1932

Abstract

Bariatric surgery is an important weight loss tool in individuals with severe obesity. It is currently the most effective long-term weight loss treatment that lowers obesity-related comorbidities. It also has significant physiological and nutritional consequences that can result in gastrointestinal complications and micronutrient deficiencies. After gastric bypass, clinical events that negatively affect nutritional status include malabsorption, dumping syndrome, kidney stones, altered intestinal bile acid availability, bowel obstruction, ulcers, gastroesophageal reflux, and bacterial overgrowth. Risk factors for poor nutritional status and excessive loss of lean body mass and bone include reduced dietary quality and inadequate intake, altered nutrient absorption, and poor patient compliance with nutrient supplementation. There are unique concerns in adolescents, older individuals, and individuals who become pregnant postoperatively. With careful management, health-care professionals can assist with long-term weight loss success and minimize the risk of acute and long-term nutrition complications after bariatric surgery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-061121-101547
2024-08-29
2025-02-06
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-061121-101547.html?itemId=/content/journals/10.1146/annurev-nutr-061121-101547&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdeen G, le Roux CW. 2016.. Mechanism underlying the weight loss and complications of Roux-en-Y gastric bypass. . Rev. Obes. Surg. 26:(2):41021
    [Crossref] [Google Scholar]
  2. 2.
    Adams TD, Meeks H, Fraser A, Davidson LE, Holmen J, et al. 2023.. Long-term all-cause and cause-specific mortality for four bariatric surgery procedures. . Obesity 31:(2):57485
    [Crossref] [Google Scholar]
  3. 3.
    Ahlin S, Peltonen M, Sjöholm K, Anveden Å, Jacobson P, et al. 2020.. Fracture risk after three bariatric surgery procedures in Swedish obese subjects: up to 26 years follow-up of a controlled intervention study. . J. Intern. Med. 287:(5):54657
    [Crossref] [Google Scholar]
  4. 4.
    Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y, et al. 2019.. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. . Gastroenterology 156:(4):104151
    [Crossref] [Google Scholar]
  5. 5.
    Andreu A, Jimenez A, Vidal J, Ibarzabal A, De Hollanda A, et al. 2020.. Bariatric support groups predicts long-term weight loss. . Obes. Surg. 30:(6):211823
    [Crossref] [Google Scholar]
  6. 6.
    Angrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N. 2015.. Bariatric surgery worldwide 2013. . Obes. Surg. 25:(10):182232
    [Crossref] [Google Scholar]
  7. 7.
    Apovian CM. 2016.. Obesity: definition, comorbidities, causes, and burden. . Am. J. Manag. Care 22:(Suppl. 7):17685
    [Google Scholar]
  8. 8.
    Apovian CM, Garvey WT, Ryan DH. 2015.. Challenging obesity: patient, provider, and expert perspectives on the roles of available and emerging nonsurgical therapies. . Obesity 23:(Suppl. 2):S126
    [Google Scholar]
  9. 9.
    Arterburn D, Wellman R, Emiliano A, Smith SR, Odegaard AO, et al. 2018.. Comparative effectiveness and safety of bariatric procedures for weight loss: a PCORnet cohort study. . Ann. Intern. Med. 169:(11):74150
    [Crossref] [Google Scholar]
  10. 10.
    Arterburn DE, Telem DA, Kushner RF, Courcoulas AP. 2020.. Benefits and risks of bariatric surgery in adults: a review. . JAMA 324:(9):87987
    [Crossref] [Google Scholar]
  11. 11.
    Bal BS, Finelli FC, Shope TR, Koch TR. 2012.. Nutritional deficiencies after bariatric surgery. . Nat. Rev. Endocrinol. 8:(9):54456
    [Crossref] [Google Scholar]
  12. 12.
    Batsis JA, Gill LE, Masutani RK, Adachi-Mejia AM, Blunt HB, et al. 2017.. Weight loss interventions in older adults with obesity: a systematic review of randomized controlled trials since 2005. . J. Am. Geriatr. Soc. 65:(2):25768
    [Crossref] [Google Scholar]
  13. 13.
    Brethaue SA. 2013.. Bariatric surgery in class I obesity (body mass index 30–35 kg/m2). . Surg. Obes. Relat. Dis. 9:(1):e110
    [Crossref] [Google Scholar]
  14. 14.
    Brolin RE, Gorman RC, Milgrim LM, Kenler HA. 1991.. Multivitamin prophylaxis in prevention of post-gastric bypass vitamin and mineral deficiencies. . Int. J. Obes. 15:(10):66167
    [Google Scholar]
  15. 15.
    Brolin RE, LaMarca LB, Kenler HA, Cody RP. 2002.. Malabsorptive gastric bypass in patients with superobesity. . J. Gastrointest. Surg. 6:(2):195205
    [Crossref] [Google Scholar]
  16. 16.
    Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, et al. 2004.. Bariatric surgery: a systematic review and meta-analysis. . JAMA 292:(14):172437
    [Crossref] [Google Scholar]
  17. 17.
    Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, et al. 2009.. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. . Am. J. Med. 122:(3):24856
    [Crossref] [Google Scholar]
  18. 18.
    Buchwald H, Ikramuddin S, Dorman RB, Schone JL, Dixon JB. 2011.. Management of the metabolic/bariatric surgery patient. . Am. J. Med. 124:(12):1099105
    [Crossref] [Google Scholar]
  19. 19.
    Busetto L, Dicker D, Azran C, Batterham RL, Farpour-Lambert N, et al. 2017.. Practical recommendations of the Obesity Management Task Force of the European Association for the Study of Obesity for the Post-Bariatric Surgery Medical Management. . Obes. Facts 10:(6):597632
    [Crossref] [Google Scholar]
  20. 20.
    Busetto L, Dixon J, De Luca M, Shikora S, Pories W, Angrisani L. 2014.. Bariatric surgery in class I obesity: a position statement from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). . Obes. Surg. 24:(4):487519
    [Crossref] [Google Scholar]
  21. 21.
    Calikoglu F, Barbaros U, Uzum AK, Tutuncu Y, Satman I. 2021.. The metabolic effects of pre-probiotic supplementation after Roux-en-Y gastric bypass (RYGB) surgery: a prospective, randomized controlled study. . Obes. Surg. 31:(1):21523
    [Crossref] [Google Scholar]
  22. 22.
    Camhi SM, Bray GA, Bouchard C, Greenway FL, Johnson WD, et al. 2011.. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences. . Obesity 19:(2):4028
    [Crossref] [Google Scholar]
  23. 23.
    Carrasco F, Basfi-Fer K, Rojas P, Csendes A, Papapietro K, et al. 2018.. Calcium absorption may be affected after either sleeve gastrectomy or Roux-en-Y gastric bypass in premenopausal women: a 2-y prospective study. . Am. J. Clin. Nutr. 108:(1):2432
    [Crossref] [Google Scholar]
  24. 24.
    Chaves Pereira de Holanda N, de Lima Carlos I, Chaves de Holanda Limeira C, Cesarino de Sousa D, Serra de Lima Junior FA, et al. 2022.. Fracture risk after bariatric surgery: a systematic literature review and meta-analysis. . Endocr. Pract. 28:(1):5869
    [Crossref] [Google Scholar]
  25. 25.
    Chikunguwo SM, Wolfe LG, Dodson P, Meador JG, Baugh N, et al. 2010.. Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. . Surg. Obes. Relat. Dis. 6:(3):25459
    [Crossref] [Google Scholar]
  26. 26.
    Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL. 2004.. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. . J. Clin. Endocrinol. Metab. 89:(3):106165
    [Crossref] [Google Scholar]
  27. 27.
    Coimbra VOR, Crovesy L, Ribeiro-Alves M, Faller ALK, Mattos F, Rosado EL. 2022.. Gut microbiota profile in adults undergoing bariatric surgery: a systematic review. . Nutrients 14:(23):4979
    [Crossref] [Google Scholar]
  28. 28.
    Coluzzi I, Raparelli L, Guarnacci L, Paone E, Del Genio G, et al. 2016.. Food intake and changes in eating behavior after laparoscopic sleeve gastrectomy. . Obes. Surg. 26:(9):205967
    [Crossref] [Google Scholar]
  29. 29.
    Courcoulas A, Coley RY, Clark JM, McBride CL, Cirelli E, et al. 2020.. Interventions and operations 5 years after bariatric surgery in a cohort from the US National Patient-Centered Clinical Research Network Bariatric Study. . JAMA Surg. 155:(3):194204
    [Crossref] [Google Scholar]
  30. 30.
    Courcoulas AP, King WC, Belle SH, Berk P, Flum DR, et al. 2018.. Seven-year weight trajectories and health outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) study. . JAMA Surg. 153:(5):42734
    [Crossref] [Google Scholar]
  31. 31.
    Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, et al. 2019.. Sarcopenia: revised European consensus on definition and diagnosis. . Age Ageing 48:(4):1631
    [Crossref] [Google Scholar]
  32. 32.
    Dallal RM, Bailey LA. 2006.. Ulcer disease after gastric bypass surgery. . Surg. Obes. Relat. Dis. 2:(4):45559
    [Crossref] [Google Scholar]
  33. 33.
    Davies NK, O'Sullivan JM, Plank LD, Murphy R. 2019.. Altered gut microbiome after bariatric surgery and its association with metabolic benefits: a systematic review. . Surg. Obes. Relat. Dis. 15:(4):65665
    [Crossref] [Google Scholar]
  34. 34.
    de Lima CVG, de Carvalho Costa MJ, da Conceição Rodrigues Gonçalves M, Soares Sousa B. 2013.. Micronutrient deficiencies in the pre-bariatric surgery. . Arq. Bras. Cir. Dig. 26:(Suppl. 1):6366
    [Crossref] [Google Scholar]
  35. 35.
    Debédat J, Clément K, Aron-Wisnewsky J. 2019.. Gut microbiota dysbiosis in human obesity: impact of bariatric surgery. . Curr. Obes. Rep. 8:(3):22942
    [Crossref] [Google Scholar]
  36. 36.
    Di Palma A, Liu B, Maeda A, Anvari M, Jackson T, Okrainec A. 2021.. Marginal ulceration following Roux-en-Y gastric bypass: risk factors for ulcer development, recurrence and need for revisional surgery. . Surg. Endosc. 35:(5):234753
    [Crossref] [Google Scholar]
  37. 37.
    Dijkhorst PJ, Boerboom AB, Janssen IMC, Swank DJ, Wiezer RMJ, et al. 2018.. Failed sleeve gastrectomy: single anastomosis duodenoileal bypass or Roux-en-Y gastric bypass? A multicenter cohort study. . Obes. Surg. 28:(12):383442
    [Crossref] [Google Scholar]
  38. 38.
    Dodell GB, Albu JB, Attia L, McGinty J, Pi-Sunyer FX, Laferrère B. 2012.. The bariatric surgery patient: lost to follow-up; from morbid obesity to severe malnutrition. . Endocr. Pract. 18:(2):e2125
    [Crossref] [Google Scholar]
  39. 39.
    Donato KA. 1998.. Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. . Arch. Intern. Med. 158:(17):185567
    [Crossref] [Google Scholar]
  40. 40.
    Elahmedi MO, Alqahtani AR. 2017.. Evidence base for multidisciplinary care of pediatric/adolescent bariatric surgery patients. . Curr. Obes. Rep. 6:(3):26677
    [Crossref] [Google Scholar]
  41. 41.
    Elms L, Moon RC, Varnadore S, Teixeira AF, Jawad MA. 2014.. Causes of small bowel obstruction after Roux-en-Y gastric bypass: a review of 2,395 cases at a single institution. . Surg. Endosc. 28:(5):162428
    [Crossref] [Google Scholar]
  42. 42.
    Faria SL, Faria OP, Buffington C, de Almeida Cardeal M, Rodrigues de Gouvêa H. 2012.. Energy expenditure before and after Roux-en-Y gastric bypass. . Obes. Surg. 22:(9):145055
    [Crossref] [Google Scholar]
  43. 43.
    Fayad L, Adam A, Schweitzer M, Cheskin LJ, Ajayi T, et al. 2019.. Endoscopic sleeve gastroplasty versus laparoscopic sleeve gastrectomy: a case-matched study. . Gastrointest. Endosc. 89:(4):78288
    [Crossref] [Google Scholar]
  44. 44.
    Fernandes R, Beserra BTS, Mocellin MC, Kuntz MGF, Da Rosa JS, et al. 2016.. Effects of prebiotic and synbiotic supplementation on inflammatory markers and anthropometric indices after Roux-en-Y gastric bypass: a randomized, triple-blind, placebo-controlled pilot study. . J. Clin. Gastroenterol. 50:(3):20817
    [Crossref] [Google Scholar]
  45. 45.
    Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, et al. 2008.. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. . J. Clin. Endocrinol. Metab. 93:(10):373540
    [Crossref] [Google Scholar]
  46. 46.
    Friedman AN, Wahed AS, Wang J, Courcoulas AP, Dakin G, et al. 2018.. Effect of bariatric surgery on CKD risk. . J. Am. Soc. Nephrol. 29:(4):1289300
    [Crossref] [Google Scholar]
  47. 47.
    Gao X, Zheng Q, Jiang X, Chen X, Liao Y, Pan Y. 2023.. The effect of diet quality on the risk of developing gestational diabetes mellitus: a systematic review and meta-analysis. . Front. Public Health 10::1062304
    [Crossref] [Google Scholar]
  48. 48.
    Garber AJ. 2011.. Incretin effects on β-cell function, replication, and mass: the human perspective. . Diabetes Care 34:(Suppl. 2):S25863
    [Crossref] [Google Scholar]
  49. 49.
    Gasmi A, Bjørklund G, Mujawdiya PK, Semenova Y, Peana M, et al. 2022.. Micronutrients deficiences in patients after bariatric surgery. . Eur. J. Nutr. 61:(1):5567
    [Crossref] [Google Scholar]
  50. 50.
    Georgiadou D, Sergentanis TN, Nixon A, Diamantis T, Tsigris C, Psaltopoulou T. 2014.. Efficacy and safety of laparoscopic mini gastric bypass. A systematic review. . Surg. Obes. Relat. Dis. 10:(5):98491
    [Crossref] [Google Scholar]
  51. 51.
    Goode LR, Brolin RE, Chowdhury HA, Shapses SA. 2004.. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. . Obes. Res. 12:(1):4047
    [Crossref] [Google Scholar]
  52. 52.
    Gowanlock Z, Lezhanska A, Conroy M, Crowther M, Tiboni M, et al. 2020.. Iron deficiency following bariatric surgery: a retrospective cohort study. . Blood Adv. 4:(15):363947
    [Crossref] [Google Scholar]
  53. 53.
    Hamdan K, Somers S, Chand M. 2011.. Management of late postoperative complications of bariatric surgery. . Br. J. Surg. 98:(10):134555
    [Crossref] [Google Scholar]
  54. 54.
    Hampl SE, Hassink SG, Skinner AC, Armstrong SC, Barlow SE, et al. 2023.. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity. . Pediatrics 151:(2):e2022060640
    [Crossref] [Google Scholar]
  55. 55.
    Hegarty C, Breen C, Fearon NM, Heneghan HM, Docherty NG, Gletsu Miller N. 2021.. Assessment of baseline rates of functional and absolute iron deficiency in bariatric surgery candidates: a retrospective study. . Surg. Obes. Relat. Dis. 17:(12):200914
    [Crossref] [Google Scholar]
  56. 56.
    Huber FA, Singhal V, Tuli S, Becetti I, López López AP, et al. 2023.. Two-year skeletal effects of sleeve gastrectomy in adolescents with obesity assessed with quantitative CT and MR spectroscopy. . Radiology 307:(5):e223256
    [Crossref] [Google Scholar]
  57. 57.
    Hunt SC, Davidson LE, Adams TD, Ranson L, McKinlay RD, et al. 2021.. Associations of visceral, subcutaneous, epicardial, and liver fat with metabolic disorders up to 14 years after weight loss surgery. . Metab. Syndr. Relat. Disord. 19:(2):8392
    [Crossref] [Google Scholar]
  58. 58.
    Jamil O, Gonzalez-Heredia R, Quadri P, Hassan C, Masrur M, et al. 2020.. Micronutrient deficiencies in laparoscopic sleeve gastrectomy. . Nutrients 12:(9):2896
    [Crossref] [Google Scholar]
  59. 59.
    Jaruvongvanich V, Vantanasiri K, Upala S, Ungprasert P. 2019.. Changes in bone mineral density and bone metabolism after sleeve gastrectomy: a systematic review and meta-analysis. . Surg. Obes. Relat. Dis. 15:(8):125260
    [Crossref] [Google Scholar]
  60. 60.
    Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, et al. 2022.. Tirzepatide once weekly for the treatment of obesity. . N. Engl. J. Med. 387:(3):20516
    [Crossref] [Google Scholar]
  61. 61.
    Jastreboff AM, Kaplan LM, Frías JP, Wu Q, Du Y, et al. 2023.. Triple-hormone-receptor agonist retatrutide for obesity—a phase 2 trial. . N. Engl. J. Med. 389:(6):51426
    [Crossref] [Google Scholar]
  62. 62.
    Jegatheesan P, Seyssel K, Stefanoni N, Rey V, Schneiter P, et al. 2020.. Effects of gastric bypass surgery on postprandial gut and systemic lipid handling. . Clin. Nutr. ESPEN 35::95102
    [Crossref] [Google Scholar]
  63. 63.
    Jiménez A, Casamitjana R, Flores L, Viaplana J, Corcelles R, et al. 2012.. Long-term effects of sleeve gastrectomy and Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus in morbidly obese subjects. . Ann. Surg. 256:(6):102329
    [Crossref] [Google Scholar]
  64. 64.
    Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, et al. 2013.. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. . Am. J. Clin. Nutr. 98:(1):1624
    [Crossref] [Google Scholar]
  65. 65.
    Kramer CK, Retnakaran M, Viana LV. 2024.. Effect of glucagon-like peptide-1 receptor agonists (GLP-1RA) on weight loss following bariatric treatment. . J. Clin. Endocrinol. Metab. 109::e163441
    [Crossref] [Google Scholar]
  66. 66.
    Krzizek EC, Brix JM, Stöckl A, Parzer V, Ludvik B. 2021.. Prevalence of micronutrient deficiency after bariatric surgery. . Obes. Facts 14:(2):197204
    [Crossref] [Google Scholar]
  67. 67.
    Laferrère B, Pattou F. 2018.. Weight-independent mechanisms of glucose control after Roux-en-Y gastric bypass. . Front. Endocrinol. 9::530
    [Crossref] [Google Scholar]
  68. 68.
    Laurenius A, Larsson I, Bueter M, Melanson KJ, Bosaeus I, et al. 2012.. Changes in eating behaviour and meal pattern following Roux-en-Y gastric bypass. . Int. J. Obes. 36:(3):34855
    [Crossref] [Google Scholar]
  69. 69.
    Leslie D, Wise E, Sheka A, Abdelwahab H, Irey R, et al. 2021.. Gastroesophageal reflux disease outcomes after vertical sleeve gastrectomy and gastric bypass. . Ann. Surg. 274:(4):64653
    [Crossref] [Google Scholar]
  70. 70.
    Lewis CA, de Jersey S, Hiatt J, Osland EJ, Hickman IJ. 2023.. Patient experiences with micronutrient and overall nutrition management after bariatric surgery: identifying facilitators and barriers to implementing care. . Surg. Obes. Relat. Dis. 19:(9):103040
    [Crossref] [Google Scholar]
  71. 71.
    Lieske JC, Mehta RA, Milliner DS, Rule AD, Bergstralh EJ, Sarr MG. 2015.. Kidney stones are common after bariatric surgery. . Kidney Int. 87:(4):83945
    [Crossref] [Google Scholar]
  72. 72.
    Lu CW, Chang YK, Chang HH, Kuo CS, Huang CT, et al. 2015.. Fracture risk after bariatric surgery: a 12-year nationwide cohort study. . Medicine 94:(48):e2087
    [Crossref] [Google Scholar]
  73. 73.
    Mahan LK, Raymond LJ. 2017.. Krause's Food & the Nutrition Care Process. St. Louis, MO:: Elsevier. , 14th ed..
    [Google Scholar]
  74. 74.
    Martinino A, Bhandari M, Abouelazayem M, Abdellatif A, Koshy RM, Mahawar K. 2022.. Perforated marginal ulcer after gastric bypass for obesity: a systematic review. . Surg. Obes. Relat. Dis. 18:(9):116875
    [Crossref] [Google Scholar]
  75. 75.
    Mechanick JI, Apovian C, Brethauer S, Garvey WT, Joffe AM, et al. 2020.. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. . Surg. Obes. Relat. Dis. 16:(2):175247
    [Crossref] [Google Scholar]
  76. 76.
    Mele C, Caputo M, Ferrero A, Daffara T, Cavigiolo B, et al. 2022.. Bone response to weight loss following bariatric surgery. . Front. Endocrinol. 13::921353
    [Crossref] [Google Scholar]
  77. 77.
    Moizé V, Andreu A, Flores L, Torres F, Ibarzabal A, et al. 2013.. Long-term dietary intake and nutritional deficiencies following sleeve gastrectomy or Roux-en-Y gastric bypass in a Mediterranean population. . J. Acad. Nutr. Diet. 113:(3):40010
    [Crossref] [Google Scholar]
  78. 78.
    Moizé V, Andreu A, Rodríguez L, Flores L, Ibarzabal A, et al. 2013.. Protein intake and lean tissue mass retention following bariatric surgery. . Clin. Nutr. 32:(4):55055
    [Crossref] [Google Scholar]
  79. 79.
    Moizé V, Deulofeu R, Torres F, de Osaba JM, Vidal J. 2011.. Nutritional intake and prevalence of nutritional deficiencies prior to surgery in a Spanish morbidly obese population. . Obes. Surg. 21:(9):138288
    [Crossref] [Google Scholar]
  80. 80.
    Molero J, Moizé V, Flores L, De Hollanda A, Jiménez A, Vidal J. 2020.. The impact of age on the prevalence of sarcopenic obesity in bariatric surgery candidates. . Obes. Surg. 30:(6):215864
    [Crossref] [Google Scholar]
  81. 81.
    Moon RC, Teixeira AF, Goldbach M, Jawad MA. 2014.. Management and treatment outcomes of marginal ulcers after Roux-en-Y gastric bypass at a single high volume bariatric center. . Surg. Obes. Relat. Dis. 10:(2):22934
    [Crossref] [Google Scholar]
  82. 82.
    Morales-Marroquin E, Hanson B, Greathouse L, de la Cruz-Munoz N, Messiah SE. 2020.. Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: a systematic review. . Obes. Rev. 21:(8):e13025
    [Crossref] [Google Scholar]
  83. 83.
    Moriconi D, Manca ML, Anselmino M, Rebelos E, Bellini R, et al. 2022.. Predictors of type 2 diabetes relapse after Roux-en-Y gastric bypass: a ten-year follow-up study. . Diabetes Metab. 48:(1):101282
    [Crossref] [Google Scholar]
  84. 84.
    Morínigo R, Moizé V, Musri M, Lacy AM, Navarro S, et al. 2006.. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. . J. Clin. Endocrinol. Metab. 91:(5):173540
    [Crossref] [Google Scholar]
  85. 85.
    Mousa A, Naqash A, Lim S. 2019.. Macronutrient and micronutrient intake during pregnancy: an overview of recent evidence. . Nutrients 11:(2):443
    [Crossref] [Google Scholar]
  86. 86.
    Mundi MS, Vallumsetla N, Davidson JB, McMahon MT, Bonnes SL, Hurt RT. 2017.. Use of home parenteral nutrition in post-bariatric surgery-related malnutrition. . J. Parenter. Enteral Nutr. 41:(7):111924
    [Crossref] [Google Scholar]
  87. 87.
    Nannipieri M, Mari A, Anselmino M, Baldi S, Barsotti E, et al. 2011.. The role of beta-cell function and insulin sensitivity in the remission of type 2 diabetes after gastric bypass surgery. . J. Clin. Endocrinol. Metab. 96:(9):e137279
    [Crossref] [Google Scholar]
  88. 88.
    Neff KJ, Olbers T, le Roux CW. 2013.. Bariatric surgery: the challenges with candidate selection, individualizing treatment and clinical outcomes. . BMC Med. 11::8
    [Crossref] [Google Scholar]
  89. 89.
    Newgard CB. 2012.. Interplay between lipids and branched-chain amino acids in development of insulin resistance. . Cell Metab. 15:(5):60614
    [Crossref] [Google Scholar]
  90. 90.
    Nuijten MAH, Eijsvogels TMH, Monpellier VM, Janssen IMC, Hazebroek EJ, Hopman MTE. 2022.. The magnitude and progress of lean body mass, fat-free mass, and skeletal muscle mass loss following bariatric surgery: a systematic review and meta-analysis. . Obes. Rev. 23:(1):e13370
    [Crossref] [Google Scholar]
  91. 91.
    Odstrcil EA, Martinez JG, Santa Ana CA, Xue B, Schneider RE, et al. 2010.. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. . Am. J. Clin. Nutr. 92:(4):70413
    [Crossref] [Google Scholar]
  92. 92.
    O'Kane M. 2021.. Nutritional consequences of bariatric surgery—prevention, detection and management. . Curr. Opin. Gastroenterol. 37:(2):13544
    [Crossref] [Google Scholar]
  93. 93.
    O'Kane M, Parretti HM, Pinkney J, Welbourn R, Hughes CA, et al. 2020.. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery—2020 update. . Obes. Rev. 21:(11):e13087
    [Crossref] [Google Scholar]
  94. 94.
    Olbers T, Beamish AJ, Gronowitz E, Flodmark CE, Dahlgren J, et al. 2017.. Laparoscopic Roux-en-Y gastric bypass in adolescents with severe obesity (AMOS): a prospective, 5-year, Swedish nationwide study. . Lancet Diabetes Endocrinol. 5:(3):17483
    [Crossref] [Google Scholar]
  95. 95.
    Ong AW, Myers SR. 2020.. Early postoperative small bowel obstruction: a review. . Am. J. Surg. 219:(3):53539
    [Crossref] [Google Scholar]
  96. 96.
    Paccou J, Martignène N, Lespessailles E, Babykina E, Pattou F, et al. 2020.. Gastric bypass but not sleeve gastrectomy increases risk of major osteoporotic fracture: French population-based cohort study. . J. Bone Miner. Res. 35:(8):141523
    [Crossref] [Google Scholar]
  97. 97.
    Paganelli FL, Luyer M, Hazelbag CM, Uh HW, Rogers MRC, et al. 2019.. Roux-Y gastric bypass and sleeve gastrectomy directly change gut microbiota composition independent of surgery type. . Sci. Rep. 9:(1):10979
    [Crossref] [Google Scholar]
  98. 98.
    Pan XH, Tan B, Chin YH, Lee ECZ, Kong G, Chong B, et al. 2024.. Efficacy and safety of tirzepatide, GLP-1 receptor agonists, and other weight loss drugs in overweight and obesity: a network meta-analysis. . Obesity 32::84056
    [Crossref] [Google Scholar]
  99. 99.
    Parrott J, Frank L, Rabena R, Craggs-Dino L, Isom KA, Greiman L. 2017.. American Society for Metabolic and Bariatric Surgery integrated health nutritional guidelines for the surgical weight loss patient 2016 update: micronutrients. . Surg. Obes. Relat. Dis. 13:(5):72741
    [Crossref] [Google Scholar]
  100. 100.
    Parrott JM, Craggs-Dino L, Faria SL, O'Kane M. 2020.. The optimal nutritional programme for bariatric and metabolic surgery. . Curr. Obes. Rep. 9:(3):32638
    [Crossref] [Google Scholar]
  101. 101.
    Patience N, Sheehan A, Cummings C, Patti ME. 2022.. Medical nutrition therapy and other approaches to management of post-bariatric hypoglycemia: a team-based approach. . Curr. Obes. Rep. 11:(4):27786
    [Crossref] [Google Scholar]
  102. 102.
    Phelps NH, Singleton RK, Zhou B, Heap RA, Mishra A, et al. (NCD Risk Factor Collab.). 2024.. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. . Lancet 403::102750
    [Crossref] [Google Scholar]
  103. 103.
    Popkin BM, Adair LS, Ng SW. 2012.. Global nutrition transition and the pandemic of obesity in developing countries. . Nutr. Rev. 70:(1):321
    [Crossref] [Google Scholar]
  104. 104.
    Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, et al. 2012.. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. . Endocrinology 153:(8):361319
    [Crossref] [Google Scholar]
  105. 105.
    Powanda MC. 1977.. Changes in body balances of nitrogen and other key nutrients: description and underlying mechanisms. . Am. J. Clin. Nutr. 30:(8):125468
    [Crossref] [Google Scholar]
  106. 106.
    Pratt JSA, Browne A, Browne NT, Bruzoni M, Cohen M, et al. 2018.. ASMBS pediatric metabolic and bariatric surgery guidelines, 2018. . Surg. Obes. Relat. Dis. 14:(7):882901
    [Crossref] [Google Scholar]
  107. 107.
    Prochaska M, Worcester E. 2020.. Risk factors for kidney stone formation following bariatric surgery. . Kidney360 1:(12):145661
    [Crossref] [Google Scholar]
  108. 108.
    Ramos MRZ, Felicidade I, de Oliveira Carlos L, Wagner NRF, Mantovani MS, et al. 2022.. Effect of probiotic supplementation on plasma metabolite profile after Roux-Y gastric bypass: a prospective, randomized, double-blind, placebo-controlled clinical trial. . Int. J. Obes. 46:(11):200612
    [Crossref] [Google Scholar]
  109. 109.
    Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, et al. 1988.. Reduced rate of energy expenditure as a risk factor for body-weight gain. . N. Engl. J. Med. 318:(8):46772
    [Crossref] [Google Scholar]
  110. 110.
    Reja D, Zhang C, Sarkar A. 2022.. Endoscopic bariatrics: current therapies and future directions. . Transl. Gastroenterol. Hepatol. 7::21
    [Crossref] [Google Scholar]
  111. 111.
    Ryder JR, Gross AC, Fox CK, Kaizer AM, Rudser KD, et al. 2018.. Factors associated with long-term weight-loss maintenance following bariatric surgery in adolescents with severe obesity. . Int. J. Obes. 42:(1):1027
    [Crossref] [Google Scholar]
  112. 112.
    Salehi M, Vella A, McLaughlin T, Patti ME. 2018.. Hypoglycemia after gastric bypass surgery: current concepts and controversies. . J. Clin. Endocrinol. Metab. 103:(8):281526
    [Crossref] [Google Scholar]
  113. 113.
    Salminen P, Grönroos S, Helmiö M, Hurme S, Juuti A, et al. 2022.. Effect of laparoscopic sleeve gastrectomy versus Roux-en-Y gastric bypass on weight loss, comorbidities, and reflux at 10 years in adult patients with obesity: the SLEEVEPASS randomized clinical trial. . JAMA Surg. 157:(8):65666
    [Crossref] [Google Scholar]
  114. 114.
    Sánchez-Pernaute A, Rubio Herrera MA, Pérez-Aguirre ME, Talavera P, Cabrerizo L, et al. 2010.. Single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). One to three-year follow-up. . Obes. Surg. 20:(12):172026
    [Crossref] [Google Scholar]
  115. 115.
    Sánchez-Pernaute A, Rubio Herrera MA, Pérez-Aguirre E, García Pérez JC, Cabrerizo L, et al. 2007.. Proximal duodenal-ileal end-to-side bypass with sleeve gastrectomy: proposed technique. . Obes. Surg. 17:(12):161418
    [Crossref] [Google Scholar]
  116. 116.
    Sánchez-Pernaute A, Rubio MA, Pérez N, Marcuello C, Torres A, Pérez-Aguirre E. 2020.. Single-anastomosis duodenoileal bypass as a revisional or second-step operation after sleeve gastrectomy. . Surg. Obes. Relat. Dis. 16:(10):149196
    [Crossref] [Google Scholar]
  117. 117.
    Schafer AL, Weaver CM, Black DM, Wheeler AL, Chang H, et al. 2015.. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. . J. Bone Miner. Res. 30:(8):137785
    [Crossref] [Google Scholar]
  118. 118.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, et al. 2017.. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. . N. Engl. J. Med. 376:(7):64151
    [Crossref] [Google Scholar]
  119. 119.
    Shapses SA, Mauro T, Brolin RE. 2015.. Nutritional concerns for bariatric surgery. . In Preventive Nutrition: The Comprehensive Guide for Health Professionals, ed. A Bendich, RJ Deckelbaum , pp. 43955. New York:: Humana Press/Springer. , 5th ed..
    [Google Scholar]
  120. 120.
    Shapses SA, Sukumar D. 2012.. Bone metabolism in obesity and weight loss. . Annu. Rev. Nutr. 32::287309
    [Crossref] [Google Scholar]
  121. 121.
    Sharma AM, Campbell-Scherer DL. 2017.. Redefining obesity: beyond the numbers. . Obesity 25:(4):66061
    [Crossref] [Google Scholar]
  122. 122.
    Shawe J, Ceulemans D, Akhter Z, Neff K, Hart K, et al. 2019.. Pregnancy after bariatric surgery: consensus recommendations for periconception, antenatal and postnatal care. . Obes. Rev. 20:(11):150722
    [Crossref] [Google Scholar]
  123. 123.
    Shoar S, Poliakin L, Rubenstein R, Saber AA. 2018.. Single anastomosis duodeno-ileal switch (SADIS): a systematic review of efficacy and safety. . Obes. Surg. 28:(1):10413
    [Crossref] [Google Scholar]
  124. 124.
    Shrewsbury VA, Baur LA, Nguyen B, Steinbeck KS. 2014.. Transition to adult care in adolescent obesity: a systematic review and why it is a neglected topic. . Int. J. Obes. 38:(4):47579
    [Crossref] [Google Scholar]
  125. 125.
    Silecchia G, Iossa A. 2021.. GERD and Barrett's esophagus as indications for revisional surgery after sleeve gastrectomy: experience of a bariatric center of excellence IFSO-EC and narrative review. . Expert Rev. Endocrinol. Metab. 16:(5):22935
    [Crossref] [Google Scholar]
  126. 126.
    Sinha N, Shieh A, Stein EM, Strain G, Schulman A, et al. 2011.. Increased PTH and 1.25(OH)2D levels associated with increased markers of bone turnover following bariatric surgery. . Obesity 19:(12):238893
    [Crossref] [Google Scholar]
  127. 127.
    Sjöström L. 2013.. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. . J. Intern. Med. 273:(3):21934
    [Crossref] [Google Scholar]
  128. 128.
    Sjöström L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, et al. 2014.. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. . JAMA 311:(22):2297304
    [Crossref] [Google Scholar]
  129. 129.
    Skelton JA, Irby MB, Grzywacz JG, Miller G. 2011.. Etiologies of obesity in children: nature and nurture. . Pediatr. Clin. North Am. 58:(6):133354
    [Crossref] [Google Scholar]
  130. 130.
    Slater C, Morris L, Ellison J, Syed AA. 2017.. Nutrition in pregnancy following bariatric surgery. . Nutrients 9:(12):1338
    [Crossref] [Google Scholar]
  131. 131.
    Smelt HJM, Heusschen L, Theel W, van Rutte PWJ, Nijboer T, et al. 2021.. Factors affecting patient adherence to multivitamin intake after bariatric surgery: a multicentre survey study from the patient's perspective. . Obes. Surg. 31:(10):431626
    [Crossref] [Google Scholar]
  132. 132.
    Smith KR, Papantoni A, Veldhuizen MG, Kamath V, Harris C, et al. 2020.. Taste-related reward is associated with weight loss following bariatric surgery. . J. Clin. Investig. 130:(8):437081
    [Google Scholar]
  133. 133.
    Snoek K, van de Woestijne N, Willemsen S, Klaassen R, Galjaard S, et al. 2022.. The impact of preconception gastric bypass surgery on maternal micronutrient status before and during pregnancy: a retrospective cohort study in the Netherlands between 2009 and 2019. . Nutrients 14:(4):736
    [Crossref] [Google Scholar]
  134. 134.
    Steenackers N, Van der Schueren B, Mertens A, Lannoo M, Grauwet T, et al. 2018.. Iron deficiency after bariatric surgery: What is the real problem?. Proc. Nutr. Soc. 77:(4):44555
    [Crossref] [Google Scholar]
  135. 135.
    Storm AC, Abu Dayyeh BK. 2019.. Endoscopic sleeve gastroplasty for obesity: defining the risk and reward after more than 1600 procedures. . Gastrointest. Endosc. 89:(6):113940
    [Crossref] [Google Scholar]
  136. 136.
    Stroh C, Meyer F, Manger T. 2014.. Beriberi, a severe complication after metabolic surgery—review of the literature. . Obes. Facts 7:(4):24652
    [Crossref] [Google Scholar]
  137. 137.
    Sukumar N, Rafnsson SB, Kandala NB, Bhopal R, Yajnik CS, Saravanan P. 2016.. Prevalence of vitamin B-12 insufficiency during pregnancy and its effect on offspring birth weight: a systematic review and meta-analysis. . Am. J. Clin. Nutr. 103:(5):123251
    [Crossref] [Google Scholar]
  138. 138.
    Surve A, Cottam D, Medlin W, Richards C, Belnap L, et al. 2020.. Long-term outcomes of primary single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). . Surg. Obes. Relat. Dis. 16:(11):163846
    [Crossref] [Google Scholar]
  139. 139.
    Sverdén E, Mattsson F, Sondén A, Leinsköld T, Tao W, et al. 2016.. Risk factors for marginal ulcer after gastric bypass surgery for obesity: a population-based cohort study. . Ann. Surg. 263:(4):73337
    [Crossref] [Google Scholar]
  140. 140.
    Syn NL, Lee PC, Kovalik JP, Tham KW, Ong HS, et al. 2020.. Associations of bariatric interventions with micronutrient and endocrine disturbances. . JAMA Netw. Open 3:(6):e205123
    [Crossref] [Google Scholar]
  141. 141.
    Tack J, Deloose E. 2014.. Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. . Best Pract. Res. Clin. Gastroenterol. 28:(4):74149
    [Crossref] [Google Scholar]
  142. 142.
    Tang TS, Funnell MM, Brown MB, Kurlander JE. 2010.. Self-management support in “real-world” settings: an empowerment-based intervention. . Patient Educ. Couns. 79:(2):17884
    [Crossref] [Google Scholar]
  143. 143.
    Torres A, Rubio MA, Ramos-Leví AM, Sánchez-Pernaute A. 2017.. Cardiovascular risk factors after single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S): a new effective therapeutic approach?. Curr. Atheroscler. Rep. 19:(12):58
    [Crossref] [Google Scholar]
  144. 144.
    Tu J, Wang Y, Jin L, Huang W. 2022.. Bile acids, gut microbiota and metabolic surgery. . Front. Endocrinol. 13::929530
    [Crossref] [Google Scholar]
  145. 145.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009.. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. . Sci. Transl. Med. 1:(6):6ra14
    [Crossref] [Google Scholar]
  146. 146.
    van Beek AP, Emous M, Laville M, Tack J. 2017.. Dumping syndrome after esophageal, gastric or bariatric surgery: pathophysiology, diagnosis, and management. . Obes. Rev. 18:(1):6885
    [Crossref] [Google Scholar]
  147. 147.
    Vanheule G, Ceulemans D, Vynckier A-K, De Mulder P, Van Den Driessche M, Devlieger R. 2021.. Micronutrient supplementation in pregnancies following bariatric surgery: a practical review for clinicians. . Obes. Surg. 31:(10):454254
    [Crossref] [Google Scholar]
  148. 148.
    Varma S, Baz W, Badine E, Nakhl F, McMullen H, et al. 2008.. Need for parenteral iron therapy after bariatric surgery. . Surg. Obes. Relat. Dis. 4:(6):71519
    [Crossref] [Google Scholar]
  149. 149.
    Velapati SR, Schroeder SE, Schroeder DR, Buttar NS, Mohamed Elfadil O, et al. 2021.. Use of home enteral nutrition in malnourished post-bariatric surgery patients. . J. Parenter. Enteral Nutr. 45:(5):102331
    [Crossref] [Google Scholar]
  150. 150.
    Wang Y, Zheng Y, Kuang L, Yang K, Xie J, et al. 2023.. Effects of probiotics in patients with morbid obesity undergoing bariatric surgery: a systematic review and meta-analysis. . Int. J. Obes. 47:(11):102942
    [Crossref] [Google Scholar]
  151. 151.
    Weng TC, Chang CH, Dong YH, Chang YC, Chuang LM. 2015.. Anaemia and related nutrient deficiencies after Roux-en-Y gastric bypass surgery: a systematic review and meta-analysis. . BMJ Open 5:(7):e006964
    [Crossref] [Google Scholar]
  152. 152.
    WHO (World Health Organ.). 2021.. Obesity and overweight. Fact Sheet , WHO, Geneva:. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
    [Google Scholar]
  153. 153.
    Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, et al. 2021.. Once-weekly semaglutide in adults with overweight or obesity. . N. Engl. J. Med. 384:(11):9891002
    [Crossref] [Google Scholar]
  154. 154.
    Woodard GA, Encarnacion B, Downey JR, Peraza J, Chong K, et al. 2009.. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. . J. Gastrointest. Surg. 13:(7):1198204
    [Crossref] [Google Scholar]
  155. 155.
    World Obes. Fed. 2023.. World obesity atlas 2023. Rep. , World Obes. Fed., London:. https://s3-eu-west-1.amazonaws.com/wof-files/World_Obesity_Atlas_2023_Report.pdf
    [Google Scholar]
  156. 156.
    Wu KC, Cao S, Weaver CM, King NJ, Patel S, et al. 2023.. Intestinal calcium absorption decreases after laparoscopic sleeve gastrectomy despite optimization of vitamin D status. . J. Clin. Endocrinol. Metab. 108:(2):35160
    [Crossref] [Google Scholar]
  157. 157.
    Wu KC, Cao S, Weaver CM, King NJ, Patel S, et al. 2022.. Prebiotic to improve calcium absorption in postmenopausal women after gastric bypass: a randomized controlled trial. . J. Clin. Endocrinol. Metab. 107:(4):105364
    [Crossref] [Google Scholar]
  158. 158.
    Yu EW. 2014.. Bone metabolism after bariatric surgery. . J. Bone Miner. Res. 29:(7):150718. Erratum . 2018.. J. Bone Miner. Res. 33:(5):959
    [Google Scholar]
  159. 159.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, et al. 2009.. Human gut microbiota in obesity and after gastric bypass. . PNAS 106:(7):236570
    [Crossref] [Google Scholar]
  160. 160.
    Zibellini J, Seimon RV, Lee CM, Gibson AA, Hsu MS, et al. 2015.. Does diet-induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. . J. Bone Miner. Res. 30:(12):216878
    [Crossref] [Google Scholar]
  161. 161.
    Ziegler O, Sirveaux MA, Brunaud L, Reibel N, Quilliot D. 2009.. Medical follow up after bariatric surgery: nutritional and drug issues. General recommendations for the prevention and treatment of nutritional deficiencies. . Diabetes Metab. 35:(6 Pt. 2):54457
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nutr-061121-101547
Loading
/content/journals/10.1146/annurev-nutr-061121-101547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error