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Abstract

Short bowel syndrome (SBS) is a rare disease that results from extensive
resection of the intestine. When the remaining absorption surface of the
intestine cannot absorb enough macronutrients, micronutrients, and water,
SBS results in intestinal failure (IF). Patients with SBS who suffer from IF
require parenteral nutrition for survival, but long-term parenteral nutrition
may lead to complications such as catheter sepsis and metabolic diseases.
Spontaneous intestinal adaptation occurs weeks to months after resection,
resulting in hyperplasia of the remnant gut, modification of gut hormone
levels, dysbiosis, and hyperphagia. Oral nutrition and presence of the colon
are two major positive drivers for this adaptation. This review aims to sum-
marize the current knowledge of the mechanisms underlying spontaneous
intestinal adaptation, particularly in response to modifications of luminal
content, including nutrients. In the future, dietary manipulations could be
used to treat SBS.
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1. SHORT BOWEL SYNDROME: DEFINITION AND CAUSES

In adults, short bowel syndrome (SBS) results from an extensive resection of the small bowel, in
which the bowel length is less than 150–200 cm. The colon may also be partially or completely
removed. There are three types of SBS, classified on the basis of the anatomical anastomosis:
jejunostomy (the ileum, the ileocecal valve, and the colon are removed and the remaining jejunum
is directly anastomosed to the skin), jejunocolic anastomosis (the ileum and ileocecal valve are
removed and the jejunum is joined to a part of the colon), and jejunoileal anastomosis (parts of the
jejunum and the ileum are removed and the ileocecal valve and the colon remain intact) (Figure 1).
In Europe, the estimated prevalence of SBS is 1.4 cases per 1 million people. It varies by country;
for example, the prevalence of SBS in Poland is 0.4 cases per 1 million people and in Denmark
it is 30 cases (57). Countries where there are no major intestinal rehabilitation centers have a
lower prevalence of SBS likely because of underreporting and an inability to adequately treat these
patients. Accordingly, accurate evaluations of the incidence of SBS are difficult to ascertain in the
United States because of a lack of current disease registries, but approximately 3 per 1 million
individuals are estimated to be affected (40). In other countries, the prevalence and incidence of
SBS are unrecognized due to the absence of dedicated centers, which explains why the worldwide
prevalence of SBS in adults is unknown.

The primary consequence of SBS is a marked reduction in the absorption surface of the in-
testine, leading to significant intestinal malabsorption, the degree of which depends on the extent
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Figure 1

Three anatomical subtypes of short bowel syndrome. (a) Small bowel resection with high-output
jejunostomy. (b) Small bowel resection with removal of ileum, ileocecal valve, and part of the colon, resulting
in jejunocolic anastomosis. (c) Small bowel resection in which some ileum is preserved and the ileocecal valve
and colon remain intact, resulting in jejunoileal anastomosis.

of the resection, the anatomy of the remnant bowel, the health of the remaining mucosa, and the
presence of colon in continuity (109). In addition tomalabsorption of macronutrients, there can be
malabsorption of specific micronutrients (e.g., vitamins K, B6, and B12). The main complications
resulting from such malabsorption are severe dehydration due to water–electrolyte imbalance,
metabolic disorders, and a significant risk of undernutrition. In addition, SBS is responsible for
an early gastric acid hypersecretion associated with hypergastrinemia, contributing to accelerated
gastric emptying and aggravated loss of fecal energy and hydroelectrolytes (18).

SBS is the main cause of intestinal failure (IF), which is defined as a reduction of gut function
below the minimum needed for absorption of macronutrients and/or water and electrolytes, re-
sulting in intravenous supplementation to maintain health or growth (108). In addition to SBS, IF
occurs in other gastrointestinal diseases, such as gut motility disorders, mechanical obstruction,
intestinal fistula, extensive small bowel mucosal disease, and volvulus or systemic conditions such
as mesenteric infarction and postradiation enteritis (65, 108). Three subtypes of SBS-associated
IF are based on duration: (a) acute, short-term, and usually self-limiting conditions; (b) prolonged
acute conditions, which often occur in metabolically unstable patients who require complex mul-
tidisciplinary care and intravenous supplementation over long periods; and (c) chronic, reversible
or irreversible conditions, which occur in metabolically stable patients who require long-term
intravenous supplementation (108). A remnant small bowel length of less than 100 cm is highly
predictive of permanent IF that requires parenteral support (3, 18, 96). Physicians adjust parenteral
nutrition and intravenous fluid support according to the degree of malabsorption and oral intake.
Support by parenteral nutrition and intravenous fluids is complex and requires a multidisciplinary
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team to decrease complications due not only to parenteral nutrition but also to the underlying
disease responsible for SBS. Long-term parenteral nutrition can lead to specific complications,
such as central vein access (e.g., infection, thrombosis, or loss of access) and metabolic complica-
tions (e.g., IF-associated liver disease, renal failure and oxalic lithiasis, or bone demineralization).
These complications are responsible for increased morbidity and mortality in patients with SBS;
patients receiving home parenteral nutrition experience a 5-year survival rate of 64% (65). Thus,
physicians aim to reduce long-term dependence on parenteral support in order to decrease com-
plications and increase a patient’s quality of life and survival. Slowing down gastrointestinal transit
and increasing total dietary intake are also strategies to maximize enteral calorie absorption. SBS
is a complex disease that requires for each patient an accurate evaluation by a multidisciplinary
team to lighten the burden this syndrome puts on patients.

2. ADAPTATION AFTER MASSIVE INTESTINAL RESECTION:
THE CLINICIAN’S PERSPECTIVE

During the first years after resection, especially after restoration of intestinal continuity, depen-
dence on parenteral nutrition decreases, indicating adaptation with improved nutrient absorption.
In fact, intestinal adaptation occurs 1–2 years after resection in adults, but no objective clinical
markers of time course or extent of adaptation have been identified (133). The probability that a
patient will be weaned off parenteral nutrition is positively associated with a remnant small bowel
longer than 75 cm, a large portion of remaining colon (4, 96), and a postoperative citrulline con-
centration greater than 20 μmol/L (24).

2.1. Clinical Evolutions and Outcome Improvement in Patients with SBS
over Time: From Food Intake to Nutrient Absorption

Oral and enteral feeding and dietary interventions are essential to improve the outcome and to
reduce dependence on parenteral nutrition in patients with SBS (52). Postsurgery continuous tube
feeding (exclusively or in conjunction with oral feeding) significantly increases the net absorption
of lipids, proteins, and energy compared with oral feeding (66). When oral feeding is possible,
oral dietary intake is recommended. In addition, based on clinical experience, spontaneous hyper-
phagia is reported in 70% of adult patients with SBS (25). Hyperphagia is defined as oral intake
1.5 times greater than patient resting energy expenditure (25). The spontaneous rise of hyperpha-
gia remains an essential mechanism to reduce the need for parenteral nutrition (97). Indeed, as
hyperphagia leads to an increased amount of nutrients passing through the gastrointestinal tract,
it may indirectly contribute to the structural and functional adaptations of the mucosa observed
in the remaining gut (25, 97). The signals that drive hyperphagia are currently unknown, but un-
derstanding its mechanisms is of importance for clinicians who encourage hyperphagia for their
patients with SBS.

2.2. Importance of Intestine Length, Type of Surgery, and Presence
of the Colon

Clinical studies report that preserving the colon is critical for reducing the need for parenteral
nutrition in patients with SBS (4, 96). Due to the importance of the length of the remaining
intestine and the role of the colon in patients with SBS, the restoration of the gastrointestinal tract
is favored by clinicians. Indeed, the probability of parenteral nutrition dependence is important
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when the length of the remaining small bowel is less than 115 cm in the case of jejunostomy, less
than 60 cm in the case of jejunocolic anastomosis, and less than 35 cm in the case of jejunoileal
anastomosis with ileocecal valve and colon in continuity (4). Conservation of the terminal ileum
and ileocecal valve also plays an important role because of the ileal brake (85).

The adult large intestine, or colon, measures approximately 1.5 m in length and consists of
four parts: the ascending colon, the transverse colon, the descending colon, and the sigmoid colon.
Physiologically, once the food chyme reaches the colon, almost all nutrients and 80–90% of water
have been absorbed by the small intestine. At this point, electrolytes, such as sodium, magnesium,
and chloride, and indigestible carbohydrates, known as dietary fiber, are left. By metabolizing
dietary fiber, bacteria from the gut microbiota play a crucial role in the nourishment of the colon
and in calorie sparing. Thus, rapid restoration of intestinal continuity in patients with SBS not
only helps control loss of fluids and electrolytes but also provides the metabolic benefits of the
colon.

A physiological adaptation occurs when the colon is in continuity, allowing energy and hydro-
electrolytic recovery. In patients with SBS, the absorption of medium-chain C8–C10 triglycerides
by the colon is improved (61). Some starches and soluble nonstarch polysaccharides are not di-
gested by the small intestine. They are fermented by colonic bacteria into hydrogen, methane,
and short-chain fatty acids (SCFAs) such as propionate, butyrate, and acetate. Up to 1,000 kcal in
the form of SCFAs may be absorbed daily by the adult human colon in patients with SBS with
colon compared with patients without colon (103). Thus, in patients with SBS, energy salvage
driven by the colon is important (27). During the postresection adaptation phase, an increase in
the capacity of colonic bacteria to ferment carbohydrates further increases energy absorption by
the colon (15). This may be due to changes in colonic microbiota in patients with SBS as well
as increased concentration or activity of various enzymes, such as galactosidase, over time during
the adaptation phase (15). In addition, the colon may exert a braking effect on the rate of early
gastric emptying of liquid after a major small intestinal resection (100, 101). Based on clinician
experience, the presence of colon in continuity may help improve residual intestinal absorption
and decrease parenteral nutrition in patients with SBS.

2.3. Evaluation of Absorption Improvement

The most obvious signs of intestinal adaptation toward improvement of absorption are a decrease
in fecal or stoma losses, weight gain, and a decrease in parenteral nutrition dependence. In 2000,
Jeppesen & Mortensen (62) suggested that, in stabilized adult patients with SBS, IF could be de-
fined objectively in subjects who had either a wet weight absorption of <1.41 kg/day or <84% of
the calculated basal metabolic rate in 48-h metabolic balance studies. Still, only a few centers in
the world routinely use metabolic balance studies, which are recognized as the gold standard for
determining absorptive capacity. The technique is complex and time consuming. Patients need to
be admitted for at least 4 days to collect urine, feces, and an exact duplicate of their oral intake over
96 h. Intestinal energy absorption is calculated as the difference between oral energy intake and
stool energy excretion (62). Evaluation of energy absorption is helpful in the day-to-day manage-
ment of patients with SBS, but metabolic balance studies cannot be performed in clinical settings
at most rehabilitation centers for IF.

The concentration of postabsorptive citrulline in plasma correlates with small bowel length
and is a prognostic factor for parenteral nutrition dependence (4, 24). An increase in citrulline
levels in plasma has been observed in patients after improvement of absorption (24).However, the
optimal timing of citrulline measurement in relation to meal consumption has yet to be clarified.
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Jeppesen and colleagues (38) recently evaluated in 8 patients with SBS-IF and 8 healthy controls
the citrulline levels in plasma before and after a standardized mixed-meal test. They reported that
the optimal time tomeasure citrulline was during fasting.However, citrullinemia was insufficiently
discriminative to serve as a valid biomarker of bowel length, bowel absorptive function, or depen-
dence on parenteral nutrition in patients with SBS-IF (38). Furthermore, whether citrulline levels
accurately reflect the functional absorptive capacity of the small intestine remains unresolved. Ad-
ditional biomarkers of adaptation need to be identified to improve the management of parenteral
nutrition dependence.

Adaptive changes (e.g., increase in intestinal absorption or increased capacity to eat) occur
mostly within 2 years following resection (133) and allow the number of infusions per week to
progressively decrease, which explains why some patients can eventually be weaned off parenteral
nutrition. However, an increase in intestinal absorption associated with a decrease in parenteral
support dependence is possible mostly in patients with jejunocolic anastomosis. Therefore, the
global prognosis remains better for patients with SBS with colon in continuity with small intestine
than for patients with SBS with jejunostomy.

3. ADAPTATION AFTER MASSIVE INTESTINAL RESECTION:
THE BIOLOGIST’S PERSPECTIVE

3.1. Physiological Intestinal Homeostasis: Maintaining Functions
with Great Plasticity

The intestine is lined by a monolayer epithelium that constantly renews itself, allowing the intes-
tine to rapidly adapt to nutrients and metabolic states. Homeostasis and functions of the intestinal
epithelium depend on the precise spatiotemporal coordination of proliferation and differentiation
signals from epithelial and mesenchymal cells that surround the intestinal stem cells.

3.1.1. General functions of the gastrointestinal tract (absorption, barrier, and secretion).
The gastrointestinal tract, the gateway for nutrients, is a key player in energy homeostasis (80).
The principal role of the gastrointestinal tract is to complete digestion and absorb nutrients
(Figure 2). The length and the specific architecture of the tract, including the multiple folds
through the crypts of Lieberkühn, villi, and cellular microvilli, lead to the development of a
large surface in contact with the outside environment, which includes the nutrients. This surface
helps optimize absorption, with an efficient uptake of macronutrients, micronutrients, and water.
Another role of the intestinal mucosa is to protect the organism from harmful luminal substances
and nutrient- or microbiota-derived compounds, and the cells of the intestinal epithelium form
a physical barrier between the external and internal compartments. Finally, the gastrointestinal
tract, through its endocrine properties, informs the other peripheral organs and the brain of the
arrival of nutrients and the metabolic state. More than 30 hormone-coding genes are expressed
in the gastrointestinal tract, which makes the gut the largest hormone-producing organ in the
body. The hormones are produced and secreted by endocrine cells, particularly in response to
meals, and are important mediators of the luminal microenvironment-derived signals (125).
These hormones participate directly or indirectly in the control of absorption, acting on the
gastrointestinal tract itself, e.g., regulating gastric emptying and intestinal transit [peptide YY
(PYY), glucagon-like peptide-1, -2 (GLP-1, GLP-2), and cholecystokinin (CCK)], modulating
nutrient transporters, and having a trophic effect on intestinal mucosa (GLP-2). They also affect
other tissues and participate in the control of food intake by the central nervous system (CCK,
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Figure 2

Nutrient absorption along the gastrointestinal tract. Micronutrients such as iron and fat-soluble vitamins are
preferably absorbed in the upper part of the gastrointestinal tract (duodenum), whereas macronutrients
(lipids, monosaccharides, and small peptides) are absorbed along the jejunum, and water and electrolytes are
absorbed within the colon.

ghrelin, GLP-1, PYY) or in the control of glucose homeostasis by regulating pancreatic secretion
of insulin or glucagon (GLP-1, glucose-dependent insulinotropic polypeptide) (125).

3.1.2. Intestinal stem cells and intestinal cell types. The intestinal tract is organized into
crypt-villus units lined by a monolayer epithelium covering the stromal compartment and directly
interacting with the luminal compartment. Crypts are invaginations into the intestinal wall. Villi
are finger-like protrusions in the intestinal lumen and their length decreases from the duodenum
to the ileum.The colon tract lacks villi and exhibits a flat epithelial surface with invaginated crypts.

One characteristic of the intestinal epithelium is its constant and rapid self-renewal. Most in-
testinal cells are renewed every 2–3 days in the rodent and 5–7 days in human (6), except for
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Paneth cells, which are renewed every 3–6 weeks (56). Renewal is enabled by the multipotent
intestinal stem cells (ISCs), located at the bottom of the crypts between Paneth cells. ISCs contin-
ually generate progenitor cells and differentiated cell types of the epithelium in strictly controlled
proportions (6). Two main epithelial cell lineages, absorptive and secretory, arise from ISCs. The
absorptive enterocytes account for approximately 80% of intestinal epithelial cells, whereas ab-
sorptive microfold cells are rare. Secretory cells comprise Paneth cells, goblet cells (which produce
mucus), enteroendocrine cells (which produce and secrete hormones), and the rare tuft cells. All
these cells, with the exception of Paneth cells, differentiate while migrating along the crypt toward
the villus. At the apex of the villi, these differentiated cells undergo anoikis and are exfoliated into
the intestinal lumen (39, 83, 141). The Paneth cells located at the base of the crypts participate
in the barrier function but also play key roles in the stem cell niche (118). Indeed, ISCs are sur-
rounded by Paneth cells, which contribute to the stemness state by secreting critical factors such
as Wnt ligands. ISCs are actively cycling, dividing every day, to fuel the crypt-villus axis and they
are characterized by their selective expression of Wnt target genes, such as the gene encoding
leucine-rich repeat–containing G protein–coupled receptor 5 (LGR5) (7). Since the discovery of
Lgr5, many other specific markers have been identified. The development of lineage tracing tech-
nology has greatly improved our knowledge and understanding of intestinal homeostasis (137) and
our mastery of in vitro organoid cultures, facilitating the development of tools for regenerative
medicine (128, 145).

The maintenance of ISCs and the resulting intestinal epithelial homeostasis, integrity, and
function are therefore based on a dynamic process that requires balanced and integrated control,
in time and space, of cell proliferation, differentiation, and apoptosis. Intestinal homeostasis in-
volves the genetic program of intestinal epithelial cells (e.g., transcription factors and genome
structure) and the components of the surrounding cellular microenvironment, i.e., the niche (e.g.,
cellular interactions and secreted factors) as well as the components of the luminal and metabolic
environment (e.g., nutrients, microbiota, hormones, and immune cells). Constant renewal confers
to the gastrointestinal epitheliumhigh plasticity and adaptability to the qualitative and quantitative
changes in its luminal microenvironment (30, 80), as well as maintenance of its barrier function as
defective cells are rapidly extruded.

3.1.3. Physiologically regulating signals of proliferation and differentiation. Different sig-
naling cascades are key regulators of intestinal homeostasis. Homeostasis of the intestinal epithe-
lium is maintained because continuously dividing ISCs reside sequestered at the bottom of the
crypt and rely on signals from their surrounding environment, i.e., their niche. The niche consists
of an epithelial component (Paneth or Paneth-like cells) and a mesenchymal component, both
of which provide key signaling activators or inhibitors of WNT (71, 105, 118, 119), epidermal
growth factor (EGF) (9, 118, 119, 142), and bone morphogenetic protein (BMP) (53, 91) path-
ways (reviewed in 43).

The Wnt pathway is the most important pathway for stemness and overrules the other reg-
ulating pathways (71, 118) to control proliferation in the crypts. Wnt ligands or Wnt signaling
potentiators are highly abundant at the bottom of the crypts, inducing highWnt pathway activity,
and they exhibit a decreased gradient toward the crypt-villus axis.When the cells derived from the
ISCs move upward out of the crypts, decreased Wnt activity due to the new cell position directs
cells toward lineage commitment and differentiation. An inverse gradient of BMP, which favors
epithelial differentiation, is observed along the crypt-villus axis, and BMP inhibitors are secreted
at the bottom of the crypt to protect ISCs. In addition, EGF and transforming growth factor α are
highly produced at the bottom of the crypts by Paneth cells and surrounding mesenchymal cells
and stimulate stemness and proliferation (43).
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TheNotch pathway is also involved in stem cell maintenance at the bottom of the crypt, where
theWnt signals are elevated (116). But, higher up in the crypt, theNotch pathway controls cellular
commitment and establishes, by lateral inhibition, the absorptive fate of cells expressing Notch
receptors and the secretory fate of cells expressing Notch ligands. The cells expressing Notch
ligands induce Notch activation in the surrounding cells, ensuring a constant proportion of the
different cell lineages (116). Other signals, such as interleukin-22 (82) and Hippo (47), play a role
in stem cell regulation and lineage commitment.

3.2. Morphological and Functional Modifications After Intestinal Resection

Intestinal resection is a massive modification of the gastrointestinal tract. In addition to causing
intestinal insufficiency, this modification leads to a profound change in the luminal environment
of the intestinal and colonic epithelia. These alterations induce adaptations of homeostasis and
functions of the remaining intestine.

3.2.1. Use of animal models to study intestinal adaptation after massive intestinal resec-
tion. Using intestinal samples from patients with massive intestinal resection to study adaptation
is difficult if not impossible. For more than 50 years, researchers have developed animal models
of SBS to understand and master at the cellular and molecular levels the mechanisms of sponta-
neous adaptation. Pigs, mice, rats (reviewed in 117), and more recently, zebrafish (120) have been
developed as models to study the effects of parenteral, oral, and enteral nutrition and to evaluate
new treatments. The most performed type of surgical intervention is jejunoileal resection with
jejunoileal anastomosis or with jejunocolic anastomosis. Partial colonic resection associated to a
resection of 80% of the small intestine does not seem to be commonly performed (44). While
patients with SBS with jejunostomy are the most challenging subjects to manage because of the
massive loss of the small and large intestine and associated functions, very few studies, usingmostly
pigs, have reported complete colonic resectionwith jejunostomy anastomosis (5, 136, 139).Clearly,
animal models are useful for finding novel therapies that improve adaptation; the development of
treatments with GLP-2 analogs is an example (16, 42, 69, 70, 75, 90, 121, 123).

The time course of the studies should also be taken into consideration. For example, many
studies of resected rat models focus on adaptation between 1 and 2 weeks postsurgery (16, 29, 44,
46, 69, 70, 88, 89) and, less often, 3 to 4 weeks postsurgery (54, 110). In the case of rodents that have
undergone intestinal resection, the first 4 days can be considered an acute phase of postoperative
recovery with a gradual recovery of oral feeding.Given that the life expectancy of a rat is 2–3 years
(112), studying the rats 6–7 days after the resection is comparable to studying humans in the early
phase of adaptation, 6–7 months postresection.

3.2.2. Cellular adaptation after massive intestinal resection. In 1959, Booth et al. (13) first
demonstrated that extensive intestinal resection in rat leads to hypertrophy of the remaining in-
testine (Figure 3). Hypertrophy results from an increased proliferation rate in crypts, leading to
an increase in villus height and crypt depth in animal models (44, 79, 89), and could be associated
with an expansion of ISCs (54).

In animal models of SBS,morphological adaptation all along the intestine (jejunum, ileum, and
colon) has been described but seems to depend on the length of the resection (44, 89), the type of
anastomosis (44, 46), and probably the time postresection. For example, in models with jejunoileal
anastomosis, jejunal or ileal, but not colonic, hyperplasia has been reported 1 week after resection
(44, 89; J. Le Beyec, unpublished observations), whereas in models with jejunocolic anastomosis,
colonic hyperplasia has been observed 1 week after resection (44). A peculiar luminal content,
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Spontaneous adaptations in SBS–IF. Spontaneous physiological adaptation occurs within 2–3 years after massive intestinal resection in
humans (SBS) and 1–2 weeks in animal models (IR-JC). Adaptation is characterized by (a) intestinal morphological and (b) functional
adaptations, with (a) increased intestinal surface, (b) expression of nutrient transporters and secretion of intestinal hormones (PYY,
GLP-1), (c) development of compensatory hyperphagia, and (d) dysbiosis of the intestinal microbiota. Hyperphagia reduces dependence
on parenteral nutrition by increasing net nutrient absorption. The increase in enterohormones (PYY, GLP-1, GLP-2) helps improve
energy recovery, particularly by the intestinal trophic effect (GLP-2) or by slowing gastrointestinal motility (GLP-1, PYY). Dysbiosis
has a putative positive effect of producing SCFAs, which fuel colonocytes. Left-side images in panel a are reproduced with permission
from Reference 68. Panels b and c present unpublished personal data from J. Le Beyec. Abbreviations: GLP, glucagon-like peptide;
HPRT, hypoxanthine-guanine phosphoribosyltransferase; IF, intestinal failure; IR-JC, intestinal resection–jejuno colonic anastomosis;
mRNA, messenger RNA; PepT1, peptide transporter 1; PYY, peptide YY; SBS, short bowel syndrome; SFCA, short-chain fatty acid.
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including nutrients in contact with different intestinal segments, seems to be a determinant of
early adaptation and depends on the surgical arrangement. A longer follow-up of rat models of
SBS with jejunocolic anastomosis reveals the appearance of jejunal hyperplasia upstream of the
resection ( J. Le Beyec, unpublished observations), suggesting other mechanisms are at play in
long-term morphological adaptations.

Few studies of humans have reported morphological adaptations in the intestinal mucosa. A
study of children showed a significant increase in villus height and crypt depth in the mucosa of
the small intestine over time (94).McDuffie et al. (94) also found that the extent of morphological
adaptation was correlated with the length of the resected bowel. The appearance of colonic hy-
perplasia with an increase in crypt depth was reported for adult subjects with SBS but not control
subjects (68). The increase in crypt depth and colonic epithelial cell number could participate in
the decrease in parenteral nutrition dependence within 2 years after restoration of intestinal con-
tinuity in patients with SBS. Guo et al. (52) have shown that enteral nutrition and glutamine have
a direct positive effect on the morphological adaptations of the intestinal mucosa in patients with
SBS and that this adaptation is associated with an increase in net nutrient absorption.

Intestinal hyperplasia increases the intestinal surface that comes in contact with nutrients (i.e.,
the absorptive surface) and participates in absorption improvement in SBS subjects.Modifications
to cell lineage commitment have also been reported, with either expansion of intestinal secretory
lineages following a massive small bowel resection in mice (54) or increased differentiation
toward absorptive progenitors (129). On the contrary, other studies reported an increase in
enteroendocrine cell numbers resulting from hyperplasia without any difference in cell lineage
commitment (44). Thus, at this stage of research on this topic, there is no consensus concerning
intestinal epithelial differentiation. This aspect could be further explored with well-established
animal models and with the use of in vitro mini-gut technology (84, 118).

In addition to these changes, functional adaptations have been reported but remain controver-
sial and could result from an increase in the surface exchange rather than from a net increase in the
activity or expression levels of specific nutrient transporters (reviewed in 80) (Figure 3). Finally,
the main modification to the function of the intestinal epithelium concerns its endocrine function.

3.2.3. Modification of hormonal secretions. In physiological conditions,GLP-2,GLP-1, and
PYY are secreted by enteroendocrine cells, which are localized mainly in the ileum and colon
but are also present in the proximal intestine. The production and secretion of these hormones
are increased in patients with SBS (44, 60) and in murine models of intestinal resection (29, 44,
89) when the colon is in continuity. In SBS subjects, increases in hormone levels are observed
during both fasting and postprandial states (Figure 3). This increase may result from intestinal
hyperplasia and modified function of enteroendocrine cells (44) but also from altered luminal
contents, which can stimulate more distal and abundant enteroendocrine cells (44, 78). These
hormones are biological markers of intestinal homeostasis, but through the numerous roles they
exert on the gastrointestinal tract, they are also key drivers of spontaneous intestinal adaptation.
They help improve nutrient absorption by inducing hyperplasia, slowing down the accelerated
transit time in the intestine, inhibiting gastric emptying, and increasing blood flow (49, 50, 89,
100, 124).

Higher concentrations of fasting and postprandial ghrelin, the unique orexigenic gut hormone,
in plasma of subjects with SBS have also been reported, suggesting that a change in gastrointestinal
hormonal secretions could also play a role in the occurrence of hyperphagia (44).

3.2.4. Themicrobiota: cause or consequence of adaptation? The composition of the gutmi-
crobiota of patients with SBS highly differs from the common profile observed in healthy humans
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with an intact gastrointestinal tract (87). The fecal microbiota of healthy humans is composed
mainly of a phylogenetic core containing Firmicutes, Bacteroidetes, and Actinobacteria. The human
gastrointestinal tract is colonized by a dense, complex community of microorganisms, consisting
mainly of anaerobic bacteria in adults, and the dominant groups are Clostridium leptum,Clostridium
coccoides, and Bacteroides prevotella.

The overall bacterial diversity is reduced in SBS subjects (patients and animal models) and the
composition of the fecal and colonic mucosa microbiota is deeply disturbed: Lactobacillus domi-
nates and anaerobic bacteria (C. leptum,C. coccoides, and B. prevotella) are underrepresented (32, 37,
67, 77). The short length of the remnant small intestine and colon in patients with SBS or animal
models maintains high levels of oxygen that are unfavorable to the growth of anaerobic bacteria.
In addition, the rapid transit time, the low fecal pH, the disruption of enterohepatic circulation of
bile acids, and the amount of undigested nutrients in the remaining colon lumen are modified and
may create a favorable niche for lactic acid–producing bacteria to proliferate.Lactobacillus overload
should be considered massive, because in healthy humans this group accounts for less than 1% of
the complex microbiota population. Thus, this specific SBS microbiota is named lactobiota (67,
93).

The metabolic capacity of lactobiota and the cross talk between the lactobiota and the colonic
mucosa give the colon an essential role in patients with SBS. After extensive intestinal resection,
abundant and poorly digested nutrients or substrates reach the colon lumen, where their fermen-
tation by gut bacteria helps maintain colon mucosa homeostasis, ecosystem diversity, and energy
recovery (15, 95, 102, 103). The colonic microbiota seems to play an important role in postsurgery
adaptation in patients with SBS by promoting caloric absorption. However, the biological signals
arising from the SBS microbiota need to be better understood, as they are both beneficial (with
a high ability to recover energy) and deleterious (with the potential to overproduce d-lactate) to
patients (93) (Figure 3).

Understanding intestinal renewal and ISC biology, through the use of animal models and
organoid culture, is essential for identifying new therapeutic targets that can be transferred to
clinical applications.

4. NUTRITIONAL AND LUMINAL SIGNALS INVOLVED
IN SPONTANEOUS ADAPTATION

Excess or exclusion of nutrients in the intestinal lumen has long been known to directly impact
the cellular mass of the intestinal epithelium. In rodent models, total parenteral nutrition leads to
hypoplasia (55) and long-term fasting leads to an important reduction in intestinal epithelial mass
(36, 41, 114). In addition, depending on the type of anastomosis leading to SBS, the nature of nu-
trients that pass through the different intestinal segments differs, contributing to specific localized
adaptation.Nutrients trigger intestinal adaptation directly by stimulatingmucosal hyperplasia and
expression of their own transporters (80) or indirectly by modifying microbiota composition and
stimulating trophic gastrointestinal hormone secretions.

4.1. Caloric Content or Quality of Nutrients?

Yilmaz et al. (144) have shown that caloric restriction reduces the proliferation of intestinal pro-
genitors and the numbers of differentiated enterocytes while increasing the niche function and
the number of ISCs. In this case, the epithelial surface is reduced but the stem cell compartment
is ready for immediate reinforcement upon refeeding.

Conversely,Mao et al. (86) have shown that overnutrition directly stimulates intestinal epithe-
lium proliferation. They found that proliferation of intestinal epithelial cells induced by excessive
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food intake correlated with activation of the glycogen synthase kinase-3 (GSK-3)/β-catenin
signaling pathway, suggesting that nutrient-induced activation of this pathway in the intestinal
epithelium contributes to increased nutrient absorption (86). An in vitro study demonstrated
that glucose and free fatty acids directly stimulate intestinal epithelial cell proliferation through
β-catenin activation (86). More recently, the Yilmaz group (11) showed that a high-fat diet
leads to a decreased number of Paneth cells but an increased number of ISCs, which become
independent of Paneth cell signaling. In those conditions, ISCs were responsive to lower Wnt
signals, enlarging the stemness zone in the crypt (1).

In rodent models, total parenteral nutrition leads to hypoplasia but introduction of glutamate
into drinking water preserves the epithelium, emphasizing the role of nutrients in epithelial ho-
meostasis (55). Similarly, treatment of patients with SBS under parenteral nutrition with enteral
nutrition associated with glutamine enables a significant adaptive process characterized by an en-
larged absorptive surface with an increased proliferative rate of ISCs (52).

In a normal gastrointestinal tract, most of the ingested food is broken down into small
molecules and absorbed by cells of the jejunum and transferred into the bloodstream. In a remod-
eled gastrointestinal tract, by either bariatric surgery or a large resection of the small intestine, the
accelerated flow of nutrients associated with the shorter jejunum length allows the ingested food
to reach more distal segments of the intestine (20, 26). These undigested nutrients trigger new
signals for distally located cells andmay induce proliferation and hyperplasia as well as improve in-
testinal endocrine function. Improvement of endocrine cell function is well illustrated in a recent
study by Larraufie et al. (78), who showed that increased secretion of GLP-1 after bariatric surgery
in mice arises from an accelerated delivery of undigested nutrients to the distal gut, where there
is a high density of GLP-1-producing cells. In SBS subjects with jejunoileal or jejunocolic anas-
tomosis exhibiting accelerated gastrointestinal transit, one can hypothesize that the secretions of
GLP-1, GLP-2, and PYY from distal colonic cells are boosted by these new signals arriving more
distally than physiologically. The nutrient-induced endocrine signals, particularly GLP-2, could
in a second step partly take over to stimulate proliferation in the proximal remaining segments of
the gut (see Section 4.3).

4.2. Microbiota Signals

It is well recognized that luminal nutrients shape the composition of the microbiota and that
the microbiota participates in intestinal homeostasis (19, 106, 107). Fecal lactobiota transfer from
a patient with SBS to germ-free rats triggered an increase in crypt depth that reached that of
conventional rats (45). In addition, SBS lactobiota induces an increase in plasma of GLP-1 and
ghrelin (45), two hormones, together with PYY and GLP-2, induced in patients with SBS (44).
Thus, the SBS lactobiota seems to be a reservoir of multiple, complex signals that could contribute
to postresection adaptive mechanisms (92).

Lactate-producing bacteria, such as Lactobacillus species, support renewal of intestinal epithelial
cells (81). Through its interaction with its receptor, Gpr81, expressed on niche cells (i.e., Paneth
cells and ISCs surrounding stromal cells), lactate seems to play a pivotal role in stimulating the
Wnt/β-catenin signaling pathway and accelerating the proliferation rate and intestinal regenera-
tion of ISCs (81).

4.3. Hormonal Signals

Ultimately, intestinal hormones are important signals that link nutrients, microbiota, and possibly
other luminal contents withmucosal adaptation.Themost important hormone is probablyGLP-2
because of its pleiotropic effect on the gut (17, 33, 34).GLP-2 activates various signaling pathways
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involved in cell proliferation; for example, it increases β-catenin nuclear translocation and c-Myc
expression (35, 115).

Surprisingly, the precise cellular andmolecular mechanisms of action of GLP-2 remain unclear
(34). They are reported to be indirect because expression of intestinal GLP-2 receptors, which de-
crease from the proximal to the distal part of the intestine, seems to be restricted to subepithelial
myofibroblasts, a subset of enteric neurons and enteroendocrine cells that is not detectable in
ISCs (48, 59, 146). Multiple molecular mediators of GLP-2, including insulin-like growth factor
1 (IGF1), EGF, and avian erythroblastic leukemia viral oncogene homolog (ErB) family mem-
bers, relay its action in the gastrointestinal tract and induce proliferation (reviewed in 17). EGF
signaling is a key pathway controlling the division rate of ISCs, although it is not necessary for
maintaining stem cell identity (9, 119). Nevertheless, the exact mechanisms by which IGF1 and
EGF relay trophic effects of GLP-2 to the gut have yet to be characterized. The use of intesti-
nal organoids derived from animal models of SBS or patients with SBS could help further our
understanding of how these different factors interact to induce intestinal hyperplasia (84, 118,
119).

Since the trophic action of GLP-2 on the gut was first discovered by Drucker et al. (33)
in 1996, GLP-2 treatments have been rapidly developed to improve adaptation. Long-acting
GLP-2 analogs, such as teduglutide, have been developed and used as a specific therapy in pa-
tients with SBS. Treatment with GLP-2 analogs enhances or accelerates spontaneous adaptation
and reduces the need for calories to be administered intravenously. In a controlled clinical trial,
the administration of teduglutide reduced by more than 20% the need for intravenous nutri-
tion in 63% of patients after a 6-month treatment (63). Teduglutide significantly reduces stool
wet weight and fecal energy excretion (64). Teduglutide significantly increases villus height, crypt
depth, and mitotic index in the jejunum of patients with SBS with jejunostomy, but not in colonic
biopsies of patients with SBS with an intact colon (64). This peculiar observation may reflect the
scarcity of GLP-2 receptors in the colon (146). With teduglutide, some patients can be weaned
off parenteral nutrition, but a greater number of patients require persistent support with a reduc-
tion in the number of their infusions per week (63). Patients who received teduglutide showed
a significant increase in citrulline levels in plasma compared with patients receiving a placebo in
two phase III studies, indicating an increase in enterocyte mass in these patients (122). However,
whether citrulline levels accurately reflect the functional absorptive capacity of the small intestine
remains unresolved.

Oral feeding is a positive driver of intestinal adaptation. Our understanding of the signals re-
laying the presence of nutrients has led to the development of long-acting GLP-2 analogs. Fur-
ther studies of the mechanisms by which lactobiota participates in SBS adaptation could help
researchers develop combined therapies.

5. NUTRITION INTERVENTIONS

After the immediate and acute postoperative phases requiring parenteral nutrition, a regular oral
diet should be introduced as soon as possible in patients with SBS because, as described above,
adaptation requires enteral stimulation. Dietary interventions through oral supplements or en-
teral feeding, in addition to spontaneous and conventional food intake, are considered as clini-
cians look for specific nutritional constituents that could trigger, stimulate, or maintain intestinal
adaptation. In the last few years, researchers have developed nutrient strategies in animal models
to complement pharmacologic treatment with GLP-2 analogs (16). The importance of the dif-
ferent macronutrients (carbohydrates, fat, and proteins) is briefly discussed, as this topic has been
recently reviewed elsewhere (58, 76, 99).
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5.1. Carbohydrates and Short-Chain Fatty Acids

Although randomized controlled trials are still missing, clinical experience tends to suggest that
complex carbohydrates are better tolerated than monosaccharides due to lower risk of osmotic
diarrhea. In addition, in rats maintained with total parenteral nutrition, disaccharide intestinal
infusions stimulated mucosal growth more than monosaccharide intestinal infusions did (140).

Most complex carbohydrates, the indigestible fibers, are not directly absorbed by the intestine
but are fermented by the microbiota into SCFAs (essentially acetate, butyrate, and propionate).
SCFAs are the preferred energy source for colonocytes driving colon mucosa trophicity in
normal subjects as in patients with SBS (8). Accordingly, diet supplemented with SCFA or pectin
improves adaptation of the small intestine and colon in animal models of SBS (134, 135). In
addition, secretion of serotonin or GLP-2 in response to SCFAs may contribute to these trophic
effects (113, 134).

5.2. Lipids

Several studies of rat models of SBS, mostly with jejunoileal anastomosis, reported that a low-fat
diet impairs intestinal adaptation (131), whereas a high-fat diet stimulates adaptation (21, 130).
In addition, high-fat diet supplementation, together with enhanced expression of CD36, a fat
transporter/receptor, and microsomal triglyceride transfer protein, an enzyme involved in chy-
lomicron formation, further increases structural and proliferative changes in the intestine (22).
The effect appears to be mediated by long-chain triglycerides, saturated or not. Diets enriched
in medium-chain triglycerides do not stimulate intestinal adaptation to the same degree (138), al-
though medium-chain triglycerides offer the advantage of being easily absorbed (58, 61). Never-
theless, translation to clinical practice is complicated, and because diarrhea is associated with steat-
orrhea (58), a low-fat diet is generally recommended for patients with SBS with a preserved colon.

5.3. Proteins and Amino Acids

Expression of PepT1, the major transporter of dipeptides and tripeptides, is increased in colono-
cytes of patients with SBS (67) and is induced after massive intestinal resection in rats (44)
(Figure 3), suggesting spontaneous adaptation that favors absorption of protein-derived prod-
ucts. Accordingly, a recent study demonstrated that a high-protein diet results in greater weight
gain in mice with massive intestinal resection (132). In children with SBS, provision of hydrolyzed
versus nonhydrolyzed proteins results in similar intestinal permeability, weight gain, and nitrogen
balance (72).The exact formula of proteins is still a matter of debate, but peptides may help reduce
intestinal inflammation (104).

Glutamine is a major substrate for intestinal cells as well as for rapidly dividing cells. Because
glutamate in the drinking water of mice under total parenteral nutrition seems to preserve the
epithelium (143), numerous studies have addressed the efficacy of glutamine for the treatment of
IF. Even though some studies showed favorable effects (52), the efficacy is still debated (2).

In conclusion, we still do not know which macronutrients (carbohydrates, lipids, or proteins)
have the most significant impact on intestinal adaptation. It appears that in murine models, as in
humans, complex food creates the strongest stimuli compared with supplementation with individ-
ual nutrients (12, 58). The trophic capacity of macronutrients is related to how they are digested.
Indeed, the digestive workload needed to absorb them, including the work of hydrolysis, plays an
important role in driving intestinal adaptation (99). Finally, if diet composition or elevated nutri-
ent intake is beneficial for nutrient absorption, it could also aggravate overall loss of fluids and
electrolytes by stimulating various hypersecretions; thus, nutrition interventions should also be
adapted to each patient.
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Up to now, dietary recommendations for patients with SBS have been based only on short-
term observational studies and clinical experience.Additional studies are required, as are evidence-
based data, especially of combinations of nutritional approaches, for instance, with probiotics or
prebiotics. On the basis of the European Society for Clinical Nutrition andMetabolism (ESPEN)
guidelines, experts recommend specific dietary advice according to the anatomical aspects of SBS
(108).

6. FUTURE DIRECTIONS AND CONCLUSION

Because luminal nutrients are key components of intestinal adaptation and improvement in pa-
tients with SBS, hyperphagia observed in some patients with SBS should be encouraged or stim-
ulated. The signals responsible for this eating behavior are currently unknown. Changes in the
ratio of fat mass to fat-free mass are believed to generate integrated peripheral signals that drive
eating behavior (127). Bétry et al. (10) recently suggested that fat-free mass could be a strong
predictor of oral energy intake in patients with SBS, whereas hyperphagia is not associated with
a decrease in fat mass nor with a decrease in leptin, a well-known anorexigenic hormone (44,
98). Very few studies focus on gastrointestinal hormones and hyperphagia in SBS (23, 44). We
have shown that patients with SBS and resected rats exhibit increased levels of circulating fasting
ghrelin compared with control subjects (44). Furthermore, the expected postprandial decrease in
ghrelin is delayed in patients with SBS, suggesting that a hunger signal persists after a meal is
initiated in these patients (44). In patients with Prader-Willi syndrome, major hyperphagia with
loss of appetite control is observed (31, 73) and is correlated with ghrelin concentrations (31, 51,
73), reinforcing the role of ghrelin in the occurrence of hyperphagia. But to date, no correlation
between ghrelin levels and food intake in patients with SBS has been demonstrated. It is therefore
unclear whether increased ghrelin levels are involved in hyperphagia in these patients. The eating
behavior of patients with SBS may depend on a balance between orexigenic and anorexigenic hor-
mones. Accordingly, patients with Prader-Willi syndrome exhibit a higher ghrelin-to-PYY ratio,
suggesting that this ratio could be a marker, or stimulus, of orexigenic drive (51). This hypothesis
needs to be tested in patients with SBS.

The relationships amongmicrobiota, gastrointestinal hormones, and eating behavior have been
established in different physiopathological situations (14, 28, 74, 111, 126). The lactobiota ob-
served in patients with SBS may represent a reservoir of microorganisms of interest contributing
to intestinal adaptation but also to the control of food intake (14, 126). Exploring animal models
of SBS, particularly during long-term follow-up, will improve our understanding of SBS adapta-
tion and allow us to develop interventional studies targeting microbiota and intestinal hormones
to ameliorate intestinal absorption and eating behavior.

Finally, there is a need to identify a panel or combination of biomarkers that could be used,
instead of metabolic balance studies, to easily characterize the intestinal absorption ability of pa-
tients with SBS and to predict the effectiveness of their adaptation. In the future, a therapeutic
approach could be to stimulate intestinal adaptation through nutritional manipulation, including
stimulation of hyperphagia, to rapidly wean patients with SBS off parenteral nutrition.

SUMMARY POINTS

1. Adaptation to intestinal resection involves adaptation of the remnant bowel (hyperplasia
and secretion of gut hormones) and changes in eating behavior (hyperphagia).
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2. Spontaneous intestinal adaptation is stimulated by enteral nutrition through modifica-
tion of luminal contents (nutrients and microbiota-derived metabolites).

3. Gut hormones such as glucagon-like peptide-2 (GLP-2) could be relay signals of luminal
contents acting on intestinal renewal.

4. The most important aspect of dietary management in patients with short bowel syn-
drome (SBS) is to encourage hyperphagia.
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