1932

Abstract

Particle accelerators are extremely complex machines that are challenging to simulate, design, and control. Over the past decade, artificial intelligence (AI) and machine learning (ML) techniques have made dramatic advancements across various scientific and industrial domains, and rapid improvements have been made in the availability and power of computing resources. These developments have begun to revolutionize the way particle accelerators are designed and controlled, and AI/ML techniques are beginning to be incorporated into regular operations for accelerators. This article provides a high-level overview of the history of AI/ML in accelerators and highlights current developments along with contrasting discussion about traditional methods for accelerator design and control. Areas of current technological challenges in developing reliable AI/ML methods are also discussed along with future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-121423-100719
2024-09-26
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/nucl/74/1/annurev-nucl-121423-100719.html?itemId=/content/journals/10.1146/annurev-nucl-121423-100719&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Blazey J, et al. General Accelerator R&D Program: Accelerator and beam physics roadmap report. Rep. , US Dep. Energy, Washington, DC:. https://science.osti.gov/hep/-/media/hep/pdf/2022/ABP_Roadmap_2023_final.pdf ( 2023.)
    [Google Scholar]
  2. 2.
    Biedron S, et al. arxiv.org:2203.08335 [physics.acc-ph] ( 2022.)
  3. 3.
    Sagan D, et al. J. Instrum. 16:(10):T10002 ( 2021.)
    [Crossref] [Google Scholar]
  4. 4.
    Qiang J, et al. Phys. Rev. Accel. Beams 20:(5):054402 ( 2017.)
    [Crossref] [Google Scholar]
  5. 5.
    Qiang J. In Proceedings of the North American Particle Accelerator Conference (NAPAC'16), pp. 83842. Geneva:: JACoW ( 2017.)
    [Google Scholar]
  6. 6.
    Sagan D. Nucl. Instrum. Methods Phys. Res. A 558:(1):356 ( 2006.)
    [Crossref] [Google Scholar]
  7. 7.
    Marinelli A, et al. Nat. Commun. 6::6369 ( 2015.)
    [Crossref] [Google Scholar]
  8. 8.
    Kennedy J, Eberhart R. In Proceedings of the International Conference on Neural Networks ICNN'95, Vol. 4, pp. 194248. Piscataway, NJ:: IEEE ( 1995.)
    [Google Scholar]
  9. 9.
    Deb K, Pratap A, Agarwal S, Meyarivan T. IEEE Trans. Evol. Comput. 6:(2):182 ( 2002.)
    [Crossref] [Google Scholar]
  10. 10.
    Bazarov IV, Sinclair CK. Phys. Rev. ST Accel. Beams 8:(3):034202 ( 2005.)
    [Crossref] [Google Scholar]
  11. 11.
    Borland M, Sajaev V, Emery L, Xiao A. In Proceedings of the 23rd Particle Accelerator Conference (PAC'09), pp. 385052. Vancouver, Can.:: TRIUMF ( 2009.)
    [Google Scholar]
  12. 12.
    Yang L, Li Y, Guo W, Krinsky S. Phys. Rev. ST Accel. Beams 14:(5):054001 ( 2011.)
    [Crossref] [Google Scholar]
  13. 13.
    Huang X, Safranek J. Nucl. Instrum. Methods Phys. Res. A 757::48 ( 2014.)
    [Crossref] [Google Scholar]
  14. 14.
    Pang X, Rybarcyk L. Nucl. Instrum. Methods Phys. Res. A 741::124 ( 2014.)
    [Crossref] [Google Scholar]
  15. 15.
    Qiang J, Mitchell C. Report LBNL-6853E, Lawrence Berkeley Natl. Lab., Berkeley, CA: ( 2015.)
    [Google Scholar]
  16. 16.
    Yakimenko V, et al. Phys. Rev. Accel. Beams 22:(10):101301 ( 2019.)
    [Crossref] [Google Scholar]
  17. 17.
    Sun Y, et al. Phys. Rev. Res. 2:(2):023099 ( 2020.)
    [Crossref] [Google Scholar]
  18. 18.
    Sun Y. Two-pulse x-ray photon correlation spectroscopy at Linac Coherent Light Source. PhD Diss. , Stanford Univ., Stanford, CA: ( 2020.)
    [Google Scholar]
  19. 19.
    Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. Boston:: Pearson. , 3rd ed.. ( 2009.)
    [Google Scholar]
  20. 20.
    Murphy KP. Machine Learning: A Probabilistic Perspective. Cambridge, MA:: MIT Press ( 2012.)
    [Google Scholar]
  21. 21.
    Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA:: MIT Press ( 2016.)
    [Google Scholar]
  22. 22.
    Haykin SS. Neural Networks and Learning Machines. Upper Saddle River, NJ:: Pearson Educ. , 3rd ed.. ( 2009.)
    [Google Scholar]
  23. 23.
    Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). Cambridge, MA:: MIT Press ( 2005.)
    [Google Scholar]
  24. 24.
    Roussel R, et al. arXiv:2312.05667 [physics.acc-ph] ( 2023.)
  25. 25.
    Bozoki E, Friedman A. AIP Conf. Proc. 315:(1):103 ( 1994.)
    [Crossref] [Google Scholar]
  26. 26.
    Mead W, et al. Nucl. Instrum. Methods Phys. Res. B 72:(2):271 ( 1992.)
    [Crossref] [Google Scholar]
  27. 27.
    Edelen AL, et al. IEEE Trans. Nucl. Sci. 63:(2):878 ( 2016.)
    [Crossref] [Google Scholar]
  28. 28.
    Edelen AL. Neural networks for modeling and control of particle accelerators. PhD Diss. , Colorado State Univ., Fort Collins: ( 2020.)
    [Google Scholar]
  29. 29.
    Levine S, Finn C, Darrell T, Abbeel P. J. Mach. Learn. Res. 17:(1):1334 ( 2016.)
    [Google Scholar]
  30. 30.
    Edelen A, et al. Paper presented at the 31st Annual Conference on Neural Information Processing Systems (NeurIPS 2017), Long Beach, CA:, Dec. 8. https://dl4physicalsciences.github.io/files/nips_dlps_2017_16.pdf ( 2017.)
    [Google Scholar]
  31. 31.
    Edelen A, Biedron S, Edelen J, Milton S. In Proceedings of the North American Particle Accelerator Conference (NAPAC'16), pp. 39093. Geneva:: JACoW ( 2016.)
    [Google Scholar]
  32. 32.
    Emma C, et al. Phys. Rev. Accel. Beams 21:(11):112802 ( 2018.)
    [Crossref] [Google Scholar]
  33. 33.
    McIntire M, Cope T, Ratner D, Ermon S. In Proceedings of the 7th International Particle Accelerator Conference (IPAC2016), pp. 297274. Geneva:: JACoW ( 2016.)
    [Google Scholar]
  34. 34.
    Silver D, et al. Nature 529:(7587):484 ( 2016.)
    [Crossref] [Google Scholar]
  35. 35.
    Edelen A, et al. arXiv:1811.03172 [physics.acc-ph] ( 2018.)
  36. 36.
    Chao AW, Tigner M, Weise H, Zimmermann F. Handbook of Accelerator Physics and Engineering, , 3rd ed.. Singapore:: World Sci. ( 2023.)
    [Google Scholar]
  37. 37.
    Edelen A, et al. Phys. Rev. Accel. Beams 23:(4):044601 ( 2020.)
    [Crossref] [Google Scholar]
  38. 38.
    Edelen A, et al. Paper presented at the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Can.:, Dec. 8–14. https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf ( 2019.)
    [Google Scholar]
  39. 39.
    Scheinker A, Cropp F, Paiagua S, Filippetto D. Sci. Rep. 11::19187 ( 2021.)
    [Crossref] [Google Scholar]
  40. 40.
    Gupta L, et al. Mach. Learn.: Sci. Technol. 2:(4):045025 ( 2021.)
    [Crossref] [Google Scholar]
  41. 41.
    Edelen A, et al. Paper presented at the 9th International Particle Accelerator Conference (IPAC2018), Vancouver, Can.:, Apr. 29–May 4. https://accelconf.web.cern.ch/ipac2018/talks/thygbe2_talk.pdf ( 2018.)
    [Google Scholar]
  42. 42.
    Gupta L, Mishra A, Edelen A. Paper presented at the 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021), Vancouver, Can:., Dec. 6–14. http://bayesiandeeplearning.org/2021/papers/59.pdf ( 2021.)
    [Google Scholar]
  43. 43.
    Scheinker A, Cropp F, Paiagua S, Filippetto D. arXiv:2102.10510 [physics.acc-ph] ( 2021.)
  44. 44.
    Tran A, Hao Y, Mustapha B, Martinez Marin JL. Front. Phys. 10::955555 ( 2022.)
    [Crossref] [Google Scholar]
  45. 45.
    Scheinker A, Cropp F, Filippetto D. Phys. Rev. E 107:(4):045302 ( 2023.)
    [Crossref] [Google Scholar]
  46. 46.
    Garcia-Cardona C, Scheinker A. Phys. Rev. Accel. Beams 27:(2):024601 ( 2024.)
    [Crossref] [Google Scholar]
  47. 47.
    Kaiser J, Xu C, Eichler A, Santamaria Garcia A. arXiv:2401.05815 [physics.acc-ph] ( 2024.)
  48. 48.
    Sandberg R, et al. In PASC '24: Proceedings of the Platform for Advanced Scientific Computing Conference, ed. T Robinson, M Woodtli , Article 23. New York:: Assoc. Comput. Mach. ( 2024.)
    [Google Scholar]
  49. 49.
    Edelen A, Emma C, Mayes C, Roussel R. In Proceedings of the 13th International Particle Accelerator Conference (IPAC2022), pp. 226164. Geneva:: JACoW ( 2022.)
    [Google Scholar]
  50. 50.
    Scheinker A, Pokharel R. APL Mach. Learn. 1:(2):026109 ( 2023.)
    [Crossref] [Google Scholar]
  51. 51.
    Zhu J, et al. Phys. Rev. Appl. 16:(2):024005 ( 2021.)
    [Crossref] [Google Scholar]
  52. 52.
    Convery O, Smith L, Gal Y, Hanuka A. Phys. Rev. Accel. Beams 24:(7):074602 ( 2021.)
    [Crossref] [Google Scholar]
  53. 53.
    Ren X, et al. Data driven generative accelerator model. PhD Diss. , Stanford Univ., Stanford, CA: ( 2022.)
    [Google Scholar]
  54. 54.
    Wielgosz M, Skoczeń A, Mertik M. Nucl. Instrum. Methods Phys. Res. A 867::40 ( 2017.)
    [Crossref] [Google Scholar]
  55. 55.
    Radaideh MI, et al. Digit. Signal Process. 130::103704 ( 2022.)
    [Crossref] [Google Scholar]
  56. 56.
    Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA:: MIT Press ( 2016.)
    [Google Scholar]
  57. 57.
    Mishra AA, Edelen A, Hanuka A, Mayes C. Phys. Rev. Accel. Beams 24:(11):114601 ( 2021.)
    [Crossref] [Google Scholar]
  58. 58.
    Ren X, et al. Phys. Rev. Accel. Beams 23:(4):040701 ( 2020.)
    [Crossref] [Google Scholar]
  59. 59.
    Blokland W, et al. Phys. Rev. Accel. Beams 25:(12):122802 ( 2022.)
    [Crossref] [Google Scholar]
  60. 60.
    Kuleshov V, Fenner N, Ermon S. Proc. Mach. Learn. Res. 80::2796 ( 2018.)
    [Google Scholar]
  61. 61.
    Karniadakis G, et al. Nat. Rev. Phys. 3::422 ( 2021.)
    [Crossref] [Google Scholar]
  62. 62.
    Gupta L. Analytic and machine learning methods for controlling nonlinearities in particle accelerators. PhD Diss. , Univ. Chicago, Chicago: ( 2021.)
    [Google Scholar]
  63. 63.
    Hanuka A, et al. Phys. Rev. Accel. Beams 24:(7):072802 ( 2021.)
    [Crossref] [Google Scholar]
  64. 64.
    Duris J, et al. Phys. Rev. Lett. 124:(12):124801 ( 2020.)
    [Crossref] [Google Scholar]
  65. 65.
    Ivanov A, Agapov I. Phys. Rev. Accel. Beams 23:(7):074601 ( 2020.)
    [Crossref] [Google Scholar]
  66. 66.
    Dorigo T, et al. Rev. Phys. 10::100085 ( 2023.)
    [Crossref] [Google Scholar]
  67. 67.
    Roussel R, et al. Phys. Rev. Lett. 130:(14):145001 ( 2023.)
    [Crossref] [Google Scholar]
  68. 68.
    Roussel R, et al. Phys. Rev. Lett. 128:(20):204801 ( 2022.)
    [Crossref] [Google Scholar]
  69. 69.
    Roussel R, et al. arXiv:2404.10853 [physics.acc-ph] ( 2024.)
  70. 70.
    Gonzalez-Aguilera J, et al. In Proceedings of the 14th International Particle Accelerator Conference (IPAC2023), pp. 2797800. Geneva:: JACoW ( 2023.)
    [Google Scholar]
  71. 71.
    Safranek J. Nucl. Instrum. Methods Phys. Res. A 388:(1):27 ( 1997.)
    [Crossref] [Google Scholar]
  72. 72.
    Golub GH, Reinsch C. Numer. Math. 14:(5):403 ( 1970.)
    [Crossref] [Google Scholar]
  73. 73.
    Huang X, Safranek J, Portmann G. ICFA Beam Dyn. Newsl. 44::60 ( 2007.)
    [Google Scholar]
  74. 74.
    Huang X, Lee SY, Prebys E, Tomlin R. Phys. Rev. ST Accel. Beams 8:(6):064001 ( 2005.)
    [Crossref] [Google Scholar]
  75. 75.
    Aiba M, et al. Phys. Rev. ST Accel. Beams 12:(8):081002 ( 2009.)
    [Crossref] [Google Scholar]
  76. 76.
    Tomás R, et al. Phys. Rev. ST Accel. Beams 13:(12):121004 ( 2010.)
    [Crossref] [Google Scholar]
  77. 77.
    Huang X, Sebek J, Martin D. Phys. Rev. ST Accel. Beams 13:(11):114002 ( 2010.)
    [Crossref] [Google Scholar]
  78. 78.
    Shen X, et al. Phys. Rev. ST Accel. Beams 16:(11):111001 ( 2013.)
    [Crossref] [Google Scholar]
  79. 79.
    Yang X, Huang X. Nucl. Instrum. Methods Phys. Res. A 828::97 ( 2016.)
    [Crossref] [Google Scholar]
  80. 80.
    Castro P, et al. In Proceedings of the 1993 Particle Accelerator Conference (PAC'93), Vol. 3, pp. 21035. Piscataway, NJ:: IEEE ( 1993.)
    [Google Scholar]
  81. 81.
    Irwin J, et al. Phys. Rev. Lett. 82:(8):1684 ( 1999.)
    [Crossref] [Google Scholar]
  82. 82.
    Wang C, Sajaev V, Yao CY. Phys. Rev. ST Accel. Beams 6:(10):104001 ( 2003.)
    [Crossref] [Google Scholar]
  83. 83.
    Franchi A, et al. Phys. Rev. ST Accel. Beams 14:(3):034002 ( 2011.)
    [Crossref] [Google Scholar]
  84. 84.
    Bartolini R, et al. Phys. Rev. ST Accel. Beams 11:(10):104002 ( 2008.)
    [Crossref] [Google Scholar]
  85. 85.
    Bartolini R, Martin IPS, Rehm G, Schmidt F. Phys. Rev. ST Accel. Beams 14:(5):054003 ( 2011.)
    [Crossref] [Google Scholar]
  86. 86.
    Franchi A, et al. Phys. Rev. ST Accel. Beams 17:(7):074001 ( 2014.)
    [Crossref] [Google Scholar]
  87. 87.
    Olsson DK, Andersson A, Sjöström M. Phys. Rev. Accel. Beams 23:(10):102803 ( 2020.)
    [Crossref] [Google Scholar]
  88. 88.
    Tomás R, Aiba M, Franchi A, Iriso U. Phys. Rev. Accel. Beams 20:(5):054801 ( 2017.)
    [Crossref] [Google Scholar]
  89. 89.
    Scheinker A, Gessner S. Phys. Rev. ST Accel. Beams 18:(10):102801 ( 2015.)
    [Crossref] [Google Scholar]
  90. 90.
    Cropp F. High-performance accelerator modeling: toward improving controls and diagnostics for high-brightness beams in experiment. PhD Diss. , UCLA, Los Angeles: ( 2023.)
    [Google Scholar]
  91. 91.
    Leemann SC, et al. Phys. Rev. Lett. 123:(19):194801 ( 2019.)
    [Crossref] [Google Scholar]
  92. 92.
    Fol E, Tomás R, Franchetti G. Eur. Phys. J. Plus 136::365 ( 2021.)
    [Crossref] [Google Scholar]
  93. 93.
    Scheinker A, Pang X, Rybarcyk L. Phys. Rev. ST Accel. Beams 16:(10):102803 ( 2013.)
    [Crossref] [Google Scholar]
  94. 94.
    Green A, Shin YM. In Proceedings of the 6th International Particle Accelerator Conference (IPAC2015), pp. 66971. Geneva:: JACoW ( 2015.)
    [Google Scholar]
  95. 95.
    Kirkpatrick J, et al. PNAS 114:(13):3521 ( 2017.)
    [Crossref] [Google Scholar]
  96. 96.
    Parisi GI, et al. Neural Netw. 113::54 ( 2019.)
    [Crossref] [Google Scholar]
  97. 97.
    Roussel R, et al. Nat. Commun. 12::5612 ( 2021.)
    [Crossref] [Google Scholar]
  98. 98.
    Nelder JA, Mead R. Comput. J. 7:(4):308 ( 1965.)
    [Crossref] [Google Scholar]
  99. 99.
    Huang X, Safranek J. Phys. Rev. ST Accel. Beams 18:(8):084001 ( 2015.)
    [Crossref] [Google Scholar]
  100. 100.
    Gulliford C, et al. Phys. Rev. ST Accel. Beams 16:(7):073401 ( 2013.)
    [Crossref] [Google Scholar]
  101. 101.
    Scheinker A, et al. Phys. Rev. Accel. Beams 22:(8):082802 ( 2019.)
    [Crossref] [Google Scholar]
  102. 102.
    Kirschner J, et al. Proc. Mach. Learn. Res. 97::3429 ( 2019.)
    [Google Scholar]
  103. 103.
    Kirschner J, et al. Phys. Rev. Accel. Beams 25:(6):062802 ( 2022.)
    [Crossref] [Google Scholar]
  104. 104.
    Miskovich SA, et al. Mach. Learn.: Sci. Technol. 5:(1):015004 ( 2024.)
    [Crossref] [Google Scholar]
  105. 105.
    Roussel R, Edelen A, Bartnik A, Mayes C. In Proceedings of the 14th International Particle Accelerator Conference (IPAC2023), pp. 479699. Geneva:: JACoW ( 2023.)
    [Google Scholar]
  106. 106.
    Zhang Z, et al. In Proceedings of the 13th International Particle Accelerator Conference (IPAC2022), pp. 9991002. Geneva:: JACoW ( 2022.)
    [Google Scholar]
  107. 107.
    Xu C, Roussel R, Edelen A. Paper presented at the 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans:, Nov. 28–Dec. 9. https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_122.pdf ( 2022.)
    [Google Scholar]
  108. 108.
    Roussel R, Hanuka A, Edelen A. Phys. Rev. Accel. Beams 24:(6):062801 ( 2021.)
    [Crossref] [Google Scholar]
  109. 109.
    Lübsen JO, Schütte M, Schulz S, Eichler A. IFAC-PapersOnLine 56:(2):3079 ( 2023.)
    [Crossref] [Google Scholar]
  110. 110.
    Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA:: MIT Press. , 2nd ed.. ( 2018.)
    [Google Scholar]
  111. 111.
    Li K, Malik J. arXiv:1606.01885 [cs.LG] ( 2016.)
  112. 112.
    Kaiser J, et al. arXiv:2306.03739 [cs.LG] ( 2023.)
  113. 113.
    Kain V, et al. Phys. Rev. Accel. Beams 23:(12):124801 ( 2020.)
    [Crossref] [Google Scholar]
  114. 114.
    Hirlaender S, Kain V, Lamminger L, Porta ZD. In Proceedings of the 14th International Particle Accelerator Conference (IPAC2023), pp 451013. Geneva:: JACoW ( 2023.)
    [Google Scholar]
  115. 115.
    Kaiser J, Stein O, Eichler A. Proc. Mach. Learn. Res. 162::10575 ( 2022.)
    [Google Scholar]
  116. 116.
    Arpaia P, et al. Nucl. Instrum. Methods Phys. Res. A 985::164652 ( 2021.)
    [Crossref] [Google Scholar]
  117. 117.
    Scheinker A, et al. Phys. Rev. Lett. 121:(4):044801 ( 2018.)
    [Crossref] [Google Scholar]
  118. 118.
    Ferran Pousa A, et al. Phys. Rev. Accel. Beams 26:(8):084601 ( 2023.)
    [Crossref] [Google Scholar]
  119. 119.
    Li Y, Cheng W, Yu LH, Rainer R. Phys. Rev. Accel. Beams 21:(5):054601 ( 2018.)
    [Crossref] [Google Scholar]
  120. 120.
    Zhang Z, Huang X, Song M. arXiv:1907.00250 [cs.NE] ( 2019.)
  121. 121.
    Song M, Huang X, Spentzouris L, Zhang Z. Nucl. Instrum. Methods Phys. Res. A 976::164273 ( 2020.)
    [Crossref] [Google Scholar]
  122. 122.
    Kranjčević M, Riemann B, Adelmann A, Streun A. Phys. Rev. Accel. Beams 24:(1):014601 ( 2021.)
    [Crossref] [Google Scholar]
  123. 123.
    Wan J, Jiao Y. New J. Phys. 24:(6):063030 ( 2022.)
    [Crossref] [Google Scholar]
  124. 124.
    Wan J, Chu P, Jiao Y, Li Y. Nucl. Instrum. Methods Phys. Res. A 946::162683 ( 2019.)
    [Crossref] [Google Scholar]
  125. 125.
    Sanchez-Gonzalez A, et al. Nat. Commun. 8:(1):15461 ( 2017.)
    [Crossref] [Google Scholar]
  126. 126.
    Hanuka A, et al. Sci. Rep. 11:(1):2945 ( 2021.)
    [Crossref] [Google Scholar]
  127. 127.
    Pang X. In Proceedings of the 6th International Particle Accelerator Conference (IPAC2015), pp. 242327. Geneva:: JACoW ( 2015.)
    [Google Scholar]
  128. 128.
    Ren X, et al. Phys. Rev. Accel. Beams 23:(4):040701 ( 2020.)
    [Crossref] [Google Scholar]
  129. 129.
    Lane TJ, Ratner D. Opt. Express 28:(5):5898 ( 2020.)
    [Crossref] [Google Scholar]
  130. 130.
    Li S, et al. Phys. Rev. Lett. 121:(11):114801 ( 2018.)
    [Crossref] [Google Scholar]
  131. 131.
    Roussel R, et al. Instruments 7:(3):29 ( 2023.)
    [Crossref] [Google Scholar]
  132. 132.
    Fol E, et al. Phys. Rev. Accel. Beams 23:(10):102805 ( 2020.)
    [Crossref] [Google Scholar]
  133. 133.
    Humble R, et al. arXiv:2301.11368 [cs.LG] ( 2023.)
  134. 134.
    Alanazi Y, et al. Mach. Learn. Appl. 13::100484 ( 2023.)
    [Google Scholar]
  135. 135.
    Tennant C, et al. Phys. Rev. Accel. Beams 23:(11):114601 ( 2020.)
    [Crossref] [Google Scholar]
  136. 136.
    Rahman MM, et al. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN2023). Piscataway, NJ:: IEEE. https://doi.org/10.1109/IJCNN54540.2023.10191827 ( 2023.)
    [Google Scholar]
  137. 137.
    P5 (Part. Phys. Proj. Prioritization Panel). Exploring the quantum universe: pathways to innovation and discovery in particle physics. Rep. , US Dep. Energy, Washington, DC:. https://www.usparticlephysics.org/2023-p5-report/ ( 2023.)
    [Google Scholar]
  138. 138.
    Mayes CE, et al. LUME: light source unified modeling environment. . Modeling Software. https://github.com/slaclab/lume ( 2021.)
    [Google Scholar]
  139. 139.
    Mayes CE, et al. In Proceedings of the 12th International Particle Accelerator Conference (IPAC2021), pp. 421215. Geneva:: JACoW ( 2021.)
    [Google Scholar]
  140. 140.
    Sulc A, Kammering R, Eichler A, Wilksen T. Paper presented at the 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans:, Dec. 10–16. https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_54.pdf ( 2023.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-121423-100719
Loading
/content/journals/10.1146/annurev-nucl-121423-100719
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error