 21:508 1960.
    [Google Scholar]
  90. 90. 
    Hecht KT. Nucl. Phys. A 170:34 1971.
    [Google Scholar]
  91. 91. 
    Draayer JP, Leschber Y, Park SC, Lopez R. Comput. Phys. Commun. 56:279 1989.
    [Google Scholar]
  92. 92. 
    Langr D, Dytrych T, Launey KD, Draayer JP. Int. J. High Perform. Comput. Appl. 33:522 2019.
    [Google Scholar]
  93. 93. 
    Oberhuber T et al. Discret. Contin. Dyn. Syst. S S14:31111 2021.
    [Google Scholar]
  94. 94. 
    Johnson CW. Phys. Rev. C 91:034313 2015.
    [Google Scholar]
  95. 95. 
    Johnson CW. Phys. Rev. Lett. 124:172502 2020.
    [Google Scholar]
  96. 96. 
    McCoy AE, Caprio MA, Dytrych T, Fasano PJ. Phys. Rev. Lett. 125:102505 2020.
    [Google Scholar]
  97. 97. 
    Brida I, Pieper SC, Wiringa RB. Phys. Rev. C 84:024319 2011.
    [Google Scholar]
  98. 98. 
    Gloeckner DH, Lawson RD. Phys. Lett. B 53:313 1974.
    [Google Scholar]
  99. 99. 
    Tilley DR et al. Nucl. Phys. A 708:3 2002.
    [Google Scholar]
  100. 100. 
    Wiringa RB, Schiavilla R. Phys. Rev. Lett. 81:4317 1998.
    [Google Scholar]
  101. 101. 
    Pudliner BS et al. Phys. Rev. C 56:1720 1997.
    [Google Scholar]
  102. 102. 
    Li GC, Sick I, Whitney RR, Yearian MR. Nucl. Phys. A 162:583 1971.
    [Google Scholar]
  103. 103. 
    Carlson J et al. Rev. Mod. Phys. 87:1067 2015.
    [Google Scholar]
  104. 104. 
    Lynn J, Tews I, Gandolfi S, Lovato A. Annu. Rev. Nucl. Part. Sci. 69:279 2019.
    [Google Scholar]
  105. 105. 
    Sargsyan GH et al. Phys. Rev. C 103:044305 2021.
    [Google Scholar]
  106. 106. 
    Arkatov YM et al. Sov. J. Nucl. Phys. 19:598 1974.
    [Google Scholar]
  107. 107. 
    Arkatov YM et al. Sov. J. Nucl. Phys. 31:726 1980.
    [Google Scholar]
  108. 108. 
    Gazit D et al. Phys. Rev. C 74:061001 2006.
    [Google Scholar]
  109. 109. 
    Ji C, Nevo Dinur N, Bacca S, Barnea N Phys. Rev. Lett. 111:143402 2013.
    [Google Scholar]
  110. 110. 
    Stetcu I et al. Phys. Rev. C 79:064001 2009.
    [Google Scholar]
  111. 111. 
    Efros VD, Leidemann W, Orlandini G. Phys. Lett. B 338:130 1994.
    [Google Scholar]
  112. 112. 
    Bacca S et al. Phys. Rev. Lett. 111:122502 2013.
    [Google Scholar]
  113. 113. 
    Baker R. Electromagnetic sum rules and response functions from the symmetry-adapted no-core shell model PhD Thesis, Louisiana State Univ. Baton Rouge: 2019.
    [Google Scholar]
  114. 114. 
    Garg U, Colò G. Prog. Part. Nucl. Phys. 101:55 2018.
    [Google Scholar]
  115. 115. 
    Bahri C, Rowe DJ. Nucl. Phys. A 662:125 2000.
    [Google Scholar]
  116. 116. 
    Dreyfuss AC et al. Phys. Lett. B 727:511 2013.
    [Google Scholar]
  117. 117. 
    Tobin GK et al. Phys. Rev. C 89:034312 2014.
    [Google Scholar]
  118. 118. 
    Dreyfuss AC et al. Phys. Rev. C 95:044312 2017.
    [Google Scholar]
  119. 119. 
    Epelbaum E, Krebs H, Lee D, Meissner U-G. Phys. Rev. Lett. 106:192501 2011.
    [Google Scholar]
  120. 120. 
    Rupak G, Lee D. Phys. Rev. Lett. 111:032502 2013.
    [Google Scholar]
  121. 121. 
    Bacca S, Barnea N, Leidemann W, Orlandini G. Phys. Rev. Lett. 110:042503 2013.
    [Google Scholar]
  122. 122. 
    Kravvaris K, Volya A. Phys. Rev. C 100:034321 2019.
    [Google Scholar]
  123. 123. 
    Freer M et al. Rev. Mod. Phys. 90:035004 2018.
    [Google Scholar]
  124. 124. 
    Wheeler JA. Phys. Rev. 52:1107 1937.
    [Google Scholar]
  125. 125. 
    Horiuchi H. Prog. Theor. Phys. 43:375 1970.
    [Google Scholar]
  126. 126. 
    Kanada-En'yo Y. Phys. Rev. Lett. 81:5291 1998.
    [Google Scholar]
  127. 127. 
    Chernykh M et al. Phys. Rev. Lett. 98:032501 2007.
    [Google Scholar]
  128. 128. 
    Suzuki Y. Nucl. Phys. A 448:395 1986.
    [Google Scholar]
  129. 129. 
    Suzuki Y, Hecht KT. Nucl. Phys. A 455:315 1986.
    [Google Scholar]
  130. 130. 
    Suzuki Y, Hecht KT. Nucl. Phys. A 388:102 1982.
    [Google Scholar]
  131. 131. 
    Hecht KT, Reske EJ, Seligman TH, Zahn W. Nucl. Phys. A 356:146 1981.
    [Google Scholar]
  132. 132. 
    Descouvemont P, Baye D. Rep. Prog. Phys. 73:3 2010.
    [Google Scholar]
  133. 133. 
    MacArthur JD, Evans HC, Leslie JR, Mak HB. Phys. Rev. C 22:356 1980.
    [Google Scholar]
  134. 134. 
    Constantini H et al. Phys. Rev. C 82:035802 2010.
    [Google Scholar]
  135. 135. 
    Paxton B et al. Astrophys. J. Suppl. 243:10 2019.
    [Google Scholar]
  136. 136. 
    Paxton B et al. Astrophys. J. Suppl. 220:15 2015.
    [Google Scholar]
  137. 137. 
    Ubertini P et al. Astrophys. J. Lett. 514:L27 1999.
    [Google Scholar]
  138. 138. 
    Feshbach H. Ann. Phys. N. Y. 5:357 1958.
    [Google Scholar]
  139. 139. 
    Capuzzi F, Mahaux C. Ann. Phys. N. Y. 281:223 2000.
    [Google Scholar]
  140. 140. 
    Escher J, Jennings BK. Phys. Rev. C 66:034313 2002.
    [Google Scholar]
  141. 141. 
    Watson KM. Phys. Rev. 89:575 1953.
    [Google Scholar]
  142. 142. 
    Kerman AK, McManus H, Thaler RM. Ann. Phys. 8:551 1959.
    [Google Scholar]
  143. 143. 
    Siciliano ER, Thaler RM. Phys. Rev. C 16:1322 1977.
    [Google Scholar]
  144. 144. 
    Rotureau J, Potel G, Li W, Nunes FM J. Phys. G 47:065103 2020.
    [Google Scholar]
  145. 145. 
    Launey KD, Dytrych T, Draayer JP. Phys. Rev. C 84:044003 2012.
    [Google Scholar]
  146. 146. 
    Chinn CR, Elster C, Thaler RM. Phys. Rev. C 47:2242 1993.
    [Google Scholar]
  147. 147. 
    Moss GA et al. Phys. Rev. C 21:1932 1980.
    [Google Scholar]
  148. 148. 
    Burrows M et al. Phys. Rev. C 99:044603 2019.
    [Google Scholar]
  149. 149. 
    Yao JM et al. Phys. Rev. Lett. 124:232501 2020.
    [Google Scholar]
  150. 150. 
    Novario SJ et al. arXiv:2008.09696 [nucl-th] 2020.
/content/journals/10.1146/annurev-nucl-102419-033316
Loading
/content/journals/10.1146/annurev-nucl-102419-033316
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error