1932

Abstract

Cancer cachexia is a complex systemic wasting syndrome. Nutritional mechanisms that span energy intake, nutrient metabolism, body composition, and energy balance may be impacted by, and may contribute to, the development of cachexia. To date, clinical management of cachexia remains elusive. Leaning on discoveries and novel methodologies from other fields of research may bolster new breakthroughs that improve nutritional management and clinical outcomes. Characteristics that compare and contrast cachexia and obesity may reveal opportunities for cachexia research to adopt methodology from the well-established field of obesity research. This review outlines the known nutritional mechanisms and gaps in the knowledge surrounding cancer cachexia. In parallel, we present how obesity may be a different side of the same coin and how obesity research has tackled similar research questions. We present insights into how cachexia research may utilize nutritional methodology to expand our understanding of cachexia to improve definitions and clinical care in future directions for the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062122-015646
2024-08-29
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-062122-015646.html?itemId=/content/journals/10.1146/annurev-nutr-062122-015646&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdul-Ghani MA, Lyssenko V, Tuomi T, DeFronzo RA, Groop L. 2009.. Fasting versus postload plasma glucose concentration and the risk for future type 2 diabetes: results from the Botnia Study. . Diabetes Care 32::28186
    [Crossref] [Google Scholar]
  2. 2.
    Acosta A, Camilleri M, Shin A, Vazquez-Roque MI, Iturrino J, et al. 2015.. Quantitative gastrointestinal and psychological traits associated with obesity and response to weight-loss therapy. . Gastroenterology 148::53746.e4
    [Crossref] [Google Scholar]
  3. 3.
    Adrian T, Ferri G, Bacarese-Hamilton A, Fuessl H, Polak J, Bloom S. 1985.. Human distribution and release of a putative new gut hormone, peptide YY. . Gastroenterology 89::107077
    [Crossref] [Google Scholar]
  4. 4.
    Akbarali HI, Muchhala KH, Jessup DK, Cheatham S. 2022.. Chemotherapy induced gastrointestinal toxicities. . Adv. Cancer Res. 155::13166
    [Crossref] [Google Scholar]
  5. 5.
    All Us Res. Program Investig. 2019.. The “All of Us” Research Program. . N. Engl. J. Med. 381::66876
    [Crossref] [Google Scholar]
  6. 6.
    Al-Sawaf O, Weiss J, Skrzypski M, Lam JM, Karasaki T, et al. 2023.. Body composition and lung cancer-associated cachexia in TRACERx. . Nat. Med. 29::84658
    [Crossref] [Google Scholar]
  7. 7.
    Álvarez R, Carrato A, Adeva J, Alés I, Prados S, et al. 2018.. Management of hyperbilirubinaemia in pancreatic cancer patients. . Eur. J. Cancer 94::2636
    [Crossref] [Google Scholar]
  8. 8.
    Alves MJ, Figuerêdo RG, Azevedo FF, Cavallaro DA, Neto NIP, et al. 2017.. Adipose tissue fibrosis in human cancer cachexia: the role of TGFβ pathway. . BMC Cancer 17::190
    [Crossref] [Google Scholar]
  9. 9.
    Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. 2014.. Cancer cachexia: understanding the molecular basis. . Nat. Rev. Cancer 14::75462
    [Crossref] [Google Scholar]
  10. 10.
    Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. 2023.. Cancer-associated cachexia—understanding the tumour macroenvironment and microenvironment to improve management. . Nat. Rev. Clin. Oncol. 20::25064
    [Crossref] [Google Scholar]
  11. 11.
    Arruda AP, Milanski M, Romanatto T, Solon C, Coope A, et al. 2010.. Hypothalamic actions of tumor necrosis factor α provide the thermogenic core for the wastage syndrome in cachexia. . Endocrinology 151::68394
    [Crossref] [Google Scholar]
  12. 12.
    Asp ML, Tian M, Wendel AA, Belury MA. 2010.. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. . Int. J. Cancer 126::75663
    [Crossref] [Google Scholar]
  13. 13.
    Barreto R, Waning DL, Gao H, Liu Y, Zimmers TA, Bonetto A. 2016.. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. . Oncotarget 7::4344260
    [Crossref] [Google Scholar]
  14. 14.
    Battaglia GM, Zheng D, Hickner RC, Houmard JA. 2012.. Effect of exercise training on metabolic flexibility in response to a high-fat diet in obese individuals. . Am. J. Physiol. Endocrinol. Metab. 303::E144045
    [Crossref] [Google Scholar]
  15. 15.
    Beaudart C, McCloskey E, Bruyère O, Cesari M, Rolland Y, et al. 2016.. Sarcopenia in daily practice: assessment and management. . BMC Geriatr. 16::170
    [Crossref] [Google Scholar]
  16. 16.
    Beaudart C, Rolland Y, Cruz-Jentoft AJ, Bauer JM, Sieber C, et al. 2019.. Assessment of muscle function and physical performance in daily clinical practice: a position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). . Calcif. Tissue Int. 105::114
    [Crossref] [Google Scholar]
  17. 17.
    Bennani-Baiti N, Walsh D. 2009.. What is cancer anorexia-cachexia syndrome? A historical perspective. . J. R. Coll. Physicians Edinb. 39::25762
    [Google Scholar]
  18. 18.
    Biltz NK, Collins KH, Shen KC, Schwartz K, Harris CA, Meyer GA. 2020.. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. . J. Physiol. 598::266983
    [Crossref] [Google Scholar]
  19. 19.
    Bindels LB, Beck R, Schakman O, Martin JC, De Backer F, et al. 2012.. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. . PLOS ONE 7::e37971
    [Crossref] [Google Scholar]
  20. 20.
    Bindels LB, Neyrinck AM, Claus SP, Le Roy CI, Grangette C, et al. 2016.. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. . ISME J. 10::145670
    [Crossref] [Google Scholar]
  21. 21.
    Bindels LB, Neyrinck AM, Loumaye A, Catry E, Walgrave H, et al. 2018.. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. . Oncotarget 9::1822438
    [Crossref] [Google Scholar]
  22. 22.
    Bobbo VC, Engel DF, Jara CP, Mendes NF, Haddad-Tovolli R, et al. 2021.. Interleukin-6 actions in the hypothalamus protects against obesity and is involved in the regulation of neurogenesis. . J. Neuroinflammation 18::192
    [Crossref] [Google Scholar]
  23. 23.
    Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, et al. 2012.. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. . Am. J. Physiol. Endocrinol. Metab. 303::E41021
    [Crossref] [Google Scholar]
  24. 24.
    Borner T, Liberini CG, Lutz TA, Riediger T. 2018.. Brainstem GLP-1 signalling contributes to cancer anorexia-cachexia syndrome in the rat. . Neuropharmacology 131::28290
    [Crossref] [Google Scholar]
  25. 25.
    Bossola M, Luciani G, Giungi S, Tazza L. 2010.. Anorexia, fatigue, and plasma interleukin-6 levels in chronic hemodialysis patients. . Renal Failure 32::104954
    [Crossref] [Google Scholar]
  26. 26.
    Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, et al. 2011.. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic–pituitary–adrenal axis. . J. Exp. Med. 208::244963
    [Crossref] [Google Scholar]
  27. 27.
    Broussard SR, McCusker RH, Novakofski JE, Strle K, Shen WH, et al. 2003.. Cytokine-hormone interactions: Tumor necrosis factor α impairs biologic activity and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. . Endocrinology 144::298896
    [Crossref] [Google Scholar]
  28. 28.
    Brown JL, Rosa-Caldwell ME, Lee DE, Blackwell TA, Brown LA, et al. 2017.. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. . J. Cachexia Sarcopenia Muscle 8::92638
    [Crossref] [Google Scholar]
  29. 29.
    Camilleri M, Parkman HP, Shafi MA, Abell TL, Gerson L. 2013.. Clinical guideline: management of gastroparesis. . Am. J. Gastroenterol. 108::1837
    [Crossref] [Google Scholar]
  30. 30.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, et al. 2007.. Metabolic endotoxemia initiates obesity and insulin resistance. . Diabetes 56::176172
    [Crossref] [Google Scholar]
  31. 31.
    Chaston TB, Dixon J, O'Brien PE. 2007.. Changes in fat-free mass during significant weight loss: a systematic review. . Int. J. Obes. 31::74350
    [Crossref] [Google Scholar]
  32. 32.
    Chitti SV, Fonseka P, Mathivanan S. 2018.. Emerging role of extracellular vesicles in mediating cancer cachexia. . Biochem. Soc. Trans. 46::112936
    [Crossref] [Google Scholar]
  33. 33.
    Cho YK, Jung HN, Kim EH, Lee MJ, Park J-Y, et al. 2023.. Association between sarcopenic obesity and poor muscle quality based on muscle quality map and abdominal computed tomography. . Obesity 31::154757
    [Crossref] [Google Scholar]
  34. 34.
    Cimino I, Kim H, Tung YL, Pedersen K, Rimmington D, et al. 2021.. Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15. . PNAS 118::e2106868118
    [Crossref] [Google Scholar]
  35. 35.
    Dahlgren D, Sjöblom M, Hellström PM, Lennernäs H. 2021.. Chemotherapeutics-induced intestinal mucositis: pathophysiology and potential treatment strategies. . Front. Pharmacol. 12::681417
    [Crossref] [Google Scholar]
  36. 36.
    Das SK, Hoefler G. 2013.. The role of triglyceride lipases in cancer associated cachexia. . Trends Mol. Med. 19::292301
    [Crossref] [Google Scholar]
  37. 37.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, et al. 2014.. Diet rapidly and reproducibly alters the human gut microbiome. . Nature 505::55963
    [Crossref] [Google Scholar]
  38. 38.
    de Sousa Cavalcante ML, Silva MS, Cavalcante AKM, de Oliveira Santos R, Nunes DDT, et al. 2020.. Win 55,212-2, atenolol and subdiaphragmatic vagotomy prevent acceleration of gastric emptying induced by cachexia via Yoshida-AH-130 cells in rats. . Eur. J. Pharmacol. 877::173087
    [Crossref] [Google Scholar]
  39. 39.
    Devoto F, Zapparoli L, Bonandrini R, Berlingeri M, Ferrulli A, et al. 2018.. Hungry brains: a meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. . Neurosci. Biobehav. Rev. 94::27185
    [Crossref] [Google Scholar]
  40. 40.
    Dong Y, Pan JS, Zhang L. 2013.. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. . PLOS ONE 8::e58554
    [Crossref] [Google Scholar]
  41. 41.
    Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar MD, et al. 2022.. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. . Obes. Facts 15::32135
    [Crossref] [Google Scholar]
  42. 42.
    Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, et al. 2008.. Cachexia: a new definition. . Clin. Nutr. 27::79399
    [Crossref] [Google Scholar]
  43. 43.
    Farkas J, von Haehling S, Kalantar-Zadeh K, Morley JE, Anker SD, Lainscak M. 2013.. Cachexia as a major public health problem: frequent, costly, and deadly. . J. Cachexia Sarcopenia Muscle 4::17378
    [Crossref] [Google Scholar]
  44. 44.
    Fearon KCH, Barber MD, Moses AG, Ahmedzai SH, Taylor GS, et al. 2006.. Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. . J. Clin. Oncol. 24::34017
    [Crossref] [Google Scholar]
  45. 45.
    Fearon KCH, Strasser F, Anker SD, Bosaeus I, Bruera E, et al. 2011.. Definition and classification of cancer cachexia: an international consensus. . Lancet Oncol. 12::48995
    [Crossref] [Google Scholar]
  46. 46.
    Felix K, Fakelman F, Hartmann D, Giese NA, Gaida MM, et al. 2011.. Identification of serum proteins involved in pancreatic cancer cachexia. . Life Sci. 88::21825
    [Crossref] [Google Scholar]
  47. 47.
    Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. 2007.. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. . Diabetes 56::101013
    [Crossref] [Google Scholar]
  48. 48.
    Fouladiun M, Körner U, Bosaeus I, Daneryd P, Hyltander A, Lundholm KG. 2005.. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care—correlations with food intake, metabolism, exercise capacity, and hormones. . Cancer 103::218998
    [Crossref] [Google Scholar]
  49. 49.
    Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, et al. 2007.. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. . Circulation 116::3948
    [Crossref] [Google Scholar]
  50. 50.
    Fried SK, Ricci MR, Russell CD, Laferreère B. 2000.. Regulation of leptin production in humans. . J. Nutr. 130::3127S31S
    [Crossref] [Google Scholar]
  51. 51.
    Friesen DE, Baracos VE, Tuszynski JA. 2015.. Modeling the energetic cost of cancer as a result of altered energy metabolism: implications for cachexia. . Theor. Biol. Med. Model. 12::17
    [Crossref] [Google Scholar]
  52. 52.
    Galgani JE, Moro C, Ravussin E. 2008.. Metabolic flexibility and insulin resistance. . Am. J. Physiol. Endocrinol. Metab. E100917
    [Crossref] [Google Scholar]
  53. 53.
    Hale C, Véniant MM. 2021.. Growth differentiation factor 15 as a potential therapeutic for treating obesity. . Mol. Metab. 46::101117
    [Crossref] [Google Scholar]
  54. 54.
    Hall KD, Baracos VE. 2008.. Computational modeling of cancer cachexia. . Curr. Opin. Clin. Nutr. Metabolic Care 11::21421
    [Crossref] [Google Scholar]
  55. 55.
    Haro C, Montes-Borrego M, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, et al. 2016.. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. . J. Clin. Endocrinol. Metab. 101::23342
    [Crossref] [Google Scholar]
  56. 56.
    Heymsfield SB, Smith J, Kasriel S, Barlow J, Lynn M, et al. 1981.. Energy malabsorption: measurement and nutritional consequences. . Am. J. Clin. Nutr. 34::195460
    [Crossref] [Google Scholar]
  57. 57.
    Heymsfield SB, Yang S, McCarthy C, Brown JB, Martin CK, et al. 2024.. Proportion of caloric restriction-induced weight loss as skeletal muscle. . Obesity 32::3240
    [Crossref] [Google Scholar]
  58. 58.
    Honors MA, Kinzig KP. 2012.. The role of insulin resistance in the development of muscle wasting during cancer cachexia. . J. Cachexia Sarcopenia Muscle 3::511
    [Crossref] [Google Scholar]
  59. 59.
    Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. 2015.. Role of the normal gut microbiota. . World J. Gastroenterol. 21::8787803
    [Crossref] [Google Scholar]
  60. 60.
    Jaschke NP, Rachner TD. 2023.. Cancer cachexia as a blueprint for treating obesity. . Trends Endocrinol. Metab. 34::395403
    [Crossref] [Google Scholar]
  61. 61.
    Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, et al. 2022.. Tirzepatide once weekly for the treatment of obesity. . N. Engl. J. Med. 387::20516
    [Crossref] [Google Scholar]
  62. 62.
    Jastreboff AM, Kaplan LM, Frías JP, Wu Q, Du Y, et al. 2023.. Triple–hormone-receptor agonist retatrutide for obesity—a phase 2 trial. . N. Engl. J. Med. 389::51426
    [Crossref] [Google Scholar]
  63. 63.
    Khatib MN, Shankar AH, Kirubakaran R, Gaidhane A, Gaidhane S, et al. 2018.. Ghrelin for the management of cachexia associated with cancer. . Cochrane Database Syst. Rev. 2018::CD012229
    [Google Scholar]
  64. 64.
    Kim-Muller JY, Song L, Paulhus BL, Pashos E, Li X, et al. 2023.. GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. . Cell Rep. 42::111947
    [Crossref] [Google Scholar]
  65. 65.
    Kouchaki B, Janbabai G, Alipour A, Ala S, Borhani S, Salehifar E. 2018.. Randomized double-blind clinical trial of combined treatment with megestrol acetate plus celecoxib versus megestrol acetate alone in cachexia-anorexia syndrome induced by GI cancers. . Support. Care Cancer 26::247989
    [Crossref] [Google Scholar]
  66. 66.
    Kuo T, McQueen A, Chen T-C, Wang J-C. 2015.. Regulation of glucose homeostasis by glucocorticoids. . Adv. Exp. Med. Biol. 872::99126
    [Crossref] [Google Scholar]
  67. 67.
    Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. 2018.. The high costs of low-grade inflammation: persistent fatigue as a consequence of reduced cellular-energy availability and non-adaptive energy expenditure. . Front. Behav. Neurosci. 12::78
    [Crossref] [Google Scholar]
  68. 68.
    Lake A, Townshend T. 2006.. Obesogenic environments: exploring the built and food environments. . J. R. Soc. Promot. Health 126::26267
    [Crossref] [Google Scholar]
  69. 69.
    Laurens C, Parmar A, Murphy E, Carper D, Lair B, et al. 2020.. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. . JCI Insight 5::e131870
    [Crossref] [Google Scholar]
  70. 70.
    Li Y-P, Chen Y, John J, Moylan J, Jin B, et al. 2005.. TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. . FASEB J. 19::36270
    [Crossref] [Google Scholar]
  71. 71.
    Lieffers JR, Mourtzakis M, Hall KD, McCargar LJ, Prado CM, Baracos VE. 2009.. A viscerally driven cachexia syndrome in patients with advanced colorectal cancer: contributions of organ and tumor mass to whole-body energy demands. . Am. J. Clin. Nutr. 89::117379
    [Crossref] [Google Scholar]
  72. 72.
    Lira FS, Neto JCR, Seelaender M. 2014.. Exercise training as treatment in cancer cachexia. . Appl. Physiol. Nutr. Metab. 39::67986
    [Crossref] [Google Scholar]
  73. 73.
    Liu B-N, Liu X-T, Liang Z-H, Wang J-H. 2021.. Gut microbiota in obesity. . World J. Gastroenterol. 27::383750
    [Crossref] [Google Scholar]
  74. 74.
    Lund J, Gerhart-Hines Z, Clemmensen C. 2020.. Role of energy excretion in human body weight regulation. . Trends Endocrinol. Metab. 31::7058
    [Crossref] [Google Scholar]
  75. 75.
    Lundholm K, Korner U, Gunnebo L, Sixt-Ammilon P, Fouladiun M, et al. 2007.. Insulin treatment in cancer cachexia: effects on survival, metabolism, and physical functioning. . Clin. Cancer Res. 13::2699706
    [Crossref] [Google Scholar]
  76. 76.
    Martin A, Freyssenet D. 2021.. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. . J. Cachexia Sarcopenia Muscle 12::25273
    [Crossref] [Google Scholar]
  77. 77.
    Martin CK, Nicklas T, Gunturk B, Correa JB, Allen HR, Champagne C. 2014.. Measuring food intake with digital photography. . J. Hum. Nutr. Diet. 27::7281
    [Crossref] [Google Scholar]
  78. 78.
    Marzetti E, Lorenzi M, Landi F, Picca A, Rosa F, et al. 2017.. Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia. . Exp. Gerontol. 87::9299
    [Crossref] [Google Scholar]
  79. 79.
    McCarthy C, Schoeller D, Brown JC, Gonzalez MC, Varanoske AN, et al. 2022.. D3-creatine dilution for skeletal muscle mass measurement: historical development and current status. . J. Cachexia Sarcopenia Muscle 13::2595607
    [Crossref] [Google Scholar]
  80. 80.
    McCrory MA, Howarth NC, Roberts SB, Huang TT-K. 2011.. Eating frequency and energy regulation in free-living adults consuming self-selected diets. . J. Nutr. 141::14853
    [Crossref] [Google Scholar]
  81. 81.
    Melchor SJ, Hatter JA, Castillo ÉAL, Saunders CM, Byrnes KA, et al. 2020.. T. gondii infection induces IL-1R dependent chronic cachexia and perivascular fibrosis in the liver and skeletal muscle. . Sci. Rep. 10::15724
    [Crossref] [Google Scholar]
  82. 82.
    Mondello P, Lacquaniti A, Mondello S, Bolignano D, Pitini V, et al. 2014.. Emerging markers of cachexia predict survival in cancer patients. . BMC Cancer 14::828
    [Crossref] [Google Scholar]
  83. 83.
    Moran TH, Kinzig KP. 2004.. Gastrointestinal satiety signals II. Cholecystokinin. . Am. J. Physiol. Gastrointest. Liver Physiol. 286::G18388
    [Crossref] [Google Scholar]
  84. 84.
    Moresi V, Adamo S, Berghella L. 2019.. The JAK/STAT pathway in skeletal muscle pathophysiology. . Front. Physiol. 10::500
    [Crossref] [Google Scholar]
  85. 85.
    Müller MJ, Heymsfield SB, Bosy-Westphal A. 2023.. Changes in body composition and homeostatic control of resting energy expenditure during dietary weight loss. . Obesity 31::89295
    [Crossref] [Google Scholar]
  86. 86.
    Myers MG, Leibel RL, Seeley RJ, Schwartz MW. 2010.. Obesity and leptin resistance: distinguishing cause from effect. . Trends Endocrinol. Metab. 21::64351
    [Crossref] [Google Scholar]
  87. 87.
    Ni Y, Lohinai Z, Heshiki Y, Dome B, Moldvay J, et al. 2021.. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. . ISME J. 15::320720
    [Crossref] [Google Scholar]
  88. 88.
    Nielson CM, Bylsma LC, Fryzek JP, Saad HA, Crawford J. 2021.. Relative dose intensity of chemotherapy and survival in patients with advanced stage solid tumor cancer: a systematic review and meta-analysis. . Oncologist 26::e160918
    [Crossref] [Google Scholar]
  89. 89.
    Noguchi Y, Yoshikawa T, Marat D, Doi C, Makino T, et al. 1998.. Insulin resistance in cancer patients is associated with enhanced tumor necrosis factor-α expression in skeletal muscle. . Biochem. Biophys. Res. Commun. 253::88792
    [Crossref] [Google Scholar]
  90. 90.
    Olson B, Zhu X, Norgard MA, Levasseur PR, Butler JT, et al. 2021.. Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. . Nat. Commun. 12::2057
    [Crossref] [Google Scholar]
  91. 91.
    Ose DJ, Viskochil R, Holowatyj AN, Larson M, Wilson D, et al. 2021.. Understanding the prevalence of prediabetes and diabetes in patients with cancer in clinical practice: a real-world cohort study. . J. Natl. Compr. Cancer Netw. 19::70918
    [Crossref] [Google Scholar]
  92. 92.
    Patel S, Alvarez-Guaita A, Melvin A, Rimmington D, Dattilo A, et al. 2019.. GDF15 provides an endocrine signal of nutritional stress in mice and humans. . Cell Metab. 29::70718.e8
    [Crossref] [Google Scholar]
  93. 93.
    Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, et al. 2016.. Gut microbiota, obesity and diabetes. . Postgrad. Med. J. 92::286300
    [Crossref] [Google Scholar]
  94. 94.
    Paval DR, Patton R, McDonald J, Skipworth RJ, Gallagher IJ, et al. 2022.. A systematic review examining the relationship between cytokines and cachexia in incurable cancer. . J. Cachexia Sarcopenia Muscle 13::82438
    [Crossref] [Google Scholar]
  95. 95.
    Penna F, Bonetto A, Muscaritoli M, Costamagna D, Minero VG, et al. 2010.. Muscle atrophy in experimental cancer cachexia: Is the IGF-1 signaling pathway involved?. Int. J. Cancer 127::170617
    [Crossref] [Google Scholar]
  96. 96.
    Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, et al. 2014.. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. . Cell Metab. 20::43347
    [Crossref] [Google Scholar]
  97. 97.
    Pezzilli R, Caccialanza R, Capurso G, Brunetti O, Milella M, Falconi M. 2020.. Pancreatic enzyme replacement therapy in pancreatic cancer. . Cancers 12::275
    [Crossref] [Google Scholar]
  98. 98.
    Pittman JG, Cohen P. 1964.. The pathogenesis of cardiac cachexia. . N. Engl. J. Med. 271::4039
    [Crossref] [Google Scholar]
  99. 99.
    Plata-Salamán CR. 1996.. Anorexia induced by activators of the signal transducer gp 130. . Neuroreport 7::8414
    [Crossref] [Google Scholar]
  100. 100.
    Pötgens SA, Brossel H, Sboarina M, Catry E, Cani PD, et al. 2018.. Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. . Sci. Rep. 8::12321
    [Crossref] [Google Scholar]
  101. 101.
    Purcell S, Elliott S, Baracos V, Chu Q, Prado C. 2016.. Key determinants of energy expenditure in cancer and implications for clinical practice. . Eur. J. Clin. Nutr. 70::123038
    [Crossref] [Google Scholar]
  102. 102.
    Rafacho A, Ortsäter H, Nadal A, Quesada I. 2014.. Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. . J. Endocrinol. 223::R4962
    [Crossref] [Google Scholar]
  103. 103.
    Rao S, Schieber AMP, O'Connor CP, Leblanc M, Michel D, Ayres JS. 2017.. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. . Cell 168::50316.e12
    [Crossref] [Google Scholar]
  104. 104.
    Raun SH, Knudsen JR, Han X, Jensen TE, Sylow L. 2022.. Cancer causes dysfunctional insulin signaling and glucose transport in a muscle-type-specific manner. . FASEB J. 36::e22211
    [Crossref] [Google Scholar]
  105. 105.
    Riccardi DMdR, das Neves RX, de Matos-Neto EM, Camargo RG, Lima JDCC, et al. 2020.. Plasma lipid profile and systemic inflammation in patients with cancer cachexia. . Front. Nutr. 7::4
    [Crossref] [Google Scholar]
  106. 106.
    Roeland EJ, Bohlke K, Baracos VE, Bruera E, Del Fabbro E, et al. 2020.. Management of cancer cachexia: ASCO guideline. . J. Clin. Oncol. 38::243853
    [Crossref] [Google Scholar]
  107. 107.
    Rohm TV, Meier DT, Olefsky JM, Donath MY. 2022.. Inflammation in obesity, diabetes, and related disorders. . Immunity 55::3155
    [Crossref] [Google Scholar]
  108. 108.
    Rupert JE, Narasimhan A, Jengelley DH, Jiang Y, Liu J, et al. 2021.. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. . J. Exp. Med. 218::e20190450
    [Crossref] [Google Scholar]
  109. 109.
    Rynders CA, Blanc S, DeJong N, Bessesen DH, Bergouignan A. 2018.. Sedentary behaviour is a key determinant of metabolic inflexibility. . J. Physiol. 596::131930
    [Crossref] [Google Scholar]
  110. 110.
    Sadoul BC, Schuring EA, Mela DJ, Peters HP. 2014.. The relationship between appetite scores and subsequent energy intake: an analysis based on 23 randomized controlled studies. . Appetite 83::15359
    [Crossref] [Google Scholar]
  111. 111.
    Samuel VT, Shulman GI. 2016.. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. . J. Clin. Investig. 126::1222
    [Crossref] [Google Scholar]
  112. 112.
    Savage DB, Petersen KF, Shulman GI. 2005.. Mechanisms of insulin resistance in humans and possible links with inflammation. . Hypertension 45::82833
    [Crossref] [Google Scholar]
  113. 113.
    Scarlett JM, Jobst EE, Enriori PJ, Bowe DD, Batra AK, et al. 2007.. Regulation of central melanocortin signaling by interleukin-1β. . Endocrinology 148::421725
    [Crossref] [Google Scholar]
  114. 114.
    Schakman O, Dehoux M, Bouchuari S, Delaere S, Lause P, et al. 2012.. Role of IGF-I and the TNFα/NF-κB pathway in the induction of muscle atrogenes by acute inflammation. . Am. J. Physiol. Endocrinol. Metab. 303::E72939
    [Crossref] [Google Scholar]
  115. 115.
    Shah M, Vella A. 2014.. Effects of GLP-1 on appetite and weight. . Rev. Endocrinol. Metab. Disord. 15::18187
    [Crossref] [Google Scholar]
  116. 116.
    Sjöström L, Rissanen A, Andersen T, Boldrin M, Golay A, et al. 1998.. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. . Lancet 352::16772
    [Crossref] [Google Scholar]
  117. 117.
    Smith RL, Soeters MR, Wüst RC, Houtkooper RH. 2018.. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. . Endocrinol. Rev. 39::489517
    [Crossref] [Google Scholar]
  118. 118.
    Solheim TS, Fearon KC, Blum D, Kaasa S. 2013.. Non-steroidal anti-inflammatory treatment in cancer cachexia: a systematic literature review. . Acta Oncol. 52::617
    [Crossref] [Google Scholar]
  119. 119.
    Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. 2008.. Sarcopenic obesity: definition, cause and consequences. . Curr. Opin. Clin. Nutr. Metab. Care 11::693700
    [Crossref] [Google Scholar]
  120. 120.
    Sternson SM, Eiselt A-K. 2017.. Three pillars for the neural control of appetite. . Annu. Rev. Physiol. 79::40123
    [Crossref] [Google Scholar]
  121. 121.
    Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE, et al. 2012.. The Automated Self-Administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians and educators from the National Cancer Institute. . J. Acad. Nutr. Dietetics 112::113437
    [Crossref] [Google Scholar]
  122. 122.
    Sullivan ES, Rice N, Kingston E, Kelly A, Reynolds JV, et al. 2021.. A national survey of oncology survivors examining nutrition attitudes, problems and behaviours, and access to dietetic care throughout the cancer journey. . Clin. Nutr. ESPEN 41::33139
    [Crossref] [Google Scholar]
  123. 123.
    Suriben R, Chen M, Higbee J, Oeffinger J, Ventura R, et al. 2020.. Antibody-mediated inhibition of GDF15–GFRAL activity reverses cancer cachexia in mice. . Nat. Med. 26::126470
    [Crossref] [Google Scholar]
  124. 124.
    Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A. 2013.. Cancer cachexia—pathophysiology and management. . J. Gastroenterol. 48::57494
    [Crossref] [Google Scholar]
  125. 125.
    Tobberup R, Thoresen L, Falkmer UG, Yilmaz MK, Solheim TS, Balstad TR. 2019.. Effects of current parenteral nutrition treatment on health-related quality of life, physical function, nutritional status, survival and adverse events exclusively in patients with advanced cancer: a systematic literature review. . Crit. Rev. Oncol. Hematol. 139::96107
    [Crossref] [Google Scholar]
  126. 126.
    Trujillo EB, Claghorn K, Dixon SW, Hill EB, Braun A, et al. 2019.. Inadequate nutrition coverage in outpatient cancer centers: results of a national survey. . J. Oncol. 2019::7462940
    [Crossref] [Google Scholar]
  127. 127.
    Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. 2001.. Circulating ghrelin levels are decreased in human obesity. . Diabetes 50::7079
    [Crossref] [Google Scholar]
  128. 128.
    Ubachs J, Ziemons J, Soons Z, Aarnoutse R, van Dijk DP, et al. 2021.. Gut microbiota and short-chain fatty acid alterations in cachectic cancer patients. . J. Cachexia Sarcopenia Muscle 12::200721
    [Crossref] [Google Scholar]
  129. 129.
    VanderVeen BN, Fix DK, Carson JA. 2017.. Disrupted skeletal muscle mitochondrial dynamics, mitophagy, and biogenesis during cancer cachexia: a role for inflammation. . Oxid. Med. Cell. Longev. 2017::3292087
    [Crossref] [Google Scholar]
  130. 130.
    Vargas EJ, Bazerbachi F, Calderon G, Prokop LJ, Gomez V, et al. 2020.. Changes in time of gastric emptying after surgical and endoscopic bariatrics and weight loss: a systematic review and meta-analysis. . Clin. Gastroenterol. Hepatol. 18::5768.e5
    [Crossref] [Google Scholar]
  131. 131.
    Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T, et al. 2016.. Beneficial bacteria inhibit cachexia. . Oncotarget 7::1180316
    [Crossref] [Google Scholar]
  132. 132.
    Vechetti IJ Jr. 2019.. Emerging role of extracellular vesicles in the regulation of skeletal muscle adaptation. . J. Appl. Physiol. 127::64553
    [Crossref] [Google Scholar]
  133. 133.
    Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, et al. 2012.. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. . Gastroenterology 143::91316.e7
    [Crossref] [Google Scholar]
  134. 134.
    Waters DL. 2019.. Intermuscular adipose tissue: a brief review of etiology, association with physical function and weight loss in older adults. . Ann. Geriatr. Med. Res. 23::38
    [Crossref] [Google Scholar]
  135. 135.
    White JP, Puppa MJ, Gao S, Sato S, Welle SL, Carson JA. 2013.. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. . Am. J. Physiol. Endocrinol. Metab. 304::E104252
    [Crossref] [Google Scholar]
  136. 136.
    Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, et al. 2021.. Once-weekly semaglutide in adults with overweight or obesity. . N. Engl. J. Med. 384::9891002
    [Crossref] [Google Scholar]
  137. 137.
    Winter A, MacAdams J, Chevalier S. 2012.. Normal protein anabolic response to hyperaminoacidemia in insulin-resistant patients with lung cancer cachexia. . Clin. Nutr. 31::76573
    [Crossref] [Google Scholar]
  138. 138.
    Wischhusen J, Melero I, Fridman WH. 2020.. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. . Front. Immunol. 11::951
    [Crossref] [Google Scholar]
  139. 139.
    Wise JK, Hendler R, Felig P. 1973.. Influence of glucocorticoids on glucagon secretion and plasma amino acid concentrations in man. . J. Clin. Investig. 52::277482
    [Crossref] [Google Scholar]
  140. 140.
    Wolf I, Sadetzki S, Kanety H, Kundel Y, Pariente C, et al. 2006.. Adiponectin, ghrelin, and leptin in cancer cachexia in breast and colon cancer patients. . Cancer 106::96673
    [Crossref] [Google Scholar]
  141. 141.
    Wong MC, Ng BK, Tian I, Sobhiyeh S, Pagano I, et al. 2021.. A pose-independent method for accurate and precise body composition from 3D optical scans. . Obesity 29::183547
    [Crossref] [Google Scholar]
  142. 142.
    Zabernigg A, Gamper E-M, Giesinger JM, Rumpold G, Kemmler G, et al. 2010.. Taste alterations in cancer patients receiving chemotherapy: a neglected side effect?. Oncologist 15::91320
    [Crossref] [Google Scholar]
  143. 143.
    Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, et al. 2020.. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. . Front. Physiol. 10::1607
    [Crossref] [Google Scholar]
  144. 144.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, et al. 2009.. Human gut microbiota in obesity and after gastric bypass. . PNAS 106::236570
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nutr-062122-015646
Loading
/content/journals/10.1146/annurev-nutr-062122-015646
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error