1932

Abstract

A major focus in particle physics has been on understanding the interactions of the Higgs boson. Tremendous progress has been made in determining the strength of the couplings of the Higgs boson to fermions and vector bosons, but its self-interaction has yet to be established. Understanding the Higgs self-coupling and the form of the potential function of the Higgs field will illuminate the process by which the Higgs boson acquires a vacuum expectation value and could provide insight into the early Universe and, perhaps, its eventual fate. The most natural way to probe the Higgs self-interaction is via searches for Higgs boson pair () production. Since the Standard Model makes a definite prediction for the Higgs self-coupling, enhanced rates and modified kinematic properties of production are a smoking-gun signature for new physics. This article reviews the current experimental status of searches, discusses the experimental challenges and limitations, and provides an outlook for the future of the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102622-014457
2024-09-26
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/nucl/74/1/annurev-nucl-102622-014457.html?itemId=/content/journals/10.1146/annurev-nucl-102622-014457&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Englert F, Brout R. Phys. Rev. Lett. 13::321 ( 1964.)
    [Crossref] [Google Scholar]
  2. 2.
    Higgs PW. Phys. Lett. 12::132 ( 1964.)
    [Crossref] [Google Scholar]
  3. 3.
    Higgs PW. Phys. Rev. Lett. 13::508 ( 1964.)
    [Crossref] [Google Scholar]
  4. 4.
    Aad G, et al. (ATLAS Collab.) J. Instrum. 3::S08003 ( 2008.)
    [Crossref] [Google Scholar]
  5. 5.
    Chatrchyan S, et al. (CMS Collab.) J. Instrum. 3::S08004 ( 2008.)
    [Google Scholar]
  6. 6.
    Aad G, et al. (ATLAS Collab.) Phys. Lett. B 716:(1):1 ( 2012.)
    [Crossref] [Google Scholar]
  7. 7.
    Chatrchyan S, et al. (CMS Collab.) J. High Energy Phys. 06::081 ( 2013.)
    [Google Scholar]
  8. 8.
    Aad G, et al. (ATLAS Collab.) J. High Energy Phys. 04::117 ( 2015.)
    [Crossref] [Google Scholar]
  9. 9.
    Sirunyan AM, et al. (CMS Collab.) Phys. Lett. B 779::283 ( 2018.)
    [Crossref] [Google Scholar]
  10. 10.
    Aaboud M, et al. (ATLAS Collab.) Phys. Lett. B 786::59 ( 2018.)
    [Crossref] [Google Scholar]
  11. 11.
    Sirunyan AM, et al. (CMS Collab.) Phys. Rev. Lett. 121::121801 ( 2018.)
    [Crossref] [Google Scholar]
  12. 12.
    Aaboud M, et al. (ATLAS Collab.) Phys. Lett. B 784::173 ( 2018.)
    [Crossref] [Google Scholar]
  13. 13.
    Sirunyan AM, et al. (CMS Collab.) Phys. Rev. Lett. 120::231801 ( 2018.)
    [Crossref] [Google Scholar]
  14. 14.
    Aad G, et al. (ATLAS Collab.) Eur. Phys. J. C 82::717 ( 2022.)
    [Crossref] [Google Scholar]
  15. 15.
    Tumasyan A, et al. (CMS Collab.) Phys. Rev. Lett. 131::061801 ( 2023.)
    [Crossref] [Google Scholar]
  16. 16.
    Tumasyan A, et al. (CMS Collab.) Phys. Lett. B 846::137783 ( 2023.)
    [Crossref] [Google Scholar]
  17. 17.
    Horn B. Physics 2::503 ( 2020.)
    [Crossref] [Google Scholar]
  18. 18.
    Weir DJ. Proc. Sci. CHARGED2018::027 ( 2019.)
    [Google Scholar]
  19. 19.
    Hamada Y, Kawai H, Oda K, Park SC. Phys. Rev. D 91::053008 ( 2015.)
    [Crossref] [Google Scholar]
  20. 20.
    Reichert M, et al. Phys. Rev. D 97::075008 ( 2018.)
    [Crossref] [Google Scholar]
  21. 21.
    Markkanen T, Rajantie A, Stopyra S. Front. Astron. Space Sci. 5::40 ( 2018.)
    [Crossref] [Google Scholar]
  22. 22.
    Alison J, et al. Rev. Phys. 5::100045 ( 2020.)
    [Crossref] [Google Scholar]
  23. 23.
    Dawson S, Dittmaier S, Spira M. Phys. Rev. D 58::115012 ( 1998.)
    [Crossref] [Google Scholar]
  24. 24.
    Borowka S, et al. Phys. Rev. Lett. 117::012001 ( 2016.); Erratum . Phys. Rev. Lett. 117::079901 ( 2016.)
    [Google Scholar]
  25. 25.
    Baglio J, et al. Eur. Phys. J. C 79:(6):459 ( 2019.)
    [Crossref] [Google Scholar]
  26. 26.
    de Florian D, Mazzitelli J. Phys. Rev. Lett. 111::201801 ( 2013.)
    [Crossref] [Google Scholar]
  27. 27.
    Shao DY, Li CS, Li HT, Wang J. J. High Energy Phys. 07::169 ( 2013.)
    [Crossref] [Google Scholar]
  28. 28.
    de Florian D, Mazzitelli J. J. High Energy Phys. 09::053 ( 2015.)
    [Crossref] [Google Scholar]
  29. 29.
    Grazzini M, et al. J. High Energy Phys. 05::059 ( 2018.)
    [Crossref] [Google Scholar]
  30. 30.
    Aad G, et al. (ATLAS Collab.) Phys. Lett. B 800::135103 ( 2020.)
    [Crossref] [Google Scholar]
  31. 31.
    Aad G, et al. (ATLAS Collab.) Eur. Phys. J. C 83:(6):519 ( 2023.)
    [Crossref] [Google Scholar]
  32. 32.
    CMS Collab. Tech. Rep. CMS-PAS-HIG-22-006 , CERN, Geneva: ( 2023.)
  33. 33.
    Baglio J, et al. Phys. Rev. D 103::056002 ( 2021.)
    [Crossref] [Google Scholar]
  34. 34.
    Bagnaschi E, Degrassi G, Gröber R. Eur. Phys. J. C 83::1054 ( 2023.)
    [Crossref] [Google Scholar]
  35. 35.
    Heinrich G, Lang J, Scyboz L. J. High Energy Phys. 10::086 ( 2023.)
    [Crossref] [Google Scholar]
  36. 36.
    Degrassi G, Giardino PP, Maltoni F, Pagani D. J. High Energy Phys. 10::080 ( 2016.)
    [Crossref] [Google Scholar]
  37. 37.
    Maltoni F, Pagani D, Shivaji A, Zhao X. Eur. Phys. J. C 77::12 ( 2017.)
    [Crossref] [Google Scholar]
  38. 38.
    Di Vita S, et al. J. High Energy Phys. 09::069 ( 2017.)
    [Crossref] [Google Scholar]
  39. 39.
    Gorbahn M, Haisch U. J. High Energy Phys. 10::094 ( 2016.)
    [Crossref] [Google Scholar]
  40. 40.
    Bizon W, Gorbahn M, Haisch U, Zanderighi G. J. High Energy Phys. 05::111 ( 2017.)
    [Google Scholar]
  41. 41.
    McCullough M. Phys. Rev. D 90::015001 ( 2014.)
    [Crossref] [Google Scholar]
  42. 42.
    Tumasyan A, et al. (CMS Collab.) J. High Energy Phys. 07::092 ( 2023.)
    [Google Scholar]
  43. 43.
    Branco GC, et al. Phys. Rep. 516:(1):1 ( 2012.)
    [Crossref] [Google Scholar]
  44. 44.
    Randall L, Sundrum R. Phys. Rev. Lett. 83:(17):3370 ( 1999.)
    [Crossref] [Google Scholar]
  45. 45.
    Agashe K, Davoudiasl H, Perez G, Soni A. Phys. Rev. D 76::036006 ( 2007.)
    [Crossref] [Google Scholar]
  46. 46.
    Fitzpatrick L, Kaplan J, Randall L, Wang L-T. J. High Energy Phys. 09::013 ( 2007.)
    [Crossref] [Google Scholar]
  47. 47.
    Dugan MJ, Georgi H, Kaplan DB. Nucl. Phys. B 254::299 ( 1985.)
    [Crossref] [Google Scholar]
  48. 48.
    Agashe K, Contino R, Pomarol A. Nucl. Phys. B 719:(1/2):165 ( 2005.)
    [Crossref] [Google Scholar]
  49. 49.
    Gildener E, Weinberg S. Phys. Rev. D 13::3333 ( 1976.)
    [Crossref] [Google Scholar]
  50. 50.
    Alonso R, et al. Phys. Lett. B 722::330
    [Crossref] [Google Scholar]
  51. 51.
    Grzadkowski B, Iskrzyński M, Misiak M, Rosiek J. J. High Energy Phys. 2010::85 ( 2010.)
    [Crossref] [Google Scholar]
  52. 52.
    Buchmüller W, Wyler D. Nucl. Phys. B 268:(3):621 ( 1986.)
    [Crossref] [Google Scholar]
  53. 53.
    Leung CN, Love ST, Rao S. Z. Phys. C 31::433 ( 1986.)
    [Crossref] [Google Scholar]
  54. 54.
    Aad G, et al. (ATLAS Collab.) Phys. Lett. B 843::137880 ( 2023.)
    [Crossref] [Google Scholar]
  55. 55.
    Sirunyan AM, et al. (CMS Collab.) Eur. Phys. J. C 81:(6):488 ( 2021.)
    [Crossref] [Google Scholar]
  56. 56.
    Aad G, et al. (ATLAS Collab.) Phys. Lett. B 847::138315 ( 2023.)
    [Crossref] [Google Scholar]
  57. 57.
    Tumasyan A, et al. (CMS Collab.) J. High Energy Phys. 07::091 ( 2023.)
    [Google Scholar]
  58. 58.
    Cacciari M, Salam GP, Soyez G. J. High Energy Phys. 04::063 ( 2008.)
    [Crossref] [Google Scholar]
  59. 59.
    Ellis SD, Vermilion CK, Walsh JR. Phys. Rev. D 81::094023 ( 2010.)
    [Crossref] [Google Scholar]
  60. 60.
    Larkoski AJ, Marzani S, Soyez G, Thaler J. J. High Energy Phys. 05::146 ( 2014.)
    [Crossref] [Google Scholar]
  61. 61.
    Aad G, et al. (ATLAS Collab.) Eur. Phys. J. C 83:(7):681 ( 2023.)
    [Crossref] [Google Scholar]
  62. 62.
    Sirunyan AM, et al. (CMS Collab.) J. Instrum. 13::P05011 ( 2018.)
    [Crossref] [Google Scholar]
  63. 63.
    Bols E, et al. J. Instrum. 15::P12012 ( 2020.)
    [Crossref] [Google Scholar]
  64. 64.
    CMS Collab. Tech. Rep. CMS-PAS-BTV-22-001 , CERN, Geneva: ( 2023.)
  65. 65.
    Qu H, Gouskos L. Phys. Rev. D 101::056019 ( 2020.)
    [Crossref] [Google Scholar]
  66. 66.
    Tumasyan A, et al. (CMS Collab.) J. Instrum. 17::P07023 ( 2022.)
    [Crossref] [Google Scholar]
  67. 67.
    Aad G, et al. (ATLAS Collab.) J. High Energy Phys. 01::069 ( 2015.)
    [Crossref] [Google Scholar]
  68. 68.
    Sirunyan AM, et al. (CMS Collab.) Comput. Softw. Big Sci. 4:(1):10 ( 2020.)
    [Crossref] [Google Scholar]
  69. 69.
    CMS Collab. Tech. Rep. CMS-DP-2021-017 , CERN, Geneva: ( 2021.)
  70. 70.
    ATLAS Collab. Tech. Rep. ATL-PHYS-PUB-2015-045 , CERN, Geneva: ( 2015.)
  71. 71.
    ATLAS Collab. Tech. Rep. ATL-PHYS-PUB-2019-033 , CERN, Geneva: ( 2019.)
  72. 72.
    Aad G, et al. (ATLAS Collab.) J. High Energy Phys. 11::163 ( 2020.)
    [Crossref] [Google Scholar]
  73. 73.
    CMS Collab. Tech. Rep. CMS-DP-2016-038 , CERN, Geneva: ( 2016.)
  74. 74.
    Aad G, et al. (ATLAS Collab.) Phys. Rev. D 108::052003 ( 2023.)
    [Crossref] [Google Scholar]
  75. 75.
    Aad G, et al. (ATLAS Collab.) J. High Energy Phys. 07::108 ( 2020.); Erratum . J. High Energy Phys. 01::145 ( 2021.); Erratum. J. High Energy Phys. 05::207 ( 2021.)
    [Google Scholar]
  76. 76.
    Tumasyan A, et al. (CMS Collab.) Phys. Rev. Lett. 129::081802 ( 2022.)
    [Crossref] [Google Scholar]
  77. 77.
    Tumasyan A, et al. (CMS Collab.) Phys. Rev. Lett. 131::041803 ( 2023.)
    [Crossref] [Google Scholar]
  78. 78.
    Junk T. Nucl. Instrum. Methods A 434::435 ( 1999.)
    [Crossref] [Google Scholar]
  79. 79.
    Read AL. J. Phys. G 28::2693 ( 2002.)
    [Crossref] [Google Scholar]
  80. 80.
    Cowan G, Cranmer K, Gross E, Vitells O. Eur. Phys. J. C 71::1554 ( 2011.); Erratum . Eur. Phys. J. C 73::2501 ( 2013.)
    [Google Scholar]
  81. 81.
    Kotthoff L, Wahab H, Johnson P. arXiv:2108.00002 [cond-mat.mtrl-sci] ( 2021.)
  82. 82.
    David A, et al. (LHC Higgs Cross Sect. Work. Group.) arXiv:1209.0040 [hep-ph] ( 2012.)
  83. 83.
    Andersen JR, et al. (LHC Higgs Cross Sect. Work. Group.) arXiv:1307.1347 [hep-ph] ( 2013.)
  84. 84.
    Aad G, et al. (ATLAS Collab.) J. High Energy Phys. 07::040 ( 2023.)
    [Google Scholar]
  85. 85.
    Tumasyan A, et al. (CMS Collab.) Phys. Lett. B 842::137531 ( 2023.)
    [Crossref] [Google Scholar]
  86. 86.
    Elagin A, Murat P, Pranko A, Safonov A. Nucl. Instrum. Methods A 654::481 ( 2011.)
    [Crossref] [Google Scholar]
  87. 87.
    Bianchini L, Conway J, Friis EK, Veelken C. J. Phys. Conf. Ser. 513::022035 ( 2014.)
    [Crossref] [Google Scholar]
  88. 88.
    ATLAS Collab. Plots for Higgs 2023. Data Vis. , CERN, Geneva:. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauTriggerPublicResults#Plots_for_Higgs_2023 ( 2023.)
    [Google Scholar]
  89. 89.
    CMS Collab. Tech. Rep. CMS-DP-2023-050 , CERN, Geneva: ( 2023.)
  90. 90.
    Aad G, et al. (ATLAS Collab.) arXiv:2310.12301 [hep-ex] ( 2023.)
  91. 91.
    Sirunyan AM, et al. (CMS Collab.) J. High Energy Phys. 2103::257 ( 2020.)
    [Google Scholar]
  92. 92.
    Aaboud M, et al. (ATLAS Collab.) J. High Energy Phys. 04::092 ( 2019.)
    [Google Scholar]
  93. 93.
    Aaboud M, et al. (ATLAS Collab.) J. High Energy Phys. 05::124 ( 2019.)
    [Google Scholar]
  94. 94.
    Aaboud M, et al. (ATLAS Collab.) Eur. Phys. J. C 78:(12):1007 ( 2018.)
    [Crossref] [Google Scholar]
  95. 95.
    Aad G, et al. (ATLAS Collab.) Phys. Lett. B 801::135145 ( 2020.)
    [Crossref] [Google Scholar]
  96. 96.
    Tumasyan A, et al. (CMS Collab.) J. High Energy Phys. 07::095 ( 2023.)
    [Google Scholar]
  97. 97.
    Sirunyan AM, et al. (CMS Collab.) J. High Energy Phys. 01::054 ( 2018.)
    [Google Scholar]
  98. 98.
    Tumasyan A, et al. (CMS Collab.) J. High Energy Phys. 06::130 ( 2023.)
    [Google Scholar]
  99. 99.
    Aad G, et al. (ATLAS Collab.) Phys. Lett. B 843::137745 ( 2023.)
    [Crossref] [Google Scholar]
  100. 100.
    Aad G, et al. (ATLAS Collab.) J. High Energy Phys. 02::037 ( 2024.)
    [Google Scholar]
  101. 101.
    Aad G, et al. (ATLAS Collab.) Phys. Rev. D 106::052001 ( 2022.)
    [Crossref] [Google Scholar]
  102. 102.
    Aad G, et al. (ATLAS Collab.) J. High Energy Phys. 01::066 ( 2024.)
    [Google Scholar]
  103. 103.
    Tumasyan A, et al. (CMS Collab.) Nature 607::60 ( 2022.)
    [Crossref] [Google Scholar]
  104. 104.
    Branco GC, et al. Phys. Rep. 516::1 ( 2012.)
    [Crossref] [Google Scholar]
  105. 105.
    Drozd A, Grzadkowski B, Gunion J, Jiang Y. J. High Energy Phys. 11::105 ( 2014.)
    [Crossref] [Google Scholar]
  106. 106.
    Robens T. Symmetry 15::27 ( 2023.)
    [Crossref] [Google Scholar]
  107. 107.
    Ellwanger U, Hugonie C, Teixeira AM. Phys. Rep. 496::1 ( 2010.)
    [Crossref] [Google Scholar]
  108. 108.
    Maniatis M. Int. J. Mod. Phys. A 25::3505 ( 2010.)
    [Crossref] [Google Scholar]
  109. 109.
    Carena M, et al. Phys. Rev. D 93::035013 ( 2016.)
    [Crossref] [Google Scholar]
  110. 110.
    Aad G, et al. (ATLAS Collab.) Phys. Rev. Lett. 132::021803 ( 2024.)
    [Crossref] [Google Scholar]
  111. 111.
    Hayrapetyan A, et al. (CMS Collab.) arXiv:2403.16926 [hep-ex] ( 2024.)
  112. 112.
    Ellis RK, et al. arXiv:1910.11775 [hep-ex] ( 2019.)
  113. 113.
    Cepeda M, et al. (Phys. HL-LHC Work. Group Collab.) arXiv:1902.00134 ( 2018.)
  114. 114.
    ATLAS Collab. Tech. Rep. ATL-PHYS-PUB-2015-046 , CERN, Geneva: ( 2015.)
  115. 115.
    ATLAS Collab. Tech. Rep. ATL-PHYS-PUB-2022-001, CERN, Geneva: ( 2022.)
  116. 116.
    Sirunyan AM, et al. (CMS Collab.) Phys. Rev. Lett. 122::121803 ( 2019.)
    [Crossref] [Google Scholar]
  117. 117.
    Dawson S, et al. arXiv:2209.07510 [hep-ph] ( 2022.)
  118. 118.
    ATLAS Collab. Tech. Rep. ATLAS-CONF-2023-053, CERN, Geneva: ( 2022.)
  119. 119.
    CMS Collab. Tech. Rep. CMS-PAS-FTR-21-004, CERN, Geneva: ( 2022.)
  120. 120.
    ATLAS Collab. Tech. Rep. ATL-PHYS-PUB-2021-044, CERN, Geneva: ( 2021.)
  121. 121.
    CMS Collab. Tech. Rep. CMS-PAS-FTR-21-003, CERN, Geneva: ( 2022.)
  122. 122.
    ATLAS Collab., CMS Collab. White Pap. ATL-PHYS-PUB-2022-018 , CERN, Geneva: ( 2022.)
  123. 123.
    de Florian D, Fabre I, Mazzitelli J. J. High Energy Phys. 03::155 ( 2020.)
    [Crossref] [Google Scholar]
  124. 124.
    Chiesa M, et al. J. High Energy Phys. 09::098 ( 2020.)
    [Crossref] [Google Scholar]
  125. 125.
    Sirunyan AM, et al. (CMS Collab.) J. Instrum. 13::P10005 ( 2018.)
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nucl-102622-014457
Loading
/content/journals/10.1146/annurev-nucl-102622-014457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error