1932

Abstract

While food is essential for survival, it can also cause a variety of harmful effects, ranging from intolerance to specific nutrients to celiac disease and food allergies. In addition to nutrients, foods contain myriads of substances that can have either beneficial or detrimental effects on the animals consuming them. Consequently, all animals evolved defense mechanisms that protect them from harmful food components. These “antitoxin” defenses have some parallels with antimicrobial defenses and operate at a cost to the animal's fitness. These costs outweigh benefits when defense responses are exaggerated or mistargeted, resulting in adverse reactions to foods. Additionally, pathological effects of foods can stem from insufficient defenses, due to unabated toxicity of harmful food components. We discuss the structure of antitoxin defenses and how their failures can lead to a variety of adverse food reactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-061021-022909
2024-08-29
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-061021-022909.html?itemId=/content/journals/10.1146/annurev-nutr-061021-022909&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ader R. 1974.. Behaviorially conditioned immunosuppression. . Psychosom. Med. 36:(2):18384
    [Crossref] [Google Scholar]
  2. 2.
    Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L, et al. 2021.. Local immune response to food antigens drives meal-induced abdominal pain. . Nature 590:(7844):15156
    [Crossref] [Google Scholar]
  3. 3.
    Baker MG, Cecilia Berin M, Sicherer S. 2022.. Update on food protein-induced enterocolitis syndrome (FPIES). . Curr. Allergy Asthma Rep. 22:(10):11322
    [Crossref] [Google Scholar]
  4. 4.
    Barabási A-L, Menichetti G, Loscalzo J. 2020.. The unmapped chemical complexity of our diet. . Nat. Food 1:(1):3337
    [Crossref] [Google Scholar]
  5. 5.
    Barker G. 2009.. The Agricultural Revolution in Prehistory: Why did Foragers Become Farmers? New York:: Oxford Univ. Press
    [Google Scholar]
  6. 6.
    Behrens M, Brockhoff A, Kuhn C, Bufe B, Winnig M, Meyerhof W. 2004.. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. . Biochem. Biophys. Res. Commun. 319:(2):47985
    [Crossref] [Google Scholar]
  7. 7.
    Behrens M, Meyerhof W. 2013.. Bitter taste receptor research comes of age: from characterization to modulation of TAS2Rs. . Semin. Cell Dev. Biol. 24:(3):21521
    [Crossref] [Google Scholar]
  8. 8.
    Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, et al. 2017.. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. . Cell 170:(1):18598.e16
    [Crossref] [Google Scholar]
  9. 9.
    Berin MC, Shreffler WG. 2016.. Mechanisms underlying induction of tolerance to foods. . Immunol. Allergy Clin. North Am. 36:(1):87102
    [Crossref] [Google Scholar]
  10. 10.
    Bertheloot D, Latz E. 2017.. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. . Cell. Mol. Immunol. 14:(1):4364
    [Crossref] [Google Scholar]
  11. 11.
    Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, et al. 2018.. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. . Cell 175:(5):130720.e22
    [Crossref] [Google Scholar]
  12. 12.
    Black CJ, Ford AC. 2020.. Global burden of irritable bowel syndrome: trends, predictions and risk factors. . Nat. Rev. Gastroenterol. Hepatol. 17:(8):47386
    [Crossref] [Google Scholar]
  13. 13.
    Bouziat R, Biering SB, Kouame E, Sangani KA, Kang S, et al. 2018.. Murine norovirus infection induces TH1 inflammatory responses to dietary antigens. . Cell Host Microbe 24:(5):67788.e5
    [Crossref] [Google Scholar]
  14. 14.
    Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, et al. 2017.. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. . Science 356:(6333):4450
    [Crossref] [Google Scholar]
  15. 15.
    Bradauskiene V, Vaiciulyte-Funk L, Martinaitiene D, Andruskiene J, Verma AK, et al. 2023.. Wheat consumption and prevalence of celiac disease: correlation from a multilevel analysis. . Crit. Rev. Food Sci. Nutr. 63:(1):1832
    [Crossref] [Google Scholar]
  16. 16.
    Breslin PAS. 2013.. An evolutionary perspective on food and human taste. . Curr. Biol. 23:(9):R40918
    [Crossref] [Google Scholar]
  17. 17.
    Brigham KS, Manzo LD, Eddy KT, Thomas JJ. 2018.. Evaluation and treatment of avoidant/restrictive food intake disorder (ARFID) in adolescents. . Curr. Pediatr. Rep. 6:(2):10713
    [Crossref] [Google Scholar]
  18. 18.
    Burešová O, Bureš J. 1974.. Functional decortication in the CS-US interval decrease efficiency of taste aversive learning. . Behav. Biol. 12:(3):35764
    [Crossref] [Google Scholar]
  19. 19.
    Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R, et al. 2019.. Celiac disease: a comprehensive current review. . BMC Med. 17:(1):142
    [Crossref] [Google Scholar]
  20. 20.
    Capuano E. 2017.. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. . Crit. Rev. Food Sci. Nutr. 57:(16):354364
    [Crossref] [Google Scholar]
  21. 21.
    Carlson G, Coop C. 2019.. Pollen food allergy syndrome (PFAS): a review of current available literature. . Ann. Allergy Asthma Immunol. 123:(4):35965
    [Crossref] [Google Scholar]
  22. 22.
    Carocho M, Barreiro MF, Morales P, Ferreira ICFR. 2014.. Adding molecules to food, pros and cons: a review on synthetic and natural food additives. . Compr. Rev. Food Sci. Food Saf. 13:(4):37799
    [Crossref] [Google Scholar]
  23. 23.
    Catassi C, Gatti S, Lionetti E. 2015.. World perspective and celiac disease epidemiology. . Dig. Dis. 33:(2):14146
    [Crossref] [Google Scholar]
  24. 24.
    Cavada BS, Pinto-Junior VR, Osterne VJS, Nascimento KS. 2019.. ConA-like lectins: high similarity proteins as models to study structure/biological activities relationships. . Int. J. Mol. Sci. 20:(1):30
    [Crossref] [Google Scholar]
  25. 25.
    Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS. 2006.. The receptors and cells for mammalian taste. . Nature 444:(7117):28894
    [Crossref] [Google Scholar]
  26. 26.
    Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, et al. 2010.. The cells and peripheral representation of sodium taste in mice. . Nature 464:(7286):297301
    [Crossref] [Google Scholar]
  27. 27.
    Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, et al. 2000.. T2Rs function as bitter taste receptors. . Cell 100:(6):70311
    [Crossref] [Google Scholar]
  28. 28.
    Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, et al. 2000.. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. . J. Clin. Investig. 106:(12):R7581
    [Crossref] [Google Scholar]
  29. 29.
    Chen Z, Luo J, Li J, Kim G, Stewart A, et al. 2021.. Interleukin-33 promotes serotonin release from enterochromaffin cells for intestinal homeostasis. . Immunity 54:(1):15163.e6
    [Crossref] [Google Scholar]
  30. 30.
    Choudhuri S, Chanderbhan RF, Mattia A. 2019.. Food toxicology: fundamental and regulatory aspects. . Chapter 27 in Casarett & Doull's Toxicology: The Basic Science of Poisons, ed. CD Klaassen . New York:: McGraw-Hill. , 9th ed..
    [Google Scholar]
  31. 31.
    Clayburgh DR, Musch MW, Leitges M, Fu Y-X, Turner JR. 2006.. Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo. . J. Clin. Investig. 116:(10):268294
    [Crossref] [Google Scholar]
  32. 32.
    Crittenden AN, Schnorr SL. 2017.. Current views on hunter-gatherer nutrition and the evolution of the human diet. . Am. J. Phys. Anthropol. 162:(Suppl. 63):84109
    [Crossref] [Google Scholar]
  33. 33.
    Dellon ES, Peterson KA, Mitlyng BL, Iuga A, Bookhout CE, et al. 2023.. Mepolizumab for treatment of adolescents and adults with eosinophilic oesophagitis: a multicentre, randomised, double-blind, placebo-controlled clinical trial. . Gut 72:(10):182837
    [Crossref] [Google Scholar]
  34. 34.
    Dewan A, Pacifico R, Zhan R, Rinberg D, Bozza T. 2013.. Non-redundant coding of aversive odours in the main olfactory pathway. . Nature 497:(7450):48689
    [Crossref] [Google Scholar]
  35. 35.
    Diamond JM. 1999.. Guns, Germs, and Steel: The Fates of Human Societies. New York:: Norton
    [Google Scholar]
  36. 36.
    Diepeveen J, Moerdijk-Poortvliet TCW, van der Leij FR. 2022.. Molecular insights into human taste perception and umami tastants: a review. . J. Food Sci. 87:(4):144965
    [Crossref] [Google Scholar]
  37. 37.
    Dillon A, Lo DD. 2019.. M cells: intelligent engineering of mucosal immune surveillance. . Front. Immunol. 10::1499
    [Crossref] [Google Scholar]
  38. 38.
    Domjan M, Gillan D. 1976.. Role of novelty in the aversion for increasingly concentrated saccharin solutions. . Physiol. Behav. 16:(5):53742
    [Crossref] [Google Scholar]
  39. 39.
    Eaton SB, Eaton SB, Konner MJ, Shostak M. 1996.. An evolutionary perspective enhances understanding of human nutritional requirements. . J. Nutr. 126:(6):173240
    [Crossref] [Google Scholar]
  40. 40.
    Eberhart DC, Gemzik B, Halvorson MR, Parkinson A. 1991.. Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin. . Mol. Pharmacol. 40:(5):85967
    [Google Scholar]
  41. 41.
    Finlay F, Guiton S. 2005.. Chocolate poisoning. . BMJ 331:(7517):633
    [Crossref] [Google Scholar]
  42. 42.
    Florsheim EB, Bachtel ND, Cullen JL, Lima BGC, Godazgar M, et al. 2023.. Immune sensing of food allergens promotes avoidance behaviour. . Nature 620:(7974):64350
    [Crossref] [Google Scholar]
  43. 43.
    Florsheim EB, Sullivan ZA, Khoury-Hanold W, Medzhitov R. 2021.. Food allergy as a biological food quality control system. . Cell 184:(6):144054
    [Crossref] [Google Scholar]
  44. 44.
    Francavilla R, Cristofori F, Verzillo L, Gentile A, Castellaneta S, et al. 2018.. Randomized double-blind placebo-controlled crossover trial for the diagnosis of non-celiac gluten sensitivity in children. . Am. J. Gastroenterol. 113:(3):42130
    [Crossref] [Google Scholar]
  45. 45.
    Fuentes F, Paredes-Gonzalez X, Kong A-NT. 2015.. Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: antioxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. . Curr. Pharmacol. Rep. 1:(3):17996
    [Crossref] [Google Scholar]
  46. 46.
    Fürstenberg-Hägg J, Zagrobelny M, Bak S. 2013.. Plant defense against insect herbivores. . Int. J. Mol. Sci. 14:(5):1024297
    [Crossref] [Google Scholar]
  47. 47.
    Gartrell BD, Roe WD. 2013.. The effects of chocolate and chocolate by-product consumption on wild and domestic animals. . In Chocolate in Health and Nutrition, ed. RR Watson, VR Preedy, S Zibadi , pp. 13541. Totowa, NJ:: Humana Press
    [Google Scholar]
  48. 48.
    Gaston KE. 1978.. Brain mechanisms of conditioned taste aversion learning: a review of the literature. . Psychobiology 6:(3):34053
    [Crossref] [Google Scholar]
  49. 49.
    Goyal RK, Guo Y, Mashimo H. 2019.. Advances in the physiology of gastric emptying. . Neurogastroenterol. Motil. 31:(4):e13546
    [Crossref] [Google Scholar]
  50. 50.
    Guinard J-X, Mazzucchelli R. 1996.. The sensory perception of texture and mouthfeel. . Trends Food Sci. Technol. 7:(7):21319
    [Crossref] [Google Scholar]
  51. 51.
    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, et al. 2011.. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. . Immunity 34:(2):23746
    [Crossref] [Google Scholar]
  52. 52.
    Heutinck KM, ten Berge IJM, Hack CE, Hamann J, Rowshani AT. 2010.. Serine proteases of the human immune system in health and disease. . Mol. Immunol. 47:(11):194355
    [Crossref] [Google Scholar]
  53. 53.
    Hill ID, Fasano A, Guandalini S, Hoffenberg E, Levy J, et al. 2016.. NASPGHAN clinical report on the diagnosis and treatment of gluten-related disorders. . J. Pediatr. Gastroenterol. Nutr. 63:(1):15665
    [Crossref] [Google Scholar]
  54. 54.
    Holscher HD. 2017.. Dietary fiber and prebiotics and the gastrointestinal microbiota. . Gut Microbes 8:(2):17284
    [Crossref] [Google Scholar]
  55. 55.
    Howe GA, Jander G. 2008.. Plant immunity to insect herbivores. . Annu. Rev. Plant Biol. 59::4166
    [Crossref] [Google Scholar]
  56. 56.
    Hubbard TD, Murray IA, Perdew GH. 2015.. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. . Drug Metab. Dispos 43:(10):152235
    [Crossref] [Google Scholar]
  57. 57.
    Hussain A, Saraiva LR, Ferrero DM, Ahuja G, Krishna VS, et al. 2013.. High-affinity olfactory receptor for the death-associated odor cadaverine. . PNAS 110:(48):1957984
    [Crossref] [Google Scholar]
  58. 58.
    Hussain M, Debnath B, Qasim M, Bamisile BS, Islam W, et al. 2019.. Role of saponins in plant defense against specialist herbivores. . Molecules 24:(11):2067
    [Crossref] [Google Scholar]
  59. 59.
    Illiano P, Brambilla R, Parolini C. 2020.. The mutual interplay of gut microbiota, diet and human disease. . FEBS J. 287:(5):83355
    [Crossref] [Google Scholar]
  60. 60.
    Iwasaki A, Medzhitov R. 2015.. Control of adaptive immunity by the innate immune system. . Nat. Immunol. 16:(4):34353
    [Crossref] [Google Scholar]
  61. 61.
    Janeway CA, Medzhitov R. 2002.. Innate immune recognition. . Annu. Rev. Immunol. 20::197216
    [Crossref] [Google Scholar]
  62. 62.
    Jonsson AL, Bäckhed F. 2017.. Role of gut microbiota in atherosclerosis. . Nat. Rev. Cardiol. 14:(2):7987
    [Crossref] [Google Scholar]
  63. 63.
    Josselyn SA, Köhler S, Frankland PW. 2015.. Finding the engram. . Nat. Rev. Neurosci. 16:(9):52134
    [Crossref] [Google Scholar]
  64. 64.
    Jutel M, Akdis M, Akdis CA. 2009.. Histamine, histamine receptors and their role in immune pathology. . Clin. Exp. Allergy 39:(12):1786800
    [Crossref] [Google Scholar]
  65. 65.
    Karasov WH, del Rio CM. 2007.. Physiological Ecology. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  66. 66.
    Keller J, Bassotti G, Clarke J, Dinning P, Fox M, et al. 2018.. Advances in the diagnosis and classification of gastric and intestinal motility disorders. . Nat. Rev. Gastroenterol. Hepatol. 15:(5):291308
    [Crossref] [Google Scholar]
  67. 67.
    Kirschner BS, DeFavaro MV, Jensen W. 1981.. Lactose malabsorption in children and adolescents with inflammatory bowel disease. . Gastroenterology 81:(5):82932
    [Crossref] [Google Scholar]
  68. 68.
    Kivelä L, Caminero A, Leffler DA, Pinto-Sanchez MI, Tye-Din JA, Lindfors K. 2021.. Current and emerging therapies for coeliac disease. . Nat. Rev. Gastroenterol. Hepatol. 18:(3):18195
    [Crossref] [Google Scholar]
  69. 69.
    Klinnert MD. 2009.. Psychological impact of eosinophilic esophagitis on children and families. . Immunol. Allergy Clin. North Am. 29:(1):99107
    [Crossref] [Google Scholar]
  70. 70.
    Knoop KA, Newberry RD. 2018.. Goblet cells: multifaceted players in immunity at mucosal surfaces. . Mucosal Immunol. 11:(6):155157
    [Crossref] [Google Scholar]
  71. 71.
    Koren T, Yifa R, Amer M, Krot M, Boshnak N, et al. 2021.. Insular cortex neurons encode and retrieve specific immune responses. . Cell 184:(24):590215.e17
    [Crossref] [Google Scholar]
  72. 72.
    Kroll T, Prescher M, Smits SHJ, Schmitt L. 2021.. Structure and function of hepatobiliary ATP binding cassette transporters. . Chem. Rev. 121:(9):524088
    [Crossref] [Google Scholar]
  73. 73.
    Kucek LK, Veenstra LD, Amnuaycheewa P, Sorrells ME. 2015.. A grounded guide to gluten: how modern genotypes and processing impact wheat sensitivity. . Compr. Rev. Food Sci. Food Saf. 14:(3):285302
    [Crossref] [Google Scholar]
  74. 74.
    Lammers KM, Lu R, Brownley J, Lu B, Gerard C, et al. 2008.. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. . Gastroenterology 135:(1):194204.e3
    [Crossref] [Google Scholar]
  75. 75.
    Le J. 2022.. Drug excretion. . In Clinical Pharmacology, Merck Manuals Professional Version . Rahway, NJ:: Merck & Co. https://www.merckmanuals.com/professional/clinical-pharmacology/pharmacokinetics/drug-excretion
    [Google Scholar]
  76. 76.
    Lebwohl B, Rubio-Tapia A. 2021.. Epidemiology, presentation, and diagnosis of celiac disease. . Gastroenterology 160:(1):6375
    [Crossref] [Google Scholar]
  77. 77.
    Li H, He J, Jia W. 2016.. The influence of gut microbiota on drug metabolism and toxicity. . Expert Opin. Drug Metab. Toxicol. 12:(1):3140
    [Crossref] [Google Scholar]
  78. 78.
    Liberles SD, Buck LB. 2006.. A second class of chemosensory receptors in the olfactory epithelium. . Nature 442:(7103):64550
    [Crossref] [Google Scholar]
  79. 79.
    Lionetti E, Catassi C. 2014.. Co-localization of gluten consumption and HLA-DQ2 and -DQ8 genotypes, a clue to the history of celiac disease. . Dig. Liver Dis. 46:(12):105763
    [Crossref] [Google Scholar]
  80. 80.
    Lipworth B, Misirovs R, Chan R. 2023.. The eosinophil paradox in type 2 high upper gastrointestinal disease. . Lancet Gastroenterol. Hepatol. 8:(10):873
    [Crossref] [Google Scholar]
  81. 81.
    Lockhart A, Reed A, Rezende de Castro T, Herman C, Campos Canesso MC, Mucida D. 2023.. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. . J. Exp. Med. 220:(8):e20221816
    [Crossref] [Google Scholar]
  82. 82.
    Lomer MCE. 2015.. Review article: the aetiology, diagnosis, mechanisms and clinical evidence for food intolerance. . Aliment. Pharmacol. Ther. 41:(3):26275
    [Crossref] [Google Scholar]
  83. 83.
    Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. 2014.. The role of oxidative stress during inflammatory processes. . Biol. Chem. 395:(2):20330
    [Crossref] [Google Scholar]
  84. 84.
    Lyles J, Rothenberg M. 2019.. Role of genetics, environment, and their interactions in the pathogenesis of eosinophilic esophagitis. . Curr. Opin. Immunol. 60::4653
    [Crossref] [Google Scholar]
  85. 85.
    Marschner C, Krockenberger MB, Higgins DP, Mitchell C, Moore BD. 2019.. Ingestion and absorption of eucalypt monoterpenes in the specialist feeder, the koala (Phascolarctos cinereus). . J. Chem. Ecol. 45:(9):798807
    [Crossref] [Google Scholar]
  86. 86.
    Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. 2021.. SCFA: mechanisms and functional importance in the gut. . Proc. Nutr. Soc. 80:(1):3749
    [Crossref] [Google Scholar]
  87. 87.
    Medzhitov R. 2021.. The spectrum of inflammatory responses. . Science 374:(6571):107075
    [Crossref] [Google Scholar]
  88. 88.
    Medzhitov R, Schneider DS, Soares MP. 2012.. Disease tolerance as a defense strategy. . Science 335:(6071):93641
    [Crossref] [Google Scholar]
  89. 89.
    Misheva M, Ilott NE, McCullagh JSO. 2021.. Recent advances and future directions in microbiome metabolomics. . Curr. Opin. Endocrine Metab. Res. 20::100283
    [Crossref] [Google Scholar]
  90. 90.
    Mithöfer A, Boland W. 2012.. Plant defense against herbivores: chemical aspects. . Annu. Rev. Plant Biol. 63::43150
    [Crossref] [Google Scholar]
  91. 91.
    Monsbakken KW, Vandvik PO, Farup PG. 2006.. Perceived food intolerance in subjects with irritable bowel syndrome—etiology, prevalence and consequences. . Eur. J. Clin. Nutr. 60:(5):66772
    [Crossref] [Google Scholar]
  92. 92.
    Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA. 2005.. Oral tolerance in the absence of naturally occurring Tregs. . J. Clin. Investig. 115:(7):192333
    [Crossref] [Google Scholar]
  93. 93.
    Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJP. 2005.. The receptors and coding logic for bitter taste. . Nature 434:(7030):22529
    [Crossref] [Google Scholar]
  94. 94.
    Negin B, Jander G. 2023.. Convergent and divergent evolution of plant chemical defenses. . Curr. Opin. Plant Biol. 73::102368
    [Crossref] [Google Scholar]
  95. 95.
    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, et al. 2002.. An amino-acid taste receptor. . Nature 416:(6877):199202
    [Crossref] [Google Scholar]
  96. 96.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJP, Zuker CS. 2001.. Mammalian sweet taste receptors. . Cell 106:(3):38190
    [Crossref] [Google Scholar]
  97. 97.
    Nigam SK, Bush KT, Martovetsky G, Ahn S-Y, Liu HC, et al. 2015.. The organic anion transporter (OAT) family: a systems biology perspective. . Physiol. Rev. 95:(1):83123
    [Crossref] [Google Scholar]
  98. 98.
    Nish S, Medzhitov R. 2011.. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. . Immunity 34:(5):62936
    [Crossref] [Google Scholar]
  99. 99.
    Noah TK, Knoop KA, McDonald KG, Gustafsson JK, Waggoner L, et al. 2019.. IL-13-induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. . J. Allergy Clin. Immunol. 144:(4):105873.e3
    [Crossref] [Google Scholar]
  100. 100.
    O'Keefe SJD, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J. 2006.. Short bowel syndrome and intestinal failure: consensus definitions and overview. . Clin. Gastroenterol. Hepatol. 4:(1):610
    [Crossref] [Google Scholar]
  101. 101.
    Orloff NC, Hormes JM. 2014.. Pickles and ice cream! Food cravings in pregnancy: hypotheses, preliminary evidence, and directions for future research. . Front. Psychol. 5::1076
    [Crossref] [Google Scholar]
  102. 102.
    O'Shea KM, Aceves SS, Dellon ES, Gupta SK, Spergel JM, et al. 2018.. Pathophysiology of eosinophilic esophagitis. . Gastroenterology 154:(2):33345
    [Crossref] [Google Scholar]
  103. 103.
    Palm NW, Rosenstein RK, Medzhitov R. 2012.. Allergic host defences. . Nature 484:(7395):46572
    [Crossref] [Google Scholar]
  104. 104.
    Parkinson A, Ogilvie BW, Buckley DB, Kazmi F, Parkinson O. 2019.. Biotransformation of xenobiotics. . Chapter 6 in Casarett & Doull's Toxicology: The Basic Science of Poisons, ed. CD Klaassen . New York:: McGraw-Hill. , 9th ed..
    [Google Scholar]
  105. 105.
    Pavlov IP. 1902.. The Work of the Digestive Glands: Lectures by Professor J. P. Pawlow, transl. WH Thompson. London:: Charles Griffin
    [Google Scholar]
  106. 106.
    Platts-Mills TAE. 2015.. The allergy epidemics: 1870–2010. . J. Allergy Clin. Immunol. 136:(1):313
    [Crossref] [Google Scholar]
  107. 107.
    Plum T, Binzberger R, Thiele R, Shang F, Postrach D, et al. 2023.. Mast cells link immune sensing to antigen-avoidance behaviour. . Nature 620:(7974):63442
    [Crossref] [Google Scholar]
  108. 108.
    Pontzer H, Wood BM. 2021.. Effects of evolution, ecology, and economy on human diet: insights from hunter-gatherers and other small-scale societies. . Annu. Rev. Nutr. 41::36385
    [Crossref] [Google Scholar]
  109. 109.
    Power ML, Schulkin J. 2008.. Anticipatory physiological regulation in feeding biology: cephalic phase responses. . Appetite 50:(2–3):194206
    [Crossref] [Google Scholar]
  110. 110.
    Raubenheimer D, Lee KP, Simpson SJ. 2005.. Does Bertrand's rule apply to macronutrients?. Proc. R. Soc. B Biol. Sci. 272:(1579):242934
    [Crossref] [Google Scholar]
  111. 111.
    Reilly S, ed. 2018.. Food Neophobia: Behavioral and Biological Influences. Duxford, UK:: Woodhead Publishing
    [Google Scholar]
  112. 112.
    Reilly S, Schachtman TR, eds. 2009.. Conditioned Taste Aversion: Behavioral and Neural Processes. New York:: Oxford Univ. Press
    [Google Scholar]
  113. 113.
    Rodgers KJ, Samardzic K, Main BJ. 2017.. Toxic nonprotein amino acids. . In Plant Toxins, ed. CR Carlini, R Ligabue-Braun, P Gopalakrishnakone , pp. 26385. Dordrecht, Neth:.: Springer
    [Google Scholar]
  114. 114.
    Schaller M, Park JH. 2011.. The behavioral immune system (and why it matters). . Curr. Dir. Psychol. Sci. 20:(2):99103
    [Crossref] [Google Scholar]
  115. 115.
    Schneider C, O'Leary CE, von Moltke J, Liang H-E, Ang QY, et al. 2018.. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. . Cell 174:(2):27184.e14
    [Crossref] [Google Scholar]
  116. 116.
    Schuppan D, Zevallos V. 2015.. Wheat amylase trypsin inhibitors as nutritional activators of innate immunity. . Dig. Dis. 33:(2):26063
    [Crossref] [Google Scholar]
  117. 117.
    Sekirov I, Russell SL, Antunes LCM, Finlay BB. 2010.. Gut microbiota in health and disease. . Physiol. Rev. 90:(3):859904
    [Crossref] [Google Scholar]
  118. 118.
    Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, et al. 2002.. Structural basis for gluten intolerance in celiac sprue. . Science 297:(5590):227579
    [Crossref] [Google Scholar]
  119. 119.
    Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. 2011.. Tight junction pore and leak pathways: a dynamic duo. . Annu. Rev. Physiol. 73::283309
    [Crossref] [Google Scholar]
  120. 120.
    Shipley LA, Forbey JS, Moore BD. 2009.. Revisiting the dietary niche: When is a mammalian herbivore a specialist?. Integr. Comp. Biol. 49:(3):27490
    [Crossref] [Google Scholar]
  121. 121.
    Simpson SJ, Raubenheimer D. 2012.. The Nature of Nutrition. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  122. 122.
    Skypala I. 2011.. Adverse food reactions—an emerging issue for adults. . J. Am. Diet. Assoc. 111:(12):187791
    [Crossref] [Google Scholar]
  123. 123.
    Smith JL. 2003.. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. . J. Food Protect. 66:(7):1292303
    [Crossref] [Google Scholar]
  124. 124.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, et al. 2013.. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. . Science 341:(6145):56973
    [Crossref] [Google Scholar]
  125. 125.
    Stockinger B, Shah K, Wincent E. 2021.. AHR in the intestinal microenvironment: safeguarding barrier function. . Nat. Rev. Gastroenterol. Hepatol. 18:(8):55970
    [Crossref] [Google Scholar]
  126. 126.
    Su K-W, Patil SU, Stockbridge JL, Martin VM, Virkud YV, et al. 2020.. Food aversion and poor weight gain in food protein-induced enterocolitis syndrome: a retrospective study. . J. Allergy Clin. Immunol. 145:(5):143037.e11
    [Crossref] [Google Scholar]
  127. 127.
    Tennant SM, Hartland EL, Phumoonna T, Lyras D, Rood JI, et al. 2008.. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. . Infect. Immunity 76:(2):63945
    [Crossref] [Google Scholar]
  128. 128.
    Torgerson TR, Linane A, Moes N, Anover S, Mateo V, et al. 2007.. Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. . Gastroenterology 132:(5):170517
    [Crossref] [Google Scholar]
  129. 129.
    Treutter D. 2006.. Significance of flavonoids in plant resistance: a review. . Environ. Chem. Lett. 4:(3):14757
    [Crossref] [Google Scholar]
  130. 130.
    Tuck CJ, Biesiekierski JR, Schmid-Grendelmeier P, Pohl D. 2019.. Food intolerances. . Nutrients 11:(7):1684
    [Crossref] [Google Scholar]
  131. 131.
    Turner JA, Stephen-Victor E, Wang S, Rivas MN, Abdel-Gadir A, et al. 2020.. Regulatory T cell-derived TGF-β1 controls multiple checkpoints governing allergy and autoimmunity. . Immunity 53:(6):120214.e6
    [Crossref] [Google Scholar]
  132. 132.
    Ufelle AC, Barchowsky A. 2021.. Toxic effects of metals. Chapter 23. in Casarett & Doull's Essentials of Toxicology, ed. CD Klaassen, JB Watkins III . New York:: McGraw-Hill. , 4th ed.. https://accesspharmacy.mhmedical.com/content.aspx?bookid=3000&sectionid=252315652
    [Google Scholar]
  133. 133.
    Van Citters GW, Lin HC. 2006.. Ileal brake: neuropeptidergic control of intestinal transit. . Curr. Gastroenterol. Rep. 8:(5):36773
    [Crossref] [Google Scholar]
  134. 134.
    von Moltke J, Ji M, Liang H-E, Locksley RM. 2016.. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. . Nature 529:(7585):22125
    [Crossref] [Google Scholar]
  135. 135.
    Walker C, Thomas MG. 2023.. Cultural evolution and diet. . In The Oxford Handbook of Cultural Evolution, ed. JJ Tehrani, J Kendal, R Kendal . New York:: Oxford Univ. Press. https://doi.org/10.1093/oxfordhb/9780198869252.013.67
    [Google Scholar]
  136. 136.
    Walker JA, McKenzie ANJ. 2018.. TH2 cell development and function. . Nat. Rev. Immunol. 18:(2):12133
    [Crossref] [Google Scholar]
  137. 137.
    Wang L, Gillis-Smith S, Peng Y, Zhang J, Chen X, et al. 2018.. The coding of valence and identity in the mammalian taste system. . Nature 558:(7708):12731
    [Crossref] [Google Scholar]
  138. 138.
    Wang Y-M, Ong SS, Chai SC, Chen T. 2012.. Role of CAR and PXR in xenobiotic sensing and metabolism. . Expert Opin. Drug Metab. Toxicol. 8:(7):80317
    [Crossref] [Google Scholar]
  139. 139.
    Weingart C, Hartmann A, Kohn B. 2021.. Chocolate ingestion in dogs: 156 events (2015–2019). . J. Small Anim. Pract. 62:(11):97983
    [Crossref] [Google Scholar]
  140. 140.
    Wöll S, Kim SH, Greten HJ, Efferth T. 2013.. Animal plant warfare and secondary metabolite evolution. . Nat. Prod. Bioprospect. 3::17
    [Crossref] [Google Scholar]
  141. 141.
    Woolf CJ. 2011.. Central sensitization: implications for the diagnosis and treatment of pain. . PAIN 152:(3):S215
    [Crossref] [Google Scholar]
  142. 142.
    Xie Z, Zhang X, Zhao M, Huo L, Huang M, et al. 2022.. The gut-to-brain axis for toxin-induced defensive responses. . Cell 185:(23):4298316.e21
    [Crossref] [Google Scholar]
  143. 143.
    Xu J, Wang W, Yang X, Xiong A, Yang L, Wang Z. 2019.. Pyrrolizidine alkaloids: an update on their metabolism and hepatotoxicity mechanism. . Liver Res. 3:(3):17684
    [Crossref] [Google Scholar]
  144. 144.
    Yavuz A, Tetta C, Ersoy FF, D'intini V, Ratanarat R, et al. 2005.. Uremic toxins: a new focus on an old subject. . Semin. Dialys. 18:(3):20311
    [Crossref] [Google Scholar]
  145. 145.
    Zamaratskaia G, Gerhardt K, Wendin K. 2021.. Biochemical characteristics and potential applications of ancient cereals—an underexploited opportunity for sustainable production and consumption. . Trends Food Sci. Technol. 107::11423
    [Crossref] [Google Scholar]
  146. 146.
    Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, et al. 2018.. Role of secondary metabolites in plant defense against pathogens. . Microb. Pathog. 124::198202
    [Crossref] [Google Scholar]
  147. 147.
    Zhang J, Jin H, Zhang W, Ding C, O'Keeffe S, et al. 2019.. Sour sensing from the tongue to the brain. . Cell 179:(2):392402.e15
    [Crossref] [Google Scholar]
  148. 148.
    Zhang K, Kaufman RJ. 2008.. From endoplasmic-reticulum stress to the inflammatory response. . Nature 454:(7203):45562
    [Crossref] [Google Scholar]
  149. 149.
    Zhang T, Perkins MH, Chang H, Han W, De Araujo IE. 2022.. An inter-organ neural circuit for appetite suppression. . Cell 185:(14):247894.e28
    [Crossref] [Google Scholar]
  150. 150.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, et al. 2003.. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. . Cell 112:(3):293301
    [Crossref] [Google Scholar]
  151. 151.
    Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, et al. 2003.. The receptors for mammalian sweet and umami taste. . Cell 115:(3):25566
    [Crossref] [Google Scholar]
  152. 152.
    Zimmerman CA, Pan-Vazquez A, Wu B, Keppler EF, Guthman EM, et al. 2023.. A neural mechanism for learning from delayed postingestive feedback. . bioRxiv 2023.10.06.561214. https://doi.org/10.1101/2023.10.06.561214
  153. 153.
    Zohar I, Alperson-Afil N, Goren-Inbar N, Prévost M, Tütken T, et al. 2022.. Evidence for the cooking of fish 780,000 years ago at Gesher Benot Ya'aqov, Israel. . Nat. Ecol. Evol. 6:(12):201628
    [Crossref] [Google Scholar]
  154. 154.
    Zuffa S, Schmid R, Bauermeister A, Gomes PWP, Caraballo-Rodriguez AM, et al. 2024.. microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data. . Nat. Microbiol. 9::33645
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nutr-061021-022909
Loading
/content/journals/10.1146/annurev-nutr-061021-022909
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error