1932

Abstract

Liquid argon time-projection chambers (LArTPCs) have become a prominent tool for experiments in particle physics. Recent years have yielded significant advances in the techniques used to capture the signals generated by these cryogenic detectors. This article summarizes these novel developments for detection of ionization electrons and scintillation photons in LArTPCs. New methods to capture ionization signals address the challenges of scaling traditional techniques to the large scales necessary for future experiments. Pixelated readouts improve signal fidelity and expand the applicability of LArTPCs to higher-rate environments. Methods that leverage amplification in argon enable measurements in the keV regime and below. Techniques to enhance collection of argon scintillation photons improve calorimetry and expand the physics program for very large detectors. Future efforts aim to demonstrate systems for the combined detection of both electrons and photons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102422-035255
2024-09-26
2025-04-17
Loading full text...

Full text loading...

/deliver/fulltext/nucl/74/1/annurev-nucl-102422-035255.html?itemId=/content/journals/10.1146/annurev-nucl-102422-035255&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aprile E, Doke T. Rev. Mod. Phys. 82::2053 ( 2010.)
    [Crossref] [Google Scholar]
  2. 2.
    Workman RL, et al. (Part. Data Group.) Prog. Theor. Exp. Phys. 2022::083C01 ( 2022.); Workman RL , et al. ( Part. Data Group. ) Review of particle physics: 2023 update. . Particle Data Group. https://pdg.lbl.gov/2023/reviews/contents_sports.html ( 2023.)
    [Google Scholar]
  3. 3.
    Miyajima M, et al. Phys. Rev. A 9::1438 ( 1974.)
    [Crossref] [Google Scholar]
  4. 4.
    Amoruso S, et al. Nucl. Instrum. Methods A 523::275 ( 2004.)
    [Crossref] [Google Scholar]
  5. 5.
    Acciari R, et al. J. Instrum. 8::P08005 ( 2013.)
    [Crossref] [Google Scholar]
  6. 6.
    Zhang A, et al. Nucl. Instrum. Methods A 1010::165491 ( 2021.)
    [Crossref] [Google Scholar]
  7. 7.
    Doke T, et al. Jpn. J. Appl. Phys. 41::1538 ( 2002.)
    [Crossref] [Google Scholar]
  8. 8.
    Kubota S, et al. Phys. Rev. B 17::2762 ( 1978.)
    [Crossref] [Google Scholar]
  9. 9.
    Heindl T, et al. Eur. Phys. Lett. 91::62002 ( 2010.)
    [Crossref] [Google Scholar]
  10. 10.
    Santorelli R, et al. Eur. Phys. J. C 81::622 ( 2021.)
    [Crossref] [Google Scholar]
  11. 11.
    Segreto E. Phys. Rev. D 103::043001 ( 2021.)
    [Crossref] [Google Scholar]
  12. 12.
    Babicz M, et al. J. Instrum. 15::C03035 ( 2020.)
    [Crossref] [Google Scholar]
  13. 13.
    Walkowiak W. Nucl. Instrum. Methods A 449::288 ( 2000.)
    [Crossref] [Google Scholar]
  14. 14.
    Shibamura E, Takahashi T, Kubota S, Doke T. Phys. Rev. A 20::2547 ( 1979.)
    [Crossref] [Google Scholar]
  15. 15.
    Li Y, et al. Nucl. Instrum. Methods A 816::160 ( 2016.)
    [Crossref] [Google Scholar]
  16. 16.
    Tegeler Ch, Span R, Wagner W. J. Phys. Chem. Ref. Data 28::779 ( 1999.)
    [Crossref] [Google Scholar]
  17. 17.
    Shutt RP. Bubble and Spark Chambers: Principles and Use, Vol. 1–2. New York:: Academic ( 1967.)
    [Google Scholar]
  18. 18.
    Charpak G, et al. Nucl. Instrum. Methods A 62::262 ( 1968.)
    [Crossref] [Google Scholar]
  19. 19.
    Bressani T, Charpak G, Rahm D, Zupancic C. Track localization by means of a drift chamber. Rep. , CERN, Geneva:. https://cds.cern.ch/record/1221302 ( 1969.)
    [Google Scholar]
  20. 20.
    Nygren D. eConf C740805::58 ( 1974.)
    [Google Scholar]
  21. 21.
    Attie D. Nucl. Instrum. Methods A 598::89 ( 2009.)
    [Crossref] [Google Scholar]
  22. 22.
    Willis WJ, Radeka V. Nucl. Instrum. Methods 120::221 ( 1974.)
    [Crossref] [Google Scholar]
  23. 23.
    Fabjan CW. Nucl. Instrum. Methods A 360::228 ( 1995.)
    [Crossref] [Google Scholar]
  24. 24.
    Rubbia C. Report CERN-EP-77-08, CERN, Geneva: ( 1977.)
    [Google Scholar]
  25. 25.
    Amerio S, et al. Nucl. Instrum. Methods A 527::329 ( 2004.)
    [Crossref] [Google Scholar]
  26. 26.
    Rubbia C, et al. J. Instrum. 6::P07011 ( 2011.)
    [Crossref] [Google Scholar]
  27. 27.
    Baudis L. Phys. Dark Univ. 4::50 ( 2014.)
    [Crossref] [Google Scholar]
  28. 28.
    Dolinski MJ, Poon AWP, Rodejohann W. Annu. Rev. Nucl. Part. Sci. 69::219 ( 2019.)
    [Crossref] [Google Scholar]
  29. 29.
    Anderson C, et al. J. Instrum. 7::P10019 ( 2012.)
    [Crossref] [Google Scholar]
  30. 30.
    Acciarri R, et al. J. Instrum. 12::P02017 ( 2017.)
    [Crossref] [Google Scholar]
  31. 31.
    Aguilar-Arevalo AA, et al. Phys. Rev. D 103::052002 ( 2021.)
    [Crossref] [Google Scholar]
  32. 32.
    Acciarri R, et al. arXiv:1503.01520 [physics.ins-det] ( 2015.)
  33. 33.
    Acciarri R, et al. arXiv:1601.05471 [physics.ins-det] ( 2016.)
  34. 34.
    Adamowski M, et al. J. Instrum. 9::P07005 ( 2014.)
    [Crossref] [Google Scholar]
  35. 35.
    Bromberg C, et al. J. Instrum. 10::P07015 ( 2015.)
    [Crossref] [Google Scholar]
  36. 36.
    Adams DL, et al. J. Instrum. 15::P03035 ( 2020.)
    [Crossref] [Google Scholar]
  37. 37.
    Acciarri R, et al. J. Instrum. 15::P04026 ( 2020.)
    [Crossref] [Google Scholar]
  38. 38.
    Abi B, et al. J. Instrum. 15::P12004 ( 2020.)
    [Crossref] [Google Scholar]
  39. 39.
    Chen H, Radeka V. Nucl. Instrum. Methods A 1045::167571 ( 2023.)
    [Crossref] [Google Scholar]
  40. 40.
    Zani A. Adv. High Energy Phys. 2014::205107 ( 2014.)
    [Crossref] [Google Scholar]
  41. 41.
    Rielage K, et al. Phys. Procedia 61::144 ( 2015.)
    [Crossref] [Google Scholar]
  42. 42.
    Amaudruz PA, et al. Phys. Rev. Lett. 121::071801 ( 2018.)
    [Crossref] [Google Scholar]
  43. 43.
    Agnes P, et al. Phys. Rev. D 98::102006 ( 2018.)
    [Crossref] [Google Scholar]
  44. 44.
    Shockley W. J. Appl. Phys. 9::635 ( 1938.)
    [Crossref] [Google Scholar]
  45. 45.
    Ramo S. Proc. IRE 27::584 ( 1939.)
    [Crossref] [Google Scholar]
  46. 46.
    Adams C, et al. J. Instrum. 13::P07006 ( 2018.)
    [Crossref] [Google Scholar]
  47. 47.
    Adams C, et al. J. Instrum. 13::P07007 ( 2018.)
    [Crossref] [Google Scholar]
  48. 48.
    Sacerdoti S. Proc. Sci. NuFact2021:173 ( 2021.)
    [Google Scholar]
  49. 49.
    Lantwin O. Proc. Sci. ICHEP2022::332 ( 2022.)
    [Google Scholar]
  50. 50.
    Asaadi J, et al. Instruments 4::6 ( 2020.)
    [Crossref] [Google Scholar]
  51. 51.
    Abed Abud A, et al. Instruments 5::31 ( 2021.)
    [Crossref] [Google Scholar]
  52. 52.
    Dwyer DA, et al. J. Instrum. 13::P10007 ( 2018.)
    [Crossref] [Google Scholar]
  53. 53.
    Abed Abud A, et al. (DUNE Collab.) arXiv:2403.03212 [physics.ins-det] ( 2024.)
  54. 54.
    Nygren DR, Mei Y. arXiv:1809.10213 [physics.ins-det] ( 2018.)
  55. 55.
    Kubota S, et al. Phys. Rev. D 106::032011 ( 2022.)
    [Crossref] [Google Scholar]
  56. 56.
    Beever Z, Caratelli D, Fava A. Technical Report FERMILAB-POSTER-19-098-ND, Fermilab, Batavia, IL: ( 2019.)
    [Google Scholar]
  57. 57.
    Kim JG, et al. Nucl. Instrum. Methods A 534::376 ( 2004.)
    [Crossref] [Google Scholar]
  58. 58.
    Beever Z, et al. Comput. Phys. Commun. 297::109056 ( 2024.)
    [Crossref] [Google Scholar]
  59. 59.
    Alner GJ, et al. Astropart. Phys. 28::287 ( 2007.)
    [Crossref] [Google Scholar]
  60. 60.
    Akimov DY, et al. Astropart. Phys. 27::46 ( 2007.)
    [Crossref] [Google Scholar]
  61. 61.
    Akerib DS, et al. Phys. Rev. Lett. 112::091303 ( 2014.)
    [Crossref] [Google Scholar]
  62. 62.
    Malling DC, et al. arXiv:1110.0103 [astro-ph.IM] ( 2011.)
  63. 63.
    Bossa M. J. Instrum. 9::C01034 ( 2014.)
    [Crossref] [Google Scholar]
  64. 64.
    Aalseth CE, et al. Eur. Phys J. Plus 133::131 ( 2018.)
    [Crossref] [Google Scholar]
  65. 65.
    Marchionni A, Autiero D, Duchesneau D, Cavalier F. Status of the DUNE project. Rep. , CNRS Nucl. Part. https://atrium.in2p3.fr/nuxeo/nxfile/default/f6fdb622-c081-4320-a68e-b1088e87fdc3/blobholder:0/7-Docs-DUNE-Marchianni-Autiero-Duchesneau-Cavalier.pdf ( 2021.)
    [Google Scholar]
  66. 66.
    Lowe A, et al. Instruments 4::35 ( 2020.)
    [Crossref] [Google Scholar]
  67. 67.
    Lowe A, et al. Appl. Sci. 11::9450 ( 2021.)
    [Crossref] [Google Scholar]
  68. 68.
    Nomerotski A. Nucl. Instrum. Methods A 937::26 ( 2019.)
    [Crossref] [Google Scholar]
  69. 69.
    Lowe AJ, et al. Phys. Sci. Forum 8::46 ( 2023.)
    [Google Scholar]
  70. 70.
    Szelc AM. J. Instrum. 11::C02018 ( 2016.)
    [Crossref] [Google Scholar]
  71. 71.
    Ali-Mohammadzadeh B, et al. J. Instrum. 15::T10007 ( 2020.)
    [Crossref] [Google Scholar]
  72. 72.
    Agnes P, et al. Phys. Lett. B 743::456 ( 2015.)
    [Crossref] [Google Scholar]
  73. 73.
    Auger M, et al. J. Instrum. 7::P05010 ( 2012.)
    [Crossref] [Google Scholar]
  74. 74.
    Akerib DS, et al. Nucl. Instrum. Methods A 953::163047 ( 2020.)
    [Crossref] [Google Scholar]
  75. 75.
    Andringa S, et al. J. Phys. G 50::033001 ( 2023.)
    [Crossref] [Google Scholar]
  76. 76.
    Bezerra T, et al. J. Phys. G 50::060502 ( 2023.)
    [Crossref] [Google Scholar]
  77. 77.
    Agnes P, et al. J. Cosmol. Astropart. Phys. 2103::043 ( 2021.)
    [Google Scholar]
  78. 78.
    Abi B, et al. Eur. Phys. J. C 81::423 ( 2021.)
    [Crossref] [Google Scholar]
  79. 79.
    Parsa S, et al. arXiv:2203.07501 [hep-ex] ( 2022.)
  80. 80.
    Ajaj R, et al. Phys. Rev. D 100::022004 ( 2019.)
    [Crossref] [Google Scholar]
  81. 81.
    Agnes P, et al. Phys. Rev. D 107::063001 ( 2023.)
    [Crossref] [Google Scholar]
  82. 82.
    Moss Z, et al. arXiv:1604.03103 [physics.ins-det] ( 2016.)
  83. 83.
    Howard B, et al. Nucl. Instrum. Methods A 907::9 ( 2018.)
    [Crossref] [Google Scholar]
  84. 84.
    Howard B. Toward a precision era of neutrino oscillation physics: liquid argon scintillation detector development for DUNE and neutrino oscillation studies with NOνA. PhD Thesis , Indiana Univ., Bloomington: ( 2019.)
    [Google Scholar]
  85. 85.
    Macias C. Neutrino hunting: looking through a UV lens. PhD Thesis , Indiana Univ., Bloomington: ( 2022.)
    [Google Scholar]
  86. 86.
    Razeto A, et al. J. Instrum. 17::P05038 ( 2022.)
    [Crossref] [Google Scholar]
  87. 87.
    Kuzniak M, Szelc AM. Instruments 5::4 ( 2020.)
    [Crossref] [Google Scholar]
  88. 88.
    Aalseth CE, et al. Adv. High Energy Phys. 2015::541362 ( 2015.)
    [Crossref] [Google Scholar]
  89. 89.
    Machado AA, et al. J. Instrum. 13::C04026 ( 2018.)
    [Crossref] [Google Scholar]
  90. 90.
    Andreossi V, et al. J. Instrum. 19::C02021 ( 2024.)
    [Crossref] [Google Scholar]
  91. 91.
    Souza HV, et al. J. Instrum. 16::P11002 ( 2021.)
    [Crossref] [Google Scholar]
  92. 92.
    Brizzolari C, et al. J. Instrum. 16::P09027 ( 2021.)
    [Crossref] [Google Scholar]
  93. 93.
    Auger M, et al. Instruments 2::3 ( 2018.)
    [Crossref] [Google Scholar]
  94. 94.
    Anfimov N, et al. J. Instrum. 15::C07022 ( 2020.)
    [Crossref] [Google Scholar]
  95. 95.
    Calivers L. The 2x2 demonstrator: demonstration of a modular liquid argon detector for the DUNE Near Detector. Presented at IPRD 2023, Siena, Italy:, Sept. 25–29. https://indico.cern.ch/event/1264216/contributions/5548299/ ( 2023.)
    [Google Scholar]
  96. 96.
    Souza HV. J. Instrum. 18::C02029 ( 2023.)
    [Crossref] [Google Scholar]
  97. 97.
    Huang H, Abbaszadeh S. IEEE Sens. J. 20::1694 ( 2020.)
    [Crossref] [Google Scholar]
  98. 98.
    Liu K, Sakurai M, Aono M. Sensors 10::8604 ( 2010.)
    [Crossref] [Google Scholar]
  99. 99.
    Ren T, et al. Sci. Adv. 8::4273 ( 2022.)
    [Crossref] [Google Scholar]
  100. 100.
    Rooks M, et al. J. Instrum. 18::P01029 ( 2023.)
    [Crossref] [Google Scholar]
  101. 101.
    Kunzmann J. (SoLAr Collab.) J. Instrum. 19::C02075 ( 2024.)
    [Crossref] [Google Scholar]
  102. 102.
    Breskin A. J. Phys. Conf. Ser. 460::012020 ( 2013.)
    [Crossref] [Google Scholar]
  103. 103.
    Erdal E, et al. J. Instrum. 14::P11021 ( 2019.)
    [Crossref] [Google Scholar]
  104. 104.
    Tesi A, et al. J. Instrum. 16::P09003 ( 2021.)
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nucl-102422-035255
Loading
/content/journals/10.1146/annurev-nucl-102422-035255
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error