1932

Abstract

The time of day that we eat is increasingly recognized as contributing as importantly to overall health as the amount or quality of the food we eat. The endogenous circadian clock has evolved to promote intake at optimal times when an organism is intended to be awake and active, but electric lights and abundant food allow eating around the clock with deleterious health outcomes. In this review, we highlight literature pertaining to the effects of food timing on health, beginning with animal models and then translation into human experiments. We emphasize the pitfalls and opportunities that technological advances bring in bettering understanding of eating behaviors and their association with health and disease. There is great promise for restricting the timing of food intake both in clinical interventions and in public health campaigns for improving health via nonpharmacological therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062122-014528
2024-08-29
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-062122-014528.html?itemId=/content/journals/10.1146/annurev-nutr-062122-014528&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, et al. 2002.. Circadian rhythms in isolated brain regions. . J. Neurosci. 22::35056
    [Crossref] [Google Scholar]
  2. 2.
    Abrahamson EE, Moore RY. 2001.. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. . Brain Res. 916::17291
    [Crossref] [Google Scholar]
  3. 3.
    Acosta-Galvan G, Yi CX, van der Vliet J, Jhamandas JH, Panula P, et al. 2011.. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. . PNAS 108::581318
    [Crossref] [Google Scholar]
  4. 4.
    Acosta-Rodriguez VA, de Groot MHM, Rijo-Ferreira F, Green CB, Takahashi JS. 2017.. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. . Cell Metab. 26::26777.e2
    [Crossref] [Google Scholar]
  5. 5.
    Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, et al. 2014.. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. . Cell Metab. 19::31930
    [Crossref] [Google Scholar]
  6. 6.
    Adlanmerini M, Krusen BM, Nguyen HCB, Teng CW, Woodie LN, et al. 2021.. REV-ERB nuclear receptors in the suprachiasmatic nucleus control circadian period and restrict diet-induced obesity. . Sci. Adv. 7::eabh2007
    [Crossref] [Google Scholar]
  7. 7.
    Ali MA, Kravitz AV. 2018.. Challenges in quantifying food intake in rodents. . Brain Res. 1693::18891
    [Crossref] [Google Scholar]
  8. 8.
    Allison KC, Hopkins CM, Ruggieri M, Spaeth AM, Ahima RS, et al. 2021.. Prolonged, controlled daytime versus delayed eating impacts weight and metabolism. . Curr. Biol. 31::65057.e3
    [Crossref] [Google Scholar]
  9. 9.
    Angeles-Castellanos M, Aguilar-Roblero R, Escobar C. 2004.. c-Fos expression in hypothalamic nuclei of food-entrained rats. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 286::R15865
    [Crossref] [Google Scholar]
  10. 10.
    Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. 2009.. Circadian timing of food intake contributes to weight gain. . Obesity 17::21002
    [Crossref] [Google Scholar]
  11. 11.
    Aschoff J, von Goetz C, Wildgruber C, Wever RA. 1986.. Meal timing in humans during isolation without time cues. . J. Biol. Rhythms 1::15162
    [Crossref] [Google Scholar]
  12. 12.
    Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. 2006.. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. . Diabetes 55::39097
    [Crossref] [Google Scholar]
  13. 13.
    Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. 2001.. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. . Neuron 30::52536
    [Crossref] [Google Scholar]
  14. 14.
    Balachandran JS, Thomson CC, Sumter DB, Shelgikar AV, Lachapelle P, et al. 2016.. ATS CORE Curriculum 2016: part I. Adult sleep medicine. . Ann. Am. Thorac. Soc. 13::54961
    [Crossref] [Google Scholar]
  15. 15.
    Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J, et al. 2012.. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. . PLOS ONE 7::e37150
    [Crossref] [Google Scholar]
  16. 16.
    Barclay JL, Shostak A, Leliavski A, Tsang AH, Johren O, et al. 2013.. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. . Am. J. Physiol. Endocrinol. Metab. 304::E105363
    [Crossref] [Google Scholar]
  17. 17.
    Baron KG, Reid KJ, Kern AS, Zee PC. 2011.. Role of sleep timing in caloric intake and BMI. . Obesity 19::137481
    [Crossref] [Google Scholar]
  18. 18.
    Bo S, Musso G, Beccuti G, Fadda M, Fedele D, et al. 2014.. Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study. . PLOS ONE 9::e108467
    [Crossref] [Google Scholar]
  19. 19.
    Brandenberger G, Follenius M, Goichot B, Saini J, Spiegel K, et al. 1994.. Twenty-four-hour profiles of plasma renin activity in relation to the sleep-wake cycle. . J. Hypertens. 12::27783
    [Crossref] [Google Scholar]
  20. 20.
    Bravo R, Cubero J, Franco L, Mesa M, Galan C, et al. 2014.. Body weight gain in rats by a high-fat diet produces chronodisruption in activity/inactivity circadian rhythm. . Chronobiol. Int. 31::36370
    [Crossref] [Google Scholar]
  21. 21.
    Bray MS, Ratcliffe WF, Grenett MH, Brewer RA, Gamble KL, Young ME. 2013.. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. . Int. J. Obes. 37::84352
    [Crossref] [Google Scholar]
  22. 22.
    Buckley TN, Omotola O, Archer LA, Rostron CR, Kamineni EP, et al. 2021.. High-fat feeding disrupts daily eating behavior rhythms in obesity-prone but not in obesity-resistant male inbred mouse strains. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 320::R61929
    [Crossref] [Google Scholar]
  23. 23.
    Bunger MK, Walisser JA, Sullivan R, Manley PA, Moran SM, et al. 2005.. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus. . Genesis 41::12232
    [Crossref] [Google Scholar]
  24. 24.
    Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, et al. 2000.. Mop3 is an essential component of the master circadian pacemaker in mammals. . Cell 103::100917
    [Crossref] [Google Scholar]
  25. 25.
    Burke TM, Markwald RR, McHill AW, Chinoy ED, Snider JA, et al. 2015.. Effects of caffeine on the human circadian clock in vivo and in vitro. . Sci. Transl. Med. 7::305ra146
    [Crossref] [Google Scholar]
  26. 26.
    Cajochen C. 2007.. Alerting effects of light. . Sleep Med. Rev. 11::45364
    [Crossref] [Google Scholar]
  27. 27.
    Cameron KM, Speakman JR. 2010.. The extent and function of ‘food grinding’ in the laboratory mouse (Mus musculus). . Lab. Anim. 44::298304
    [Crossref] [Google Scholar]
  28. 28.
    Carper D, Coue M, Laurens C, Langin D, Moro C. 2020.. Reappraisal of the optimal fasting time for insulin tolerance tests in mice. . Mol. Metab. 42::101058
    [Crossref] [Google Scholar]
  29. 29.
    Casiraghi L, Spiousas I, Dunster GP, McGlothlen K, Fernandez-Duque E, et al. 2021.. Moonstruck sleep: synchronization of human sleep with the moon cycle under field conditions. . Sci. Adv. 7::eabe0465
    [Crossref] [Google Scholar]
  30. 30.
    Cedernaes J, Huang W, Ramsey KM, Waldeck N, Cheng L, et al. 2019.. Transcriptional basis for rhythmic control of hunger and metabolism within the AgRP neuron. . Cell Metab. 29::107891.e5
    [Crossref] [Google Scholar]
  31. 31.
    Challet E. 2019.. The circadian regulation of food intake. . Nat. Rev. Endocrinol. 15::393405
    [Crossref] [Google Scholar]
  32. 32.
    Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. 2003.. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. . J. Neurosci. 23::10691702
    [Crossref] [Google Scholar]
  33. 33.
    Colles SL, Dixon JB, O'Brien PE. 2007.. Night eating syndrome and nocturnal snacking: association with obesity, binge eating and psychological distress. . Int. J. Obes. 31::172230
    [Crossref] [Google Scholar]
  34. 34.
    Cox KH, Takahashi JS. 2019.. Circadian clock genes and the transcriptional architecture of the clock mechanism. . J. Mol. Endocrinol. 63::R93102
    [Crossref] [Google Scholar]
  35. 35.
    Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, et al. 2019.. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. . Cell 177::896909.e20
    [Crossref] [Google Scholar]
  36. 36.
    Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, et al. 1999.. Stability, precision, and near-24-hour period of the human circadian pacemaker. . Science 284::217781
    [Crossref] [Google Scholar]
  37. 37.
    Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. 2000.. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. . Genes Dev. 14::295061
    [Crossref] [Google Scholar]
  38. 38.
    Dang F, Sun X, Ma X, Wu R, Zhang D, et al. 2016.. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. . Nat. Commun. 7::12696
    [Crossref] [Google Scholar]
  39. 39.
    Deacon S, Arendt J. 1994.. Posture influences melatonin concentrations in plasma and saliva in humans. . Neurosci. Lett. 167::19194
    [Crossref] [Google Scholar]
  40. 40.
    Depner CM, Melanson EL, McHill AW, Wright KP Jr. 2018.. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome. . PNAS 115::E5390-99
    [Crossref] [Google Scholar]
  41. 41.
    Dibner C, Schibler U, Albrecht U. 2010.. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. . Annu. Rev. Physiol. 72::51749
    [Crossref] [Google Scholar]
  42. 42.
    Drummond JC, Wilbraham A. 1939.. The Englishman's Food: A History of Five Centuries of English Diet. London:: J. Cape
    [Google Scholar]
  43. 43.
    Duffy JF, Wright KP Jr. 2005.. Entrainment of the human circadian system by light. . J. Biol. Rhythms 20::32638
    [Crossref] [Google Scholar]
  44. 44.
    Evans JA, Suen TC, Callif BL, Mitchell AS, Castanon-Cervantes O, et al. 2015.. Shell neurons of the master circadian clock coordinate the phase of tissue clocks throughout the brain and body. . BMC Biol. 13::43
    [Crossref] [Google Scholar]
  45. 45.
    Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, et al. 2010.. Light at night increases body mass by shifting the time of food intake. . PNAS 107::1866469
    [Crossref] [Google Scholar]
  46. 46.
    Froy O. 2007.. The relationship between nutrition and circadian rhythms in mammals. . Front. Neuroendocrinol. 28::6171
    [Crossref] [Google Scholar]
  47. 47.
    Garaulet M, Gomez-Abellan P, Alburquerque-Bejar JJ, Lee YC, Ordovas JM, Scheer FAJL. 2013.. Timing of food intake predicts weight loss effectiveness. . Int. J. Obes. 37::60411
    [Crossref] [Google Scholar]
  48. 48.
    Gill S, Panda S. 2015.. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. . Cell Metab. 22::78998
    [Crossref] [Google Scholar]
  49. 49.
    Greenwell BJ, Trott AJ, Beytebiere JR, Pao S, Bosley A, et al. 2019.. Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. . Cell Rep. 27::64957.e5
    [Crossref] [Google Scholar]
  50. 50.
    Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, et al. 2012.. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. . Cell Metab. 15::84860
    [Crossref] [Google Scholar]
  51. 51.
    Hazlerigg DG, Ebling FJ, Johnston JD. 2005.. Photoperiod differentially regulates gene expression rhythms in the rostral and caudal SCN. . Curr. Biol. 15::R44950
    [Crossref] [Google Scholar]
  52. 52.
    Henry FE, Sugino K, Tozer A, Branco T, Sternson SM. 2015.. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss. . eLife 4::e09800
    [Crossref] [Google Scholar]
  53. 53.
    Ho FK, Celis-Morales C, Gray SR, Demou E, Mackay D, et al. 2022.. Association and pathways between shift work and cardiovascular disease: a prospective cohort study of 238 661 participants from UK Biobank. . Int. J. Epidemiol. 51::57990
    [Crossref] [Google Scholar]
  54. 54.
    Hou T, Su W, Duncan MJ, Olga VA, Guo Z, Gong MC. 2021.. Time-restricted feeding protects the blood pressure circadian rhythm in diabetic mice. . PNAS 118::e2015873118
    [Crossref] [Google Scholar]
  55. 55.
    Hozer C, Perret M, Pavard S, Pifferi F. 2020.. Survival is reduced when endogenous period deviates from 24 h in a non-human primate, supporting the circadian resonance theory. . Sci. Rep. 10::18002
    [Crossref] [Google Scholar]
  56. 56.
    Hussain MM, Pan X. 2015.. Circadian regulation of macronutrient absorption. . J. Biol. Rhythms 30::45969
    [Crossref] [Google Scholar]
  57. 57.
    Ikeda H, Yong Q, Kurose T, Todo T, Mizunoya W, et al. 2007.. Clock gene defect disrupts light-dependency of autonomic nerve activity. . Biochem. Biophys. Res. Commun. 364::45763
    [Crossref] [Google Scholar]
  58. 58.
    Inagaki N, Honma S, Ono D, Tanahashi Y, Honma KI. 2007.. Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. . PNAS 104::766469
    [Crossref] [Google Scholar]
  59. 59.
    Isherwood CM, van der Veen DR, Hassanin H, Skene DJ, Johnston JD. 2023.. Human glucose rhythms and subjective hunger anticipate meal timing. . Curr. Biol. 33::132126.e3
    [Crossref] [Google Scholar]
  60. 60.
    Jabbur ML, Johnson CH. 2021.. Spectres of clock evolution: past, present, and yet to come. . Front. Physiol. 12::815847
    [Crossref] [Google Scholar]
  61. 61.
    Jakubowicz D, Barnea M, Wainstein J, Froy O. 2013.. High caloric intake at breakfast versus dinner differentially influences weight loss of overweight and obese women. . Obesity 21::250412
    [Crossref] [Google Scholar]
  62. 62.
    Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. 2019.. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. . Nutrients 11::1234
    [Crossref] [Google Scholar]
  63. 63.
    Jankovic N, Schmitting S, Stutz B, Kruger B, Buyken A, Alexy U. 2023.. Alignment between timing of ‘highest caloric intake’ and chronotype in relation to body composition during adolescence: the DONALD study. . Eur. J. Nutr. 63::25365
    [Crossref] [Google Scholar]
  64. 64.
    Jensen TL, Kiersgaard MK, Sorensen DB, Mikkelsen LF. 2013.. Fasting of mice: a review. . Lab. Anim. 47::22540
    [Crossref] [Google Scholar]
  65. 65.
    Jouffe C, Weger BD, Martin E, Atger F, Weger M, et al. 2022.. Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. . PNAS 119::e2200083119
    [Crossref] [Google Scholar]
  66. 66.
    Kant AK, Graubard BI. 2015.. Within-person comparison of eating behaviors, time of eating, and dietary intake on days with and without breakfast: NHANES 2005–2010. . Am. J. Clin. Nutr. 102::66170
    [Crossref] [Google Scholar]
  67. 67.
    Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS. 2011.. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. . PNAS 108::165762
    [Crossref] [Google Scholar]
  68. 68.
    Khalsa SB, Jewett ME, Cajochen C, Czeisler CA. 2003.. A phase response curve to single bright light pulses in human subjects. . J. Physiol. 549::94552
    [Crossref] [Google Scholar]
  69. 69.
    Kleitman N. 1939.. Sleep and Wakefulness as Alternating Phases in the Cycle of Existence. Chicago:: Univ. Chicago Press
    [Google Scholar]
  70. 70.
    Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, et al. 2007.. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. . Cell Metab. 6::41421
    [Crossref] [Google Scholar]
  71. 71.
    Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. 2006.. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. . Genes Dev. 20::186873
    [Crossref] [Google Scholar]
  72. 72.
    Kosmadopoulos A, Kervezee L, Boudreau P, Gonzales-Aste F, Vujovic N, et al. 2020.. Effects of shift work on the eating behavior of police officers on patrol. . Nutrients 12::999
    [Crossref] [Google Scholar]
  73. 73.
    Krauchi K, Wirz-Justice A. 1994.. Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. . Am. J. Physiol. 267::R81929
    [Google Scholar]
  74. 74.
    Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R. 2004.. Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. . J. Comp. Neurol. 468::36179
    [Crossref] [Google Scholar]
  75. 75.
    Krogh A. 1929.. The progress of physiology. . Am. J. Physiol. 90::24351
    [Crossref] [Google Scholar]
  76. 76.
    Laermans J, Vancleef L, Tack J, Depoortere I. 2015.. Role of the clock gene Bmal1 and the gastric ghrelin-secreting cell in the circadian regulation of the ghrelin-GOAT system. . Sci. Rep. 5::16748
    [Crossref] [Google Scholar]
  77. 77.
    Lamia KA, Storch KF, Weitz CJ. 2008.. Physiological significance of a peripheral tissue circadian clock. . PNAS 105::1517277
    [Crossref] [Google Scholar]
  78. 78.
    Landry GJ, Kent BA, Patton DF, Jaholkowski M, Marchant EG, Mistlberger RE. 2011.. Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats. . PLOS ONE 6::e24187
    [Crossref] [Google Scholar]
  79. 79.
    Liu D, Huang Y, Huang C, Yang S, Wei X, et al. 2022.. Calorie restriction with or without time-restricted eating in weight loss. . N. Engl. J. Med. 386::1495504
    [Crossref] [Google Scholar]
  80. 80.
    Liu Z, Huang M, Wu X, Shi G, Xing L, et al. 2014.. PER1 phosphorylation specifies feeding rhythm in mice. . Cell Rep. 7::150920
    [Crossref] [Google Scholar]
  81. 81.
    Manoogian ENC, Chow LS, Taub PR, Laferrere B, Panda S. 2022.. Time-restricted eating for the prevention and management of metabolic diseases. . Endocr. Rev. 43::40536
    [Crossref] [Google Scholar]
  82. 82.
    Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, et al. 2010.. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. . Nature 466::62731
    [Crossref] [Google Scholar]
  83. 83.
    Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, et al. 2013.. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. . PNAS 110::5695700
    [Crossref] [Google Scholar]
  84. 84.
    Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, et al. 2008.. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 294::R167583
    [Crossref] [Google Scholar]
  85. 85.
    Masis-Vargas A, Hicks D, Kalsbeek A, Mendoza J. 2019.. Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner. . Physiol. Rep. 7::e14257
    [Crossref] [Google Scholar]
  86. 86.
    Mason IC, Grimaldi D, Reid KJ, Warlick CD, Malkani RG, et al. 2022.. Light exposure during sleep impairs cardiometabolic function. . PNAS 119::e2113290119
    [Crossref] [Google Scholar]
  87. 87.
    Matikainen-Ankney BA, Earnest T, Ali M, Casey E, Wang JG, et al. 2021.. An open-source device for measuring food intake and operant behavior in rodent home-cages. . eLife 10::e66173
    [Crossref] [Google Scholar]
  88. 88.
    McHill AW, Brown LS, Phillips AJK, Barger LK, Garaulet M, et al. 2023.. Later energy intake relative to mathematically modeled circadian time is associated with higher percentage body fat. . Obesity 31:(Suppl. 1):5056
    [Crossref] [Google Scholar]
  89. 89.
    McHill AW, Czeisler CA, Phillips AJK, Keating L, Barger LK, et al. 2019.. Caloric and macronutrient intake differ with circadian phase and between lean and overweight young adults. . Nutrients 11::587
    [Crossref] [Google Scholar]
  90. 90.
    McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, et al. 2014.. Impact of circadian misalignment on energy metabolism during simulated nightshift work. . PNAS 111::173027
    [Crossref] [Google Scholar]
  91. 91.
    McHill AW, Phillips AJ, Czeisler CA, Keating L, Yee K, et al. 2017.. Later circadian timing of food intake is associated with increased body fat. . Am. J. Clin. Nutr. 106::121319
    [Crossref] [Google Scholar]
  92. 92.
    McHill AW, Thosar SS, Bowles NP, Butler MP, Ordaz-Johnson O, et al. 2024.. Obesity alters the circadian profiles of energy metabolism and glucose regulation in humans. . Obesity 32::31523
    [Crossref] [Google Scholar]
  93. 93.
    Mills JN, Minors DS, Waterhouse JM. 1978.. Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms. . J. Physiol. 285::45570
    [Crossref] [Google Scholar]
  94. 94.
    Mistlberger RE. 2011.. Neurobiology of food anticipatory circadian rhythms. . Physiol. Behav. 104::53545
    [Crossref] [Google Scholar]
  95. 95.
    Moog F. 1948.. Gulliver was a bad biologist. . Sci. Am. 179::5255
    [Crossref] [Google Scholar]
  96. 96.
    Morris CJ, Garcia JI, Myers S, Yang JN, Trienekens N, Scheer FAJL. 2015.. The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis. . Obesity 23::205358
    [Crossref] [Google Scholar]
  97. 97.
    Mukherji A, Kobiita A, Chambon P. 2015.. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. . PNAS 112::E668390
    [Google Scholar]
  98. 98.
    Nagai K, Nishio T, Nakagawa H, Nakamura S, Fukuda Y. 1978.. Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. . Brain Res. 142::38489
    [Crossref] [Google Scholar]
  99. 99.
    Narishige S, Kuwahara M, Shinozaki A, Okada S, Ikeda Y, et al. 2014.. Effects of caffeine on circadian phase, amplitude and period evaluated in cells in vitro and peripheral organs in vivo in PER2::LUCIFERASE mice. . Br. J. Pharmacol. 171::585869
    [Crossref] [Google Scholar]
  100. 100.
    Nie Z, Xu J, Cheng Y, Li Z, Zhang R, et al. 2023.. Effects of time-restricted eating with different eating windows on human metabolic health: pooled analysis of existing cohorts. . Diabetol. Metab. Syndr. 15::209
    [Crossref] [Google Scholar]
  101. 101.
    Oike H, Sakurai M, Ippoushi K, Kobori M. 2015.. Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work. . Biochem. Biophys. Res. Commun. 465::55661
    [Crossref] [Google Scholar]
  102. 102.
    Oosterman JE, Kalsbeek A, la Fleur SE, Belsham DD. 2015.. Impact of nutrients on circadian rhythmicity. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 308::R33750
    [Crossref] [Google Scholar]
  103. 103.
    Opperhuizen AL, Stenvers DJ, Jansen RD, Foppen E, Fliers E, Kalsbeek A. 2017.. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. . Diabetologia 60::133343
    [Crossref] [Google Scholar]
  104. 104.
    Orozco-Solis R, Sassone-Corsi P. 2014.. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. . Neuroscience 264::7687
    [Crossref] [Google Scholar]
  105. 105.
    Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. 1998.. Resonating circadian clocks enhance fitness in cyanobacteria. . PNAS 95::866064
    [Crossref] [Google Scholar]
  106. 106.
    Palmisano BT, Stafford JM, Pendergast JS. 2017.. High-fat feeding does not disrupt daily rhythms in female mice because of protection by ovarian hormones. . Front. Endocrinol. 8::44
    [Crossref] [Google Scholar]
  107. 107.
    Paoli A, Tinsley G, Bianco A, Moro T. 2019.. The influence of meal frequency and timing on health in humans: the role of fasting. . Nutrients 11::719
    [Crossref] [Google Scholar]
  108. 108.
    Parsons MJ, Moffitt TE, Gregory AM, Goldman-Mellor S, Nolan PM, et al. 2014.. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. . Int. J. Obes. 39::84248
    [Crossref] [Google Scholar]
  109. 109.
    Pendergast JS, Branecky KL, Yang W, Ellacott KL, Niswender KD, Yamazaki S. 2013.. High-fat diet acutely affects circadian organisation and eating behavior. . Eur. J. Neurosci. 37::135056
    [Crossref] [Google Scholar]
  110. 110.
    Pereira Marot L, Tibiletti Balieiro LC, do Vale Cardoso Lopes T, Rosa DE, Wright KP Jr., et al. 2023.. Meal timing variability of rotating shift workers throughout a complete shift cycle and its effect on daily energy and macronutrient intake: a field study. . Eur. J. Nutr. 62::170718
    [Crossref] [Google Scholar]
  111. 111.
    Pittendrigh CS, Bruce VG. 1959.. Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. . In Photoperiodism and Related Phenomena in Plants and Animals, ed. RB Withrow , pp. 475505. Washington, DC:: Am. Assoc. Adv. Sci.
    [Google Scholar]
  112. 112.
    Pittendrigh CS, Minis DH. 1972.. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. . PNAS 69::153739
    [Crossref] [Google Scholar]
  113. 113.
    Pivovarova O, Jurchott K, Rudovich N, Hornemann S, Ye L, et al. 2015.. Changes of dietary fat and carbohydrate content alter central and peripheral clock in humans. . J. Clin. Endocrinol. Metab. 100::2291302
    [Crossref] [Google Scholar]
  114. 114.
    Polonsky KS, Given BD, Van Cauter E. 1988.. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. . J. Clin. Investig. 81::44248
    [Crossref] [Google Scholar]
  115. 115.
    Ribas-Latre A, Eckel-Mahan K. 2016.. Interdependence of nutrient metabolism and the circadian clock system: importance for metabolic health. . Mol. Metab. 5::13352
    [Crossref] [Google Scholar]
  116. 116.
    Rubio WB, Cortopassi MD, Ramachandran D, Walker SJ, Balough EM, et al. 2023.. Not so fast: paradoxically increased variability in the glucose tolerance test due to food withdrawal in continuous glucose-monitored mice. . Mol. Metab. 77::101795
    [Crossref] [Google Scholar]
  117. 117.
    Ruckenstein M. 2015.. Uncovering everyday rhythms and patterns: food tracking and new forms of visibility and temporality in health care. . Stud. Health Technol. Inform. 215::2840
    [Google Scholar]
  118. 118.
    Ruddick-Collins LC, Flanagan A, Johnston JD, Morgan PJ, Johnstone AM. 2022.. Circadian rhythms in resting metabolic rate account for apparent daily rhythms in the thermic effect of food. . J. Clin. Endocrinol. Metab. 107::e70815
    [Crossref] [Google Scholar]
  119. 119.
    Ruddick-Collins LC, Morgan PJ, Fyfe CL, Filipe JAN, Horgan GW, et al. 2022.. Timing of daily calorie loading affects appetite and hunger responses without changes in energy metabolism in healthy subjects with obesity. . Cell Metab. 34::147285.e6
    [Crossref] [Google Scholar]
  120. 120.
    Rynders CA, Morton SJ, Bessesen DH, Wright KP Jr., Broussard JL. 2020.. Circadian rhythm of substrate oxidation and hormonal regulators of energy balance. . Obesity 28:(Suppl. 1):S10413
    [Google Scholar]
  121. 121.
    Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C. 2010.. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. . Endocrinology 151::101929
    [Crossref] [Google Scholar]
  122. 122.
    Sayar-Atasoy N, Aklan I, Yavuz Y, Laule C, Kim H, et al. 2024.. AgRP neurons encode circadian feeding time. . Nat. Neurosci. 27::10215
    [Crossref] [Google Scholar]
  123. 123.
    Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. 2009.. Adverse metabolic and cardiovascular consequences of circadian misalignment. . PNAS 106::445358
    [Crossref] [Google Scholar]
  124. 124.
    Scheer FAJL, Morris CJ, Shea SA. 2013.. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. . Obesity 21::42123
    [Crossref] [Google Scholar]
  125. 125.
    Schiaffino S, Blaauw B, Dyar KA. 2016.. The functional significance of the skeletal muscle clock: lessons from Bmal1 knockout models. . Skelet. Muscle 6::33
    [Crossref] [Google Scholar]
  126. 126.
    Schibler U, Gotic I, Saini C, Gos P, Curie T, et al. 2015.. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. . Cold Spring Harb. Symp. Quant. Biol. 80::22332
    [Crossref] [Google Scholar]
  127. 127.
    Shamsi NA, Salkeld MD, Rattanatray L, Voultsios A, Varcoe TJ, et al. 2014.. Metabolic consequences of timed feeding in mice. . Physiol. Behav. 128::188201
    [Crossref] [Google Scholar]
  128. 128.
    Shan Z, Li Y, Zong G, Guo Y, Li J, et al. 2018.. Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: results from two large US cohorts of female nurses. . BMJ 363::k4641
    [Crossref] [Google Scholar]
  129. 129.
    Shostak A, Meyer-Kovac J, Oster H. 2013.. Circadian regulation of lipid mobilization in white adipose tissues. . Diabetes 62::2195203
    [Crossref] [Google Scholar]
  130. 130.
    Skene DJ, Skornyakov E, Chowdhury NR, Gajula RP, Middleton B, et al. 2018.. Separation of circadian- and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism. . PNAS 115::782530
    [Crossref] [Google Scholar]
  131. 131.
    Somers VK, Dyken ME, Mark AL, Abboud FM. 1993.. Sympathetic-nerve activity during sleep in normal subjects. . N. Engl. J. Med. 328::3037
    [Crossref] [Google Scholar]
  132. 132.
    Spengler CM, Czeisler CA, Shea SA. 2000.. An endogenous circadian rhythm of respiratory control in humans. . J. Physiol. 526::68394
    [Crossref] [Google Scholar]
  133. 133.
    Starnes AN, Jones JR. 2023.. Inputs and outputs of the mammalian circadian clock. . Biology 12::508
    [Crossref] [Google Scholar]
  134. 134.
    Steckler R, Tamir S, Gutman R. 2021.. Mice held at an environmental photic cycle oscillating at their tau-like period length do not show the high-fat diet-induced obesity that develops under the 24-hour photic cycle. . Chronobiol. Int. 38::598612
    [Crossref] [Google Scholar]
  135. 135.
    Stephan FK. 2002.. The “other” circadian system: food as a zeitgeber. . J. Biol. Rhythms 17::28492
    [Crossref] [Google Scholar]
  136. 136.
    Stephan FK, Zucker I. 1972.. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. . PNAS 69::158386
    [Crossref] [Google Scholar]
  137. 137.
    Sternson SM, Eiselt AK. 2017.. Three pillars for the neural control of appetite. . Annu. Rev. Physiol. 79::40123
    [Crossref] [Google Scholar]
  138. 138.
    Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. 2001.. Entrainment of the circadian clock in the liver by feeding. . Science 291::49093
    [Crossref] [Google Scholar]
  139. 139.
    Stumbo PJ. 2013.. New technology in dietary assessment: a review of digital methods in improving food record accuracy. . Proc. Nutr. Soc. 72::7076
    [Crossref] [Google Scholar]
  140. 140.
    Sun M, Feng W, Wang F, Li P, Li Z, et al. 2018.. Meta-analysis on shift work and risks of specific obesity types. . Obes. Rev. 19::2840
    [Crossref] [Google Scholar]
  141. 141.
    Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. 2018.. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. . Cell Metab. 27::121221.e3
    [Crossref] [Google Scholar]
  142. 142.
    Thomson CA, Giuliano A, Rock CL, Ritenbaugh CK, Flatt SW, et al. 2003.. Measuring dietary change in a diet intervention trial: comparing food frequency questionnaire and dietary recalls. . Am. J. Epidemiol. 157::75462
    [Crossref] [Google Scholar]
  143. 143.
    Tillotson JE. 2004.. America's obesity: conflicting public policies, industrial economic development, and unintended human consequences. . Annu. Rev. Nutr. 24::61743
    [Crossref] [Google Scholar]
  144. 144.
    Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, et al. 2005.. Obesity and metabolic syndrome in circadian Clock mutant mice. . Science 308::104345
    [Crossref] [Google Scholar]
  145. 145.
    van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, et al. 1999.. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. . Nature 398::62730
    [Crossref] [Google Scholar]
  146. 146.
    Vetter C. 2020.. Circadian disruption: What do we actually mean?. Eur. J. Neurosci. 51::53150
    [Crossref] [Google Scholar]
  147. 147.
    Vujovic N, Gooley JJ, Jhou TC, Saper CB. 2015.. Projections from the subparaventricular zone define four channels of output from the circadian timing system. . J. Comp. Neurol. 523::271437
    [Crossref] [Google Scholar]
  148. 148.
    Vujovic N, Piron MJ, Qian J, Chellappa SL, Nedeltcheva A, et al. 2022.. Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity. . Cell Metab. 34::148698.e7
    [Crossref] [Google Scholar]
  149. 149.
    Walbeek TJ, Harrison EM, Gorman MR, Glickman GL. 2021.. Naturalistic intensities of light at night: a review of the potent effects of very dim light on circadian responses and considerations for translational research. . Front. Neurol. 12::625334
    [Crossref] [Google Scholar]
  150. 150.
    Wang Y, Song L, Liu M, Ge R, Zhou Q, et al. 2018.. A proteomics landscape of circadian clock in mouse liver. . Nat. Commun. 9::1553
    [Crossref] [Google Scholar]
  151. 151.
    Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, et al. 2017.. Meal timing regulates the human circadian system. . Curr. Biol. 27::176875
    [Crossref] [Google Scholar]
  152. 152.
    Weibel L, Follenius M, Spiegel K, Ehrhart J, Brandenberger G. 1995.. Comparative effect of night and daytime sleep on the 24-hour cortisol secretory profile. . Sleep 18::54956
    [Google Scholar]
  153. 153.
    Welsh DK, Takahashi JS, Kay SA. 2010.. Suprachiasmatic nucleus: cell autonomy and network properties. . Annu. Rev. Physiol. 72::55177
    [Crossref] [Google Scholar]
  154. 154.
    White DP, Weil JV, Zwillich CW. 1985.. Metabolic rate and breathing during sleep. . J. Appl. Physiol. 59::38491
    [Crossref] [Google Scholar]
  155. 155.
    Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, et al. 2020.. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. . Cell Metab. 31::92104.e5
    [Crossref] [Google Scholar]
  156. 156.
    Xie X, Kukino A, Calcagno HE, Berman AM, Garner JP, Butler MP. 2020.. Natural food intake patterns have little synchronizing effect on peripheral circadian clocks. . BMC Biol. 18::160
    [Crossref] [Google Scholar]
  157. 157.
    Xie Z, Sun Y, Ye Y, Hu D, Zhang H, et al. 2022.. Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. . Nat. Commun. 13::1003
    [Crossref] [Google Scholar]
  158. 158.
    Yamajuku D, Inagaki T, Haruma T, Okubo S, Kataoka Y, et al. 2012.. Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. . Sci. Rep. 2::439
    [Crossref] [Google Scholar]
  159. 159.
    Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, et al. 2009.. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. . Endocrinology 150::215360
    [Crossref] [Google Scholar]
  160. 160.
    Zarrinpar A, Chaix A, Panda S. 2016.. Daily eating patterns and their impact on health and disease. . Trends Endocrinol. Metab. 27::6983
    [Crossref] [Google Scholar]
  161. 161.
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. 2014.. A circadian gene expression atlas in mammals: implications for biology and medicine. . PNAS 111::1621924
    [Crossref] [Google Scholar]
  162. 162.
    Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, et al. 2001.. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. . Cell 105::68394
    [Crossref] [Google Scholar]
  163. 163.
    Zitting KM, Vujovic N, Yuan RK, Isherwood CM, Medina JE, et al. 2018.. Human resting energy expenditure varies with circadian phase. . Curr. Biol. 28::368590.e3
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nutr-062122-014528
Loading
/content/journals/10.1146/annurev-nutr-062122-014528
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error