1932

Abstract

Major advances in experimental nuclear and particle physics are often motivated by the need to answer challenging questions. In 2009, Monreal and Formaggio were motivated by the problem of measuring the absolute mass of the neutrino to propose the technique that would come to be called cyclotron radiation emission spectroscopy (CRES). They needed to measure the energies of the electrons from tritium beta decay with extremely high precision, which could be achieved by measuring the frequency of the cyclotron radiation from many individual magnetically trapped electrons. The technique was put into practice first by the Project 8 Collaboration and then by the He6-CRES Collaboration for the study of nonstandard weak interactions. In this review, we present the CRES experiments that have been performed to date, describe the phenomenology of CRES that has so far been explored, and cover potential applications of CRES that have been proposed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-120523-021323
2024-09-26
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/nucl/74/1/annurev-nucl-120523-021323.html?itemId=/content/journals/10.1146/annurev-nucl-120523-021323&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pauli W. Letter to Tübingen conference participants, Dec. 4. https://www.math.utah.edu/∼beebe/talks/2015/qtm/pdf/pauli-1930-ltc.pdf ( 1930.)
    [Google Scholar]
  2. 2.
    Brown LM. Phys. Today 31:(9):23 ( 1978.)
    [Crossref] [Google Scholar]
  3. 3.
    Monreal B, Formaggio JA. Phys. Rev. D 80::051301 ( 2009.)
    [Crossref] [Google Scholar]
  4. 4.
    Formaggio JA, de Gouvêa ALC, Robertson RGH. Phys. Rep. 914::1 ( 2021.)
    [Crossref] [Google Scholar]
  5. 5.
    Robertson RGH, Knapp DA. Annu. Rev. Nucl. Part. Sci. 38::185 ( 1988.)
    [Crossref] [Google Scholar]
  6. 6.
    Lobashev VM, Spivak PE. Nucl. Instrum. Methods A 240::305 ( 1985.)
    [Crossref] [Google Scholar]
  7. 7.
    Kraus C, et al. Eur. Phys. J. C 40::447 ( 2005.)
    [Crossref] [Google Scholar]
  8. 8.
    Aseev VN, et al. Phys. Rev. D 84::112003 ( 2011.)
    [Crossref] [Google Scholar]
  9. 9.
    Aker M, et al. J. Instrum. 16::T08015 ( 2021.)
    [Crossref] [Google Scholar]
  10. 10.
    Aker M, et al. Nat. Phys. 18:(2):160 ( 2022.)
    [Crossref] [Google Scholar]
  11. 11.
    Ashtari Esfahani A, et al. Phys. Rev. C 103::065501 ( 2021.)
    [Crossref] [Google Scholar]
  12. 12.
    Dubbers D, Schmidt MG. Rev. Mod. Phys. 83:(4):1111 ( 2011.)
    [Crossref] [Google Scholar]
  13. 13.
    Cirigliano V, Gardner S, Holstein BR. Prog. Part. Nucl. Phys. 71::93 ( 2013.)
    [Crossref] [Google Scholar]
  14. 14.
    González-Alonso M, Naviliat-Cuncic O, Severijns N. Prog. Part. Nucl. Phys. 104::165 ( 2019.)
    [Crossref] [Google Scholar]
  15. 15.
    Hickerson KP, et al. Phys. Rev. C 96::042501 ( 2017.)
    [Crossref] [Google Scholar]
  16. 16.
    Počanić D, et al. Nucl. Instrum. Methods A 611:(2):211 ( 2009.)
    [Crossref] [Google Scholar]
  17. 17.
    Byron W, et al. Phys. Rev. Lett. 131::082502 ( 2023.)
    [Crossref] [Google Scholar]
  18. 18.
    Ashtari Esfahani A, et al. arXiv:2203.07349 [nucl-ex] ( 2022.)
  19. 19.
    Mention G, et al. Phys. Rev. D 83::073006 ( 2011.)
    [Crossref] [Google Scholar]
  20. 20.
    Barinov VV, et al. Phys. Rev. Lett. 128::232501 ( 2022.)
    [Crossref] [Google Scholar]
  21. 21.
    Barinov VV, et al. Phys. Rev. C 105::065502 ( 2022.)
    [Crossref] [Google Scholar]
  22. 22.
    Kazkaz K, Woollett N. New J. Phys. 23::033043 ( 2021.)
    [Crossref] [Google Scholar]
  23. 23.
    Asner DM, et al. Phys. Rev. Lett. 114::162501 ( 2015.)
    [Crossref] [Google Scholar]
  24. 24.
    Ashtari Esfahani A, et al. Phys. Rev. Lett. 131::102502 ( 2023.)
    [Crossref] [Google Scholar]
  25. 25.
    Ashtari Esfahani A, et al. Phys. Rev. C 109::035503 ( 2024.)
    [Crossref] [Google Scholar]
  26. 26.
    Ashtari Esfahani A, et al. J. Phys. G 44::054004 ( 2017.)
    [Crossref] [Google Scholar]
  27. 27.
    Part. Data Group. Prog. Theor. Exp. Phys. 2022::083C01 ( 2022.)
    [Crossref] [Google Scholar]
  28. 28.
    Purcell EM. Phys. Rev. 59:(3):681 ( 1946.)
    [Google Scholar]
  29. 29.
    Ashtari Esfahani A, et al. arXiv:2310.02112 [physics.ins-det] ( 2023.)
  30. 30.
    Pozar D. Microwave Engineering. New York:: Wiley. , 4th ed.. ( 2011.)
    [Google Scholar]
  31. 31.
    Stachurska J. Proc. Sci. TAUP2023::229 ( 2024.)
    [Google Scholar]
  32. 32.
    EIA Stand. Comm. Rectangular waveguides (WR3 to WR2300). Specif. 261, Revis. C , ECIA, Alpharetta, GA.: https://www.ecianow.org/eia-technical-standards ( 2003.)
    [Google Scholar]
  33. 33.
    Ashtari Esfahani A, et al. Phys. Rev. C 99::055501 ( 2019.)
    [Crossref] [Google Scholar]
  34. 34.
    Otten EW, Weinheimer C. Rep. Prog. Phys. 71::086201 ( 2008.)
    [Crossref] [Google Scholar]
  35. 35.
    Ashtari Esfahani A, et al. New J. Phys. 22::033004 ( 2020.)
    [Crossref] [Google Scholar]
  36. 36.
    Ashtari Esfahani A, et al. New J. Phys. 24::053013 ( 2022.)
    [Crossref] [Google Scholar]
  37. 37.
    Zou J, Hogan SD. Phys. Rev. A 107::062820 ( 2023.)
    [Crossref] [Google Scholar]
  38. 38.
    Steinbrink N, et al. New J. Phys. 15::113020 ( 2013.)
    [Crossref] [Google Scholar]
  39. 39.
    Akita K, Yamaguchi M. Universe 8:(11):552 ( 2022.)
    [Crossref] [Google Scholar]
  40. 40.
    Aker M, et al. Phys. Rev. Lett. 129::011806 ( 2022.)
    [Crossref] [Google Scholar]
  41. 41.
    Faessler A, Hodak R, Kovalenko S, Simkovic F. Int. J. Mod. Phys. E 26:(1/2):1740008 ( 2017.)
    [Crossref] [Google Scholar]
  42. 42.
    Apponi A, et al. J. Instrum. 17::P05021 ( 2022.)
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nucl-120523-021323
Loading
/content/journals/10.1146/annurev-nucl-120523-021323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error