1932

Abstract

Humans require energy to sustain their daily activities throughout their lives. This narrative review aims to () summarize principles and methods for studying human energy expenditure, () discuss the main determinants of energy expenditure, and () discuss the changes in energy expenditure throughout the human life course. Total daily energy expenditure is mainly composed of resting energy expenditure, physical activity energy expenditure, and the thermic effect of food. Total daily energy expenditure and its components are estimated using variations of the indirect calorimetry method. The relative contributions of organs and tissues determine the energy expenditure under different physiological conditions. Evidence shows that energy expenditure varies along the human life course, at least in part due to changes in body composition, the mass and specific metabolic rates of organs and tissues, and levels of physical activity. This information is crucial to estimate human energy requirements for maintaining health throughout the life course.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062122-031443
2024-08-29
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-062122-031443.html?itemId=/content/journals/10.1146/annurev-nutr-062122-031443&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbott WGH, Howard BV, Christin L, Freymond D, Lillioja S, et al. 1988.. Short-term energy balance: relationship with protein, carbohydrate, and fat balances. . Am. J. Physiol. Endocrinol. Metab. 255:(3):E33237
    [Crossref] [Google Scholar]
  2. 2.
    Acheson KJ. 1993.. Influence of autonomic nervous system on nutrient-induced thermogenesis in humans. . Nutrition 9:(4):37380
    [Google Scholar]
  3. 3.
    Acheson KJ, Schutz Y, Bessard T, Ravussin E, Jéquier E, Flatt JP. 1984.. Nutritional influences on lipogenesis and thermogenesis after a carbohydrate meal. . Am. J. Physiol. 246:(1):E6270
    [Google Scholar]
  4. 4.
    Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, et al. 2011.. 2011 compendium of physical activities: a second update of codes and MET values. . Med. Sci. Sports Exerc. 43:(8):157581
    [Crossref] [Google Scholar]
  5. 5.
    Alcantara JMA, Galgani JE, Jurado-Fasoli L, Dote-Montero M, Merchan-Ramirez E, et al. 2022.. Validity of four commercially available metabolic carts for assessing resting metabolic rate and respiratory exchange ratio in non-ventilated humans. . Clin. Nutr. 41:(3):74654
    [Crossref] [Google Scholar]
  6. 6.
    Alcantara JMA, Sanchez-Delgado G, Amaro-Gahete FJ, Galgani JE, Ruiz JR. 2020.. Impact of the method used to select gas exchange data for estimating the resting metabolic rate, as supplied by breath-by-breath metabolic carts. . Nutrients 12:(2):487
    [Crossref] [Google Scholar]
  7. 7.
    Allerton TD, Carnero EA, Bock C, Corbin KD, Luyet P-P, et al. 2021.. Reliability of measurements of energy expenditure and substrate oxidation using whole-room indirect calorimetry. . Obesity 29:(9):150815
    [Crossref] [Google Scholar]
  8. 8.
    Basolo A, Parrington S, Ando T, Hollstein T, Piaggi P, Krakoff J. 2020.. Procedures for measuring excreted and ingested calories to assess nutrient absorption using bomb calorimetry. . Obesity 28:(12):231522
    [Crossref] [Google Scholar]
  9. 9.
    Betz MJ, Enerbäck S. 2018.. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. . Nat. Rev. Endocrinol. 14:(2):7787
    [Crossref] [Google Scholar]
  10. 10.
    Black AE, Prentice AM, Coward WA. 1986.. Use of food quotients to predict respiratory quotients for the doubly-labelled water method of measuring energy expenditure. . Hum. Nutr. Clin. Nutr. 40:(5):38191
    [Google Scholar]
  11. 11.
    Blondin DP, Haman F. 2018.. Shivering and nonshivering thermogenesis in skeletal muscles. . Handb. Clin. Neurol. 156::15373
    [Crossref] [Google Scholar]
  12. 12.
    Bonuccelli S, Muscelli E, Gastaldelli A, Barsotti E, Astiarraga BD, et al. 2009.. Improved tolerance to sequential glucose loading (Staub-Traugott effect): size and mechanisms. . Am. J. Physiol. Endocrinol. Metab. 297:(2):E53237
    [Crossref] [Google Scholar]
  13. 13.
    Bosy-Westphal A, Kossel E, Goele K, Later W, Hitze B, et al. 2009.. Contribution of individual organ mass loss to weight loss–associated decline in resting energy expenditure. . Am. J. Clin. Nutr. 90:(4):9931001
    [Crossref] [Google Scholar]
  14. 14.
    Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, et al. 2020.. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. . Br. J. Sports Med. 54:(24):145162
    [Crossref] [Google Scholar]
  15. 15.
    Careau V, Halsey LG, Pontzer H, Ainslie PN, Andersen LF, et al. 2021.. Energy compensation and adiposity in humans. . Curr. Biol. 31:(20):465966.e2
    [Crossref] [Google Scholar]
  16. 16.
    Cole CR, Rising R, Hakim A, Danon M, Mehta R, et al. 1999.. Comprehensive assessment of the components of energy expenditure in infants using a new infant respiratory chamber. . J. Am. Coll. Nutr. 18:(3):23341
    [Crossref] [Google Scholar]
  17. 17.
    Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, et al. 2019.. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. . BMJ 366::l4570
    [Crossref] [Google Scholar]
  18. 18.
    Elia M. 1992.. Organ and tissue contribution to metabolic rate. . In Energy Metabolism: Tissue Determinants and Cellular Corollaries, ed. JM Kinney, HN Tucker , pp. 6179. New York:: Raven
    [Google Scholar]
  19. 19.
    Elia M, Cummings JH. 2007.. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates. . Eur. J. Clin. Nutr. 61:(Suppl. 1):S4074
    [Crossref] [Google Scholar]
  20. 20.
    Elia M, Livesey G. 1992.. Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods. . World Rev. Nutr. Diet. 70::68131
    [Crossref] [Google Scholar]
  21. 21.
    Everson CA. 1993.. Sustained sleep deprivation impairs host defense. . Am. J. Physiol. 265:(5):R114854
    [Google Scholar]
  22. 22.
    FAO (Food Agric. Organ. United Nations). 2003.. Food energy – methods of analysis and conversion factors. FAO Food Nutr. Paper 77 , Food Agric. Organ. United Nations, Rome:. https://www.fao.org/3/Y5022E/Y5022E00.htm
    [Google Scholar]
  23. 23.
    Fernández-Verdejo R, Aguirre C, Galgani JE. 2019.. Issues in measuring and interpreting energy balance and its contribution to obesity. . Curr. Obes. Rep. 8:(2):8897
    [Crossref] [Google Scholar]
  24. 24.
    Fernández-Verdejo R, Alcantara JMA, Galgani JE, Acosta FM, Migueles JH, et al. 2021.. Deciphering the constrained total energy expenditure model in humans by associating accelerometer-measured physical activity from wrist and hip. . Sci. Rep. 11:(1):12302
    [Crossref] [Google Scholar]
  25. 25.
    Fernández-Verdejo R, Galgani JE. 2022.. Predictive equations for energy expenditure in adult humans: from resting to free-living conditions. . Obesity 30:(8):153748
    [Crossref] [Google Scholar]
  26. 26.
    Fernández-Verdejo R, Marlatt KL, Ravussin E, Galgani JE. 2019.. Contribution of brown adipose tissue to human energy metabolism. . Mol. Aspects Med. 68:(July):8289
    [Crossref] [Google Scholar]
  27. 27.
    Flatt JP, Pahud P, Ravussin E, Jéquier E. 1984.. An estimate of the P:O ratio in man. . Trends Biochem. Sci. 9:(11):46668
    [Crossref] [Google Scholar]
  28. 28.
    Flatt JP, Ravussin E, Acheson KJ, Jéquier E. 1985.. Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. . J. Clin. Investig. 76:(3):101924
    [Crossref] [Google Scholar]
  29. 29.
    Fontvieille AM, Ferraro RT, Rising R, Larson DE, Ravussin E. 1993.. Energy cost of arousal: effect of sex, race and obesity. . Int. J. Obes. Relat. Metab. Disord. 17:(12):7059
    [Google Scholar]
  30. 30.
    Fontvieille AM, Rising R, Spraul M, Larson DE, Ravussin E. 1994.. Relationship between sleep stages and metabolic rate in humans. . Am. J. Physiol. 267:(5):E73237
    [Google Scholar]
  31. 31.
    Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, et al. 2016.. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. . Obesity 24:(8):161219
    [Crossref] [Google Scholar]
  32. 32.
    Fraser G, Trinder J, Colrain IM, Montgomery I. 1989.. Effect of sleep and circadian cycle on sleep period energy expenditure. . J. Appl. Physiol. 66:(2):83036
    [Crossref] [Google Scholar]
  33. 33.
    Freedson PS, Melanson E, Sirard J. 1998.. Calibration of the Computer Science and Applications, Inc. accelerometer. . Med. Sci. Sports Exerc. 30:(5):77781
    [Crossref] [Google Scholar]
  34. 34.
    Frisch RE, McArthur JW. 1974.. Menstrual cycles: fatness as a determinant of minimum weight for height necessary for their maintenance or onset. . Science 185:(4155):94951
    [Crossref] [Google Scholar]
  35. 35.
    Fullmer S, Benson-Davies S, Earthman CP, Frankenfield DC, Gradwell E, et al. 2015.. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. . J. Acad. Nutr. Diet. 115:(9):141746.e2
    [Crossref] [Google Scholar]
  36. 36.
    Galgani JE, Castro-Sepulveda MA. 2017.. Influence of a gas exchange correction procedure on resting metabolic rate and respiratory quotient in humans. . Obesity 25:(11):194147
    [Crossref] [Google Scholar]
  37. 37.
    Galgani JE, Castro-Sepulveda M, Pérez-Luco C, Fernández-Verdejo R. 2018.. Validity of predictive equations for resting metabolic rate in healthy humans. . Clin. Sci. 132:(16):174151
    [Crossref] [Google Scholar]
  38. 38.
    Galgani JE, Santos JL. 2016.. Insights about weight loss-induced metabolic adaptation. . Obesity 24:(2):27778
    [Crossref] [Google Scholar]
  39. 39.
    Gallagher D, Allen A, Wang Z, Heymsfield SB, Krasnow N. 2000.. Smaller organ tissue mass in the elderly fails to explain lower resting metabolic rate. . Ann. N. Y. Acad. Sci. 904::44955
    [Crossref] [Google Scholar]
  40. 40.
    Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, et al. 1998.. Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. . Am. J. Physiol. 275:(2):E24958
    [Google Scholar]
  41. 41.
    Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. 2000.. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. . Am. J. Clin. Nutr. 72:(3):694701
    [Crossref] [Google Scholar]
  42. 42.
    Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, et al. 2011.. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. . Med. Sci. Sports Exerc. 43:(7):133459
    [Crossref] [Google Scholar]
  43. 43.
    Hall KD, Chen KY, Guo J, Lam YY, Leibel RL, et al. 2016.. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. . Am. J. Clin. Nutr. 104:(2):32433
    [Crossref] [Google Scholar]
  44. 44.
    Halsey LG. 2021.. The mystery of energy compensation. . Physiol. Biochem. Zool. 94:(6):38093
    [Crossref] [Google Scholar]
  45. 45.
    Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, et al. 2006.. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. . JAMA 295:(13):153948
    [Crossref] [Google Scholar]
  46. 46.
    Henderson MET, Halsey LG. 2022.. The metabolic upper critical temperature of the human thermoneutral zone. . J. Therm. Biol. 110::103380
    [Crossref] [Google Scholar]
  47. 47.
    Henry C. 2005.. Basal metabolic rate studies in humans: measurement and development of new equations. . Public Health Nutr. 8:(7a):113352
    [Crossref] [Google Scholar]
  48. 48.
    Hollstein T, Ando T, Basolo A, Krakoff J, Votruba SB, Piaggi P. 2019.. Metabolic response to fasting predicts weight gain during low-protein overfeeding in lean men: further evidence for spendthrift and thrifty metabolic phenotypes. . Am. J. Clin. Nutr. 110:(3):593604
    [Crossref] [Google Scholar]
  49. 49.
    Hsu A, Heshka S, Janumala I, Song M-Y, Horlick M, et al. 2003.. Larger mass of high-metabolic-rate organs does not explain higher resting energy expenditure in children. . Am. J. Clin. Nutr. 77:(6):150611
    [Crossref] [Google Scholar]
  50. 50.
    IAEA (Int. At. Energy Agency). 2009.. Assessment of body composition and total energy expenditure in humans using stable isotope techniques, IAEA Human Health Ser. 3 , IAEA, Vienna:
    [Google Scholar]
  51. 51.
    Jastreboff AM, Kotz CM, Kahan S, Kelly AS, Heymsfield SB. 2019.. Obesity as a disease: The Obesity Society 2018 position statement. . Obesity 27:(1):79
    [Crossref] [Google Scholar]
  52. 52.
    Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD. 2012.. Metabolic slowing with massive weight loss despite preservation of fat-free mass. . J. Clin. Endocrinol. Metab. 97:(7):248996
    [Crossref] [Google Scholar]
  53. 53.
    Johannsen DL, Marlatt KL, Conley KE, Smith SR, Ravussin E. 2019.. Metabolic adaptation is not observed after 8 weeks of overfeeding but energy expenditure variability is associated with weight recovery. . Am. J. Clin. Nutr. 110:(4):80513
    [Crossref] [Google Scholar]
  54. 54.
    Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR. 2005.. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. . Am. J. Clin. Nutr. 82:(5):94148
    [Crossref] [Google Scholar]
  55. 55.
    Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP. 2011.. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. . J. Physiol. 589:(Part 1):23544
    [Crossref] [Google Scholar]
  56. 56.
    Karst H, Steiniger J, Noack R, Steglich HD. 1984.. Diet-induced thermogenesis in man: thermic effects of single proteins, carbohydrates and fats depending on their energy amount. . Ann. Nutr. Metab. 28:(4):24552
    [Crossref] [Google Scholar]
  57. 57.
    Kingma B, Frijns A, van Marken Lichtenbelt W. 2012.. The thermoneutral zone: implications for metabolic studies. . Front. Biosci. 4:(5):197585
    [Crossref] [Google Scholar]
  58. 58.
    Knuth ND, Johannsen DL, Tamboli RA, Marks-Shulman PA, Huizenga R, et al. 2014.. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. . Obesity 22:(12):256369
    [Google Scholar]
  59. 59.
    Kozey SL, Lyden K, Howe CA, Staudenmayer JW, Freedson PS. 2010.. Accelerometer output and MET values of common physical activities. . Med. Sci. Sports Exerc. 42:(9):177684
    [Crossref] [Google Scholar]
  60. 60.
    Kumar D, Idzikowski C, Wingate DL, Soffer EE, Thompson P, Siderfin C. 1990.. Relationship between enteric migrating motor complex and the sleep cycle. . Am. J. Physiol. 259:(6):G98390
    [Google Scholar]
  61. 61.
    Labayen I, Forga L, Martínez JA. 1999.. Nutrient oxidation and metabolic rate as affected by meals containing different proportions of carbohydrate and fat, in healthy young women. . Eur. J. Nutr. 38:(3):15866
    [Crossref] [Google Scholar]
  62. 62.
    Leibel RL, Rosenbaum M, Hirsch J. 1995.. Changes in energy expenditure resulting from altered body weight. . N. Engl. J. Med. 332:(10):62128
    [Crossref] [Google Scholar]
  63. 63.
    Levine J, Melanson EL, Westerterp KR, Hill JO. 2001.. Measurement of the components of nonexercise activity thermogenesis. . Am. J. Physiol. Endocrinol. Metab. 281:(4):E67075
    [Crossref] [Google Scholar]
  64. 64.
    Levine JA, Eberhardt NL, Jensen MD. 1999.. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. . Science 283:(5399):21214
    [Crossref] [Google Scholar]
  65. 65.
    Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, et al. 2005.. Interindividual variation in posture allocation: possible role in human obesity. . Science 307:(5709):58486
    [Crossref] [Google Scholar]
  66. 66.
    Livesey G, Elia M. 1988.. Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. . Am. J. Clin. Nutr. 47:(4):60828
    [Crossref] [Google Scholar]
  67. 67.
    Malo-Vintimilla L, Aguirre C, Vergara A, Fernández-Verdejo R, Galgani JE. 2023.. Resting energy metabolism and sweet taste preference during the menstrual cycle in healthy women. . Br. J. Nutr. 131:(3):38490
    [Crossref] [Google Scholar]
  68. 68.
    Marlatt KL, Ravussin E. 2017.. Brown adipose tissue: an update on recent findings. . Curr. Obes. Rep. 6:(4):38996
    [Crossref] [Google Scholar]
  69. 69.
    McDougal DH, Marlatt KL, Beyl RA, Redman LM, Ravussin E. 2020.. A novel approach to assess metabolic flexibility overnight in a whole-body room calorimeter. . Obesity 28:(11):207377
    [Crossref] [Google Scholar]
  70. 70.
    Merril AL, Watt BK. 1955.. Energy value of foods…basis and derivation. Agric. Handb. 74 , Agric. Res. Serv., US Dep. Agric., Washington, DC:
    [Google Scholar]
  71. 71.
    Milan FA, Evonuk E. 1967.. Oxygen consumption and body temperatures of Eskimos during sleep. . J. Appl. Physiol. 22:(3):56567
    [Crossref] [Google Scholar]
  72. 72.
    Mountjoy M, Ackerman KE, Bailey DM, Burke LM, Constantini N, et al. 2023.. 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). . Br. J. Sports Med. 57:(17):107397
    [Crossref] [Google Scholar]
  73. 73.
    Müller MJ, Bosy-Westphal A. 2013.. Adaptive thermogenesis with weight loss in humans. . Obesity 21:(2):21828
    [Crossref] [Google Scholar]
  74. 74.
    Müller MJ, Enderle J, Bosy-Westphal A. 2016.. Changes in energy expenditure with weight gain and weight loss in humans. . Curr. Obes. Rep. 5:(4):41323
    [Crossref] [Google Scholar]
  75. 75.
    Müller MJ, Heymsfield SB, Bosy-Westphal A. 2021.. Are metabolic adaptations to weight changes an artefact?. Am. J. Clin. Nutr. 114:(4):138695
    [Crossref] [Google Scholar]
  76. 76.
    Müller MJ, Wang Z, Heymsfield SB, Schautz B, Bosy-Westphal A. 2013.. Advances in the understanding of specific metabolic rates of major organs and tissues in humans. . Curr. Opin. Clin. Nutr. Metab. Care 16:(5):5018
    [Google Scholar]
  77. 77.
    Murakami H, Kawakami R, Nakae S, Nakata Y, Ishikawa-Takata K, et al. 2016.. Accuracy of wearable devices for estimating total energy expenditure: comparison with metabolic chamber and doubly labeled water method. . JAMA Intern. Med. 176:(5):7023
    [Crossref] [Google Scholar]
  78. 78.
    Osada T, Katsumura T, Hamaoka T, Inoue S, Esaki K, et al. 1999.. Reduced blood flow in abdominal viscera measured by Doppler ultrasound during one-legged knee extension. . J. Appl. Physiol. 86:(2):70919
    [Crossref] [Google Scholar]
  79. 79.
    Pahud P, Ravussin E, Acheson KJ, Jequier E. 1980.. Energy expenditure during oxygen deficit of submaximal concentric and eccentric exercise. . J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 49:(1):1621
    [Google Scholar]
  80. 80.
    Piaggi P. 2019.. Metabolic determinants of weight gain in humans. . Obesity 27:(5):69199
    [Crossref] [Google Scholar]
  81. 81.
    Piaggi P, Krakoff J, Bogardus C, Thearle MS. 2013.. Lower awake and fed thermogenesis predicts future weight gain in subjects with abdominal adiposity. . Diabetes 62:(12):404351
    [Crossref] [Google Scholar]
  82. 82.
    Pontzer H, Durazo-Arvizu R, Dugas LR, Plange-Rhule J, Bovet P, et al. 2016.. Constrained total energy expenditure and metabolic adaptation to physical activity in adult humans. . Curr. Biol. 26:(3):41017
    [Crossref] [Google Scholar]
  83. 83.
    Pontzer H, Yamada Y, Sagayama H, Ainslie PN, Andersen LF, et al. 2021.. Daily energy expenditure through the human life course. . Science 373:(6556):80812
    [Crossref] [Google Scholar]
  84. 84.
    Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C. 1986.. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. . J. Clin. Investig. 78:(6):156878
    [Crossref] [Google Scholar]
  85. 85.
    Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, et al. 1988.. Reduced rate of energy expenditure as a risk factor for body-weight gain. . N. Engl. J. Med. 318:(8):46772
    [Crossref] [Google Scholar]
  86. 86.
    Redman LM, Smith SR, Burton JH, Martin CK, Il'yasova D, Ravussin E. 2018.. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. . Cell Metab. 27:(4):80515.e4
    [Crossref] [Google Scholar]
  87. 87.
    Reinhardt M, Thearle MS, Ibrahim M, Hohenadel MG, Bogardus C, et al. 2015.. A human thrifty phenotype associated with less weight loss during caloric restriction. . Diabetes 64:(8):285967
    [Crossref] [Google Scholar]
  88. 88.
    Richard SA, Black RE, Gilman RH, Guerrant RL, Kang G, et al. 2012.. Wasting is associated with stunting in early childhood. . J. Nutr. 142:(7):129196
    [Crossref] [Google Scholar]
  89. 89.
    Rising R, Duro D, Cedillo M, Valois S, Lifshitz F. 2003.. Daily metabolic rate in healthy infants. . J. Pediatr. 143:(2):18085
    [Crossref] [Google Scholar]
  90. 90.
    Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. 2008.. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. . Am. J. Clin. Nutr. 88:(4):90612
    [Crossref] [Google Scholar]
  91. 91.
    Rosenbaum M, Leibel RL. 2010.. Adaptive thermogenesis in humans. . Int. J. Obes. 34::S4755
    [Crossref] [Google Scholar]
  92. 92.
    Sanchez-Delgado G, Ravussin E. 2020.. Assessment of energy expenditure: Are calories measured differently for different diets?. Curr. Opin. Clin. Nutr. Metab. Care. 23:(5):31218
    [Crossref] [Google Scholar]
  93. 93.
    Schlögl M, Piaggi P, Pannacciuli N, Bonfiglio SM, Krakoff J, Thearle MS. 2015.. Energy expenditure responses to fasting and overfeeding identify phenotypes associated with weight change. . Diabetes 64:(11):368089
    [Crossref] [Google Scholar]
  94. 94.
    Schoeller DA, Jefford G. 2002.. Determinants of the energy costs of light activities: inferences for interpreting doubly labeled water data. . Int. J. Obes. Relat. Metab. Disord. 26:(1):97101
    [Crossref] [Google Scholar]
  95. 95.
    Schutz Y, Flatt JP, Jéquier E. 1989.. Failure of dietary fat intake to promote fat oxidation: a factor favoring the development of obesity. . Am. J. Clin. Nutr. 50:(2):30714
    [Crossref] [Google Scholar]
  96. 96.
    Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, et al. 2017.. Obesity pathogenesis: an Endocrine Society scientific statement. . Endocr. Rev. 38:(4):26796
    [Crossref] [Google Scholar]
  97. 97.
    Shinar Z, Akselrod S, Dagan Y, Baharav A. 2006.. Autonomic changes during wake–sleep transition: a heart rate variability based approach. . Auton. Neurosci. 130:(1–2):1727
    [Crossref] [Google Scholar]
  98. 98.
    Simonson DC, DeFronzo RA. 1990.. Indirect calorimetry: methodological and interpretative problems. . Am. J. Physiol. 258:(3):E399412
    [Crossref] [Google Scholar]
  99. 99.
    Speakman JR, Elmquist JK. 2022.. Obesity: an evolutionary context. . Life Metab. 1:(1):1024
    [Crossref] [Google Scholar]
  100. 100.
    Speakman JR, Hall KD. 2023.. Models of body weight and fatness regulation. . Philos. Trans. R. Soc. B 378:(1888):20220231
    [Crossref] [Google Scholar]
  101. 101.
    Speakman JR, Levitsky DA, Allison DB, Bray MS, de Castro JM, et al. 2011.. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. . Dis. Model Mech. 4:(6):73345
    [Crossref] [Google Scholar]
  102. 102.
    Speakman JR, Pontzer H. 2023.. Quantifying physical activity energy expenditure based on doubly labelled water and basal metabolism calorimetry: What are we actually measuring?. Curr. Opin. Clin. Nutr. Metab. Care 26:(5):4018
    [Crossref] [Google Scholar]
  103. 103.
    Speakman JR, Pontzer H, Rood J, Sagayama H, Schoeller DA, et al. 2019.. The International Atomic Energy Agency International Doubly Labelled Water Database: aims, scope and procedures. . Ann. Nutr. Metab. 75:(2):11418
    [Crossref] [Google Scholar]
  104. 104.
    Speakman JR, Yamada Y, Sagayama H, Berman ESF, Ainslie PN, et al. 2021.. A standard calculation methodology for human doubly labeled water studies. . Cell Rep. Med. 2:(2):100203
    [Crossref] [Google Scholar]
  105. 105.
    Suárez-Reyes M, Fernández-Verdejo R. 2022.. Work/household, transport, and leisure domains account for the sex gap in physical activity in Chile. . Front. Public Health 10::1011790
    [Crossref] [Google Scholar]
  106. 106.
    Suter PM, Schutz Y, Jequier E. 1992.. The effect of ethanol on fat storage in healthy subjects. . N. Engl. J. Med. 326:(15):98387
    [Crossref] [Google Scholar]
  107. 107.
    Tappy L. 1996.. Thermic effect of food and sympathetic nervous system activity in humans. . Reprod. Nutr. Dev. 36:(4):39197
    [Crossref] [Google Scholar]
  108. 108.
    Thurber C, Dugas LR, Ocobock C, Carlson B, Speakman JR, Pontzer H. 2019.. Extreme events reveal an alimentary limit on sustained maximal human energy expenditure. . Sci. Adv. 5:(6):eaaw0341
    [Crossref] [Google Scholar]
  109. 109.
    Urlacher SS, Snodgrass JJ, Dugas LR, Sugiyama LS, Liebert MA, et al. 2019.. Constraint and trade-offs regulate energy expenditure during childhood. . Sci. Adv. 5:(12):eaax1065
    [Crossref] [Google Scholar]
  110. 110.
    Vaughan L, Zurlo F, Ravussin E. 1991.. Aging and energy expenditure. . Am. J. Clin. Nutr. 53:(4):82125
    [Crossref] [Google Scholar]
  111. 111.
    Villet S, Chiolero RL, Bollmann MD, Revelly J-P, Cayeux M-C, et al. 2005.. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. . Clin. Nutr. 24:(4):5029
    [Crossref] [Google Scholar]
  112. 112.
    Vinken AG, Bathalon GP, Sawaya AL, Dallal GE, Tucker KL, Roberts SB. 1999.. Equations for predicting the energy requirements of healthy adults aged 18–81 y. . Am. J. Clin. Nutr. 69:(5):92026
    [Crossref] [Google Scholar]
  113. 113.
    Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Heller M, et al. 2011.. Evaluation of specific metabolic rates of major organs and tissues: comparison between men and women. . Am. J. Hum. Biol. 23:(3):33338
    [Crossref] [Google Scholar]
  114. 114.
    Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, et al. 2010.. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. . Am. J. Clin. Nutr. 92:(6):136977
    [Crossref] [Google Scholar]
  115. 115.
    Westerterp KR. 2004.. Diet induced thermogenesis. . Nutr. Metab. 1:(1):5
    [Crossref] [Google Scholar]
  116. 116.
    Westerterp KR, Yamada Y, Sagayama H, Ainslie PN, Andersen LF, et al. 2021.. Physical activity and fat-free mass during growth and in later life. . Am. J. Clin. Nutr. 114:(5):158389
    [Crossref] [Google Scholar]
  117. 117.
    Weyer C, Snitker S, Rising R, Bogardus C, Ravussin E. 1999.. Determinants of energy expenditure and fuel utilization in man: effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects. . Int. J. Obes. Relat. Metab. Disord. 23:(7):71522
    [Crossref] [Google Scholar]
  118. 118.
    Weyer C, Vozarova B, Ravussin E, Tataranni PA. 2001.. Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians. . Int. J. Obes. 25:(5):593600
    [Crossref] [Google Scholar]
  119. 119.
    Zitting K-M, Vujovic N, Yuan RK, Isherwood CM, Medina JE, et al. 2018.. Human resting energy expenditure varies with circadian phase. . Curr. Biol. 28:(22):368590.e3
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nutr-062122-031443
Loading
/content/journals/10.1146/annurev-nutr-062122-031443
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error