1932

Abstract

Experimental activities involving multi-TeV muon collisions are a relatively recent endeavor. The community has limited experience in designing detectors for lepton interactions at center-of-mass energies of 10 TeV and beyond. This review provides a short overview of the machine characteristics and outlines potential sources of beam-induced background that could affect the detector performance. The strategy for mitigating the effects of the beam-induced background on the detector at  TeV is discussed with a focus on the machine–detector interface, detector design, and implementation of reconstruction algorithms. The physics potential at this center-of-mass energy is evaluated using a detailed detector simulation that incorporates the effects of the beam-induced background. This evaluation concerns the Higgs boson couplings and the Higgs field potential sensitivity, which then are used to obtain confidence on the expectations at 10 TeV. The physics and detector requirements for an experiment at  TeV, outlined here, form the foundation for the initial detector concept at that center-of-mass energy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102622-011319
2024-09-26
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/nucl/74/1/annurev-nucl-102622-011319.html?itemId=/content/journals/10.1146/annurev-nucl-102622-011319&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tinlot J, Green D. IEEE Trans. Nucl. Sci. 12::470 ( 1965.)
    [Crossref] [Google Scholar]
  2. 2.
    Palmer RB, Tollestrup A, Sessler A. In Proceedings of the 1996 DPFDPB Summer Study on New Directions in High-Energy Physics, Session ACC026 . Stanford, CA:: SLAC. https://www.slac.stanford.edu/pubs/snowmass96 ( 1996.)
    [Google Scholar]
  3. 3.
    Palmer M. In Proceedings of the International Workshop on Beam Cooling and Related Topics, Session MOAM2HA02 . Geneva:: CERN.. https://epaper.kek.jp/COOL2013 ( 2013.)
    [Google Scholar]
  4. 4.
    Palmer M, Long K, eds. Muon accelerators for particle physics (MUON). Article Collection. , Journal of Instrumentation. https://iopscience.iop.org/journal/1748-0221/page/extraproc46 ( 2016–2021.)
    [Google Scholar]
  5. 5.
    Eur. Strategy Group. Report CERN-ESU-013-2020, CERN, Geneva: ( 2020.)
    [Google Scholar]
  6. 6.
    Accettura C, et al. Eur. Phys. J. C 83::864 ( 2023.); Accettura C , et al. arXiv:2303.08533 [physics.acc-ph] ( 2023.)
    [Crossref] [Google Scholar]
  7. 7.
    Bao Y, et al. In Proceedings of the 6th International Particle Accelerator Conference, Session TUPWI040 . Geneva:: JACoW. http://jacow.org/ipac2015 ( 2015.)
    [Google Scholar]
  8. 8.
    Long KR, et al. Nat. Phys. 17::289 ( 2021.); Long K , et al. arXiv:2007.15684 [physics.acc-ph] ( 2020.)
    [Crossref] [Google Scholar]
  9. 9.
    Bogomilov M, et al. (MICE Collab.) Nature 578::53 ( 2020.); Bogomilov M , et al. (MICE Collab.) arXiv:1907.08562 [physics.acc-ph] ( 2019.)
    [Google Scholar]
  10. 10.
    Hart TL, et al. J. Instrum. 15::P03004 ( 2020.); Hart TL , et al. arXiv:1911.00603 [physics.acc-ph] ( 2019.)
    [Crossref] [Google Scholar]
  11. 11.
    Boscolo B, et al. Rev. Accel. Sci. Technol. 10::189 ( 2019.); Boscolo B , et al. arXiv:1808.01858 [physics.acc-ph] ( 2018.)
    [Crossref] [Google Scholar]
  12. 12.
    Cesarotti C, et al. Phys. Rev. Lett. 130::071803 ( 2023.); Cesarotti C , et al. arXiv:2202.12302 [hep-ph] ( 2022.)
    [Crossref] [Google Scholar]
  13. 13.
    Han T, et al. arXiv:2205.11730 [hep-ph] ( 2022.)
  14. 14.
    Black KM, et al. arXiv:2209.01318 [hep-ex] ( 2022.)
  15. 15.
    Costantini A, et al. J. High Energy Phys. 2020::80 ( 2020.); Costantini A , et al. arXiv:2005.10289 [hep-ph] ( 2020.)
    [Crossref] [Google Scholar]
  16. 16.
    Ruiz R, et al. J. High Energy Phys. 2022::114 ( 2022.); Ruiz R , et al. arXiv:2111.02442 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  17. 17.
    Mokhov NV, et al. arXiv:1202.3979 [physics.acc-ph] ( 2012.)
  18. 18.
    Ginzburg IF. Nucl. Phys. Proc. Suppl. 51A::186 ( 1996.); Ginzburg IF. arXiv:hep-ph/9601273 ( 1996.)
    [Google Scholar]
  19. 19.
    Landau LD, Lifshitz EM. Phys. Z. Sov. 6::244 ( 1934.)
    [Google Scholar]
  20. 20.
    Mokhov NV, Striganov SI. arXiv:1204.6721 [physics.ins-det] ( 2012.)
  21. 21.
    Kahn SA, et al. In Proceedings of the 2012 International Particle Accelerator Conference, Session MOPPC038 . Piscataway, NJ:: IEEE. https://accelconf.web.cern.ch/ipac2012 ( 2012.)
    [Google Scholar]
  22. 22.
    Mokhov NV, Striganov SI. AIP Conf. Proc. 896::50 ( 2007.)
    [Crossref] [Google Scholar]
  23. 23.
    Mokhov NV, James CC. Technical Report FERMILAB-FN-1058-APC, Fermi Natl. Accel. Lab., Batavia, IL: ( 2017.)
    [Google Scholar]
  24. 24.
    Collamati F, et al. J. Instrum. 16::P11009 ( 2021.); Collamati F , et al. arXiv:2105.09116 [physics.acc-ph] ( 2021.)
    [Crossref] [Google Scholar]
  25. 25.
    Ahdida C, et al. Front. Phys. 9::788253 ( 2022.)
    [Crossref] [Google Scholar]
  26. 26.
    Mereghetti A, et al. In Proceedings of the 2012 International Particle Accelerator Conference, Session WEPPD071 . Piscataway, NJ:: IEEE. https://accelconf.web.cern.ch/ipac2012 ( 2012.)
    [Google Scholar]
  27. 27.
    Agostinelli S, et al. Nucl. Instrum. Methods A 506::250 ( 2003.)
    [Crossref] [Google Scholar]
  28. 28.
    Alexahin Y, et al. J. Instrum. 13::P11002 ( 2018.); Alexahin Y , et al. arXiv:1806.08717 [physics.acc-ph] ( 2018.)
    [Crossref] [Google Scholar]
  29. 29.
    Calzolari D, et al. In Proceedings of the 14th International Particle Accelerator Conference, Session MOPA090 . Geneva:: JACoW. https://accelconf.web.cern.ch/ipac2023 ( 2023.)
    [Google Scholar]
  30. 30.
    Calzolari D, Skoufaris K. Proc. Sci. ICHEP2022::063 ( 2023.)
    [Google Scholar]
  31. 31.
    Lucchesi D, et al. Proc. Sci. EPS-HEP2023::630 ( 2024.)
    [Google Scholar]
  32. 32.
    Aberle O, et al. Yellow Report CERN-2020-010, CERN, Geneva: ( 2020.)
    [Google Scholar]
  33. 33.
    Evans L, Bryant P. J. Instrum. 3::S08001 ( 2008.)
    [Crossref] [Google Scholar]
  34. 34.
    Lamont M. J. Phys. Conf. Ser. 455::012001 ( 2013.)
    [Crossref] [Google Scholar]
  35. 35.
    Aad G, et al. (ATLAS Collab.) J. Instrum. 3::S08003 ( 2008.)
    [Crossref] [Google Scholar]
  36. 36.
    Chatrchyan S, et al. (CMS Collab.) J. Instrum. 3::S08004 ( 2008.)
    [Google Scholar]
  37. 37.
    Alipour Tehrani N, et al. Report CLICdp-Note-2017-001, CERN, Geneva: ( 2017.)
    [Google Scholar]
  38. 38.
    Frank M, Gaede F, Grefe C, Mato P. J. Phys. Conf. Ser. 513::022010 ( 2014.)
    [Crossref] [Google Scholar]
  39. 39.
    Alwall J, et al. J. High Energy Phys. 1407::79 ( 2014.); Alwall J , et al. arXiv:1405.0301 [hep-ph] ( 2014.)
    [Google Scholar]
  40. 40.
    Kilian W, Ohl T, Reuter J. Eur. Phys. J. C 71::1742 ( 2011.); Kilian W, Ohl T, Reuter J. arXiv:0708.4233 [hep-ph] ( 2007.)
    [Crossref] [Google Scholar]
  41. 41.
    Adam W, et al. J. Instrum. 16::P02027 ( 2021.); Adam W , et al. arXiv:2012.14304 [hep-ph] ( 2020.)
    [Crossref] [Google Scholar]
  42. 42.
    Bartosik N, et al. Comput. Softw. Big Sci. 5::21 ( 2021.)
    [Crossref] [Google Scholar]
  43. 43.
    Billoir P, Qian S. Nucl. Instrum. Methods A 294::219 ( 1990.)
    [Crossref] [Google Scholar]
  44. 44.
    Thomson MA. Nucl. Instrum. Methods A 611::25 ( 2009.); Thomson MA. arXiv:0907.3577 [physics.ins-det] ( 2009.)
    [Crossref] [Google Scholar]
  45. 45.
    Catani S, Dokshitzer YL, Seymour MH, Webber BR. Nucl. Phys. B 406::187 ( 1993.)
    [Crossref] [Google Scholar]
  46. 46.
    Ellis SD, Soper DE. Phys. Rev. D 48::3160 ( 1993.); Ellis SD, Soper DE. arXiv:hep-ph/9305266 ( 1993.)
    [Crossref] [Google Scholar]
  47. 47.
    Da Molin G. Study of b- and c-jets identification for Higgs coupling measurement at muon collider. Master's Thesis , Univ. Padua, Padua, Italy: ( 2021.)
    [Google Scholar]
  48. 48.
    Aad G, et al. (ATLAS Collab.) Eur. Phys. J. C 83::982 ( 2023.); Aad G , et al. (ATLAS Collab.) arXiv:2212.09379 [hep-ex] ( 2022.)
    [Crossref] [Google Scholar]
  49. 49.
    Abudinén F, et al. (Belle II Collab.) Chin. Phys. C 44::021001 ( 2020.); Abudinén F , et al. (Belle II Collab.) arXiv:1910.05365 [hep-ex] ( 2019.)
    [Crossref] [Google Scholar]
  50. 50.
    van der Meer S. Report CERN-ISR-PO-68-31 , CERN, Geneva: ( 1968.)
  51. 51.
    Calame C, et al. Nucl. Phys. B Proc. Suppl. 225–227::293 ( 2012.); Calame C , et al. arXiv:1112.2851 [hep-ph] ( 2011.)
    [Google Scholar]
  52. 52.
    Ambrosino F, et al. (KLOE Collab.) Eur. Phys. J. C 47::589 ( 2006.); Ambrosino F , et al. (KLOE Collab.) arXiv:hep-ex/0604048 ( 2006.)
    [Crossref] [Google Scholar]
  53. 53.
    Giraldin C, et al. Proc. Sci. LHCP2021::341 ( 2021.)
    [Google Scholar]
  54. 54.
    Sjöstrand T, et al. Comput. Phys. Commun. 191::159 ( 2015.); Sjöstrand T , et al. arXiv:1410.3012 [hep-ph] ( 2014.)
    [Crossref] [Google Scholar]
  55. 55.
    Workman RL, et al. Prog. Theor. Exp. Phys. 2022::083C01 ( 2022.)
    [Crossref] [Google Scholar]
  56. 56.
    Ali HA, et al. Rep. Prog. Phys. 85::084201 ( 2022.); Ali HA , et al. arXiv:2103.14043 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  57. 57.
    Abramowicz H, et al. Eur. Phys. J. C 77::475 ( 2017.); Abramowicz H , et al. arXiv:1608.07538 [hep-ex] ( 2016.)
    [Crossref] [Google Scholar]
  58. 58.
    Buonincontri L. Study of mitigation strategies of beam-induced background and Higgs boson couplings measurements at a muon collider. Master's Thesis , Univ. Padua, Padua, Italy: ( 2020.)
    [Google Scholar]
  59. 59.
    Castelli L. Study of H→WW reconstruction and coupling precision determination at muon collider. Master's Thesis , Univ. Padua, Padua, Italy: ( 2022.)
    [Google Scholar]
  60. 60.
    Sestini L, et al. Proc. Sci. ICHEP2022::515 ( 2023.)
    [Google Scholar]
  61. 61.
    Casarsa M, et al. Proc. Sci. EPS-HEP2023::408 ( 2024.)
    [Google Scholar]
  62. 62.
    Montella A, Casarsa M, Candelise V. (Muon Collid. Phys. Detect. Work. Group.) Proc. Sci. EPS-HEP2021::579 ( 2022.)
    [Google Scholar]
  63. 63.
    David A, et al. arXiv:1209.0040 [hep-ph] ( 2012.)
  64. 64.
    Forslund M, Meade P. J. High Energy Phys. 2208::185 ( 2022.); Forslund M, Meade P. arXiv:2203.09425 [hep-ph] ( 2022.)
    [Google Scholar]
  65. 65.
    Fujii K, et al. arXiv:1908.11299 [hep-ex] ( 2019.)
  66. 66.
    Han T, Liu D, Low I, Wang X. Phys. Rev. D 103::013002 ( 2021.); Han T, Liu D, Low I, Wang X. arXiv:2008.12204 [hep-ph] ( 2020.)
    [Crossref] [Google Scholar]
  67. 67.
    Chiesa M, et al. J. High Energy Phys. 2009.:98 ( 2020.); Chiesa M , et al. arXiv:2003.13628 [hep-ph] ( 2020.)
    [Google Scholar]
  68. 68.
    Han T, Liu Z, Wang LT, Wang X. Phys. Rev. D 103::075004 ( 2021.); Han T, Liu Z, Wang LT, Wang X. arXiv:2009.11287 [hep-ph] ( 2020.)
    [Crossref] [Google Scholar]
  69. 69.
    Bottaro S, et al. Eur. Phys. J. C 82::31 ( 2022.); Bottaro S , et al. arXiv:2107.09688 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  70. 70.
    Bottaro S, et al. Eur. Phys. J. C 82::992 ( 2022.); Bottaro S , et al. arXiv:2205.04486 [hep-ph] ( 2022.)
    [Crossref] [Google Scholar]
  71. 71.
    Franceschini R, Zhao X. Eur. Phys. J. C 83::552 ( 2023.); Franceschini R, Zhao X. arXiv:2212.11900 [hep-ph] ( 2022.)
    [Crossref] [Google Scholar]
  72. 72.
    Casarsa M, Fabbrichesi M, Gabrielli E. Phys. Rev. D 105::075008 ( 2022.); Casarsa M, Fabbrichesi M, Gabrielli E. arXiv:2111.13220 [hep-ph] ( 2021.)
    [Crossref] [Google Scholar]
  73. 73.
    Capdevilla R, Meloni F, Simoniello R, Zurita J. J. High Energy Phys. 2106::133 ( 2021.); Capdevilla R, Meloni F, Simoniello R, Zurita J. arXiv:2102.11292 [hep-ph] ( 2021.)
    [Google Scholar]
  74. 74.
    Frixione S, Stagnitto G. arXiv:2309.07516 [hep-ph] ( 2023.)
  75. 75.
    Han T, Ma Y, Xie K. Phys. Rev. D 103::L031301 ( 2021.); Han T, Ma Y, Xie K. arXiv:2007.14300 [hep-ph] ( 2020.)
    [Crossref] [Google Scholar]
  76. 76.
    Garosi F, Marzocca D, Trifinopoulos S. J. High Energy Phys. 2309::107 ( 2023.); Garosi F, Marzocca D, Trifinopoulos S. arXiv:2303.16964 [hep-ph] ( 2023.)
    [Google Scholar]
  77. 77.
    Jindariani S, et al. arXiv:2203.07224v1 [physics.ins-det] ( 2022.)
  78. 78.
    Sestini L, et al. Proc. Sci. EPS-HEP2023::552 ( 2024.)
    [Google Scholar]
  79. 79.
    Aleksa M, et al. arXiv:1912.09962 [physics.ins-det] ( 2019.)
  80. 80.
    Ceravolo S, et al. J. Instrum. 17::P09033 ( 2022.); Ceravolo S , et al. arXiv:2206.05838 [physics.ins-det] ( 2022.)
    [Crossref] [Google Scholar]
  81. 81.
    Aruta C, et al. Nucl. Instrum. Methods A 1047::167731 ( 2023.)
    [Crossref] [Google Scholar]
  82. 82.
    Aimé C, et al. Nucl. Instrum. Methods A 1046::167800 ( 2023.)
    [Crossref] [Google Scholar]
  83. 83.
    Bilki B, et al. J. Phys. Conf. Ser. 2374::012022 ( 2022.)
    [Crossref] [Google Scholar]
  84. 84.
    Mounet N, et al. Yellow Report CERN-2022-001, CERN, Geneva: ( 2022.)
    [Google Scholar]
  85. 85.
    CERN Sci. Policy Comm. Report CERN/SPC/1190, CERN, Geneva: ( 2022.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102622-011319
Loading
/content/journals/10.1146/annurev-nucl-102622-011319
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error