1932

Abstract

Over the last decades, surgical complication rates have fallen drastically. With the introduction of new surgical techniques coupled with specific evidence-based perioperative care protocols, patients today run half the risk of complications compared with traditional care. Many patients who in previous years needed weeks of hospital care now recover and can leave in days. These remarkable improvements are achieved by using nutritional stress-reducing care elements for the surgical patient that reduce metabolic stress and allow for the return of gut function. This new approach to nutritional care and how it is delivered as an integral part of enhancing recovery after surgery are outlined in this review. We also summarize the new and increased understanding of the effects of the routes of delivering nutrition and the role of the gut, as well as the current recommendations for artificial nutritional support.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062222-021228
2024-08-29
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-062222-021228.html?itemId=/content/journals/10.1146/annurev-nutr-062222-021228&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adiamah A, Ranat R, Gomez D. 2019.. Enteral versus parenteral nutrition following pancreaticoduodenectomy: a systematic review and meta-analysis. . HPB 21:(7):793801
    [Crossref] [Google Scholar]
  2. 2.
    Alverdy J, Zaborina O, Wu L. 2005.. The impact of stress and nutrition on bacterial–host interactions at the intestinal epithelial surface. . Curr. Opin. Clin. Nutr. Metab. Care 8:(2):2059
    [Crossref] [Google Scholar]
  3. 3.
    Andersen HK, Lewis SJ, Thomas S. 2006.. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. . Cochrane Database Syst. Rev. 2006:(4):CD004080.pub2
    [Google Scholar]
  4. 4.
    Arends J, Baracos V, Bertz H, Bozzetti F, Calder PC, et al. 2017.. ESPEN expert group recommendations for action against cancer-related malnutrition. . Clin. Nutr. 36:(5):118796
    [Crossref] [Google Scholar]
  5. 5.
    Barazzoni R, Gortan Cappellari G. 2020.. Double burden of malnutrition in persons with obesity. . Rev. Endocr. Metab. Disord. 21:(3):30713
    [Crossref] [Google Scholar]
  6. 6.
    Barazzoni R, Jensen GL, Correia MITD, Gonzalez MC, Higashiguchi T, et al. 2022.. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition (GLIM) diagnosis of malnutrition. . Clin. Nutr. 41:(6):142533
    [Crossref] [Google Scholar]
  7. 7.
    Barberan-Garcia A, Ubré M, Roca J, Lacy AM, Burgos F, Risco R, et al. 2018.. Personalised prehabilitation in high-risk patients undergoing elective major abdominal surgery: a randomized blinded controlled trial. . Ann. Surg. 267:(1):5056
    [Crossref] [Google Scholar]
  8. 8.
    Berkel AEM, Bongers BC, Kotte H, Weltevreden P, de Jongh FHC, Eijsvogel MMM, et al. 2022.. Effects of community-based exercise prehabilitation for patients scheduled for colorectal surgery with high risk for postoperative complications: results of a randomized clinical trial. . Ann. Surg. 275:(2):e299306
    [Crossref] [Google Scholar]
  9. 9.
    Berkelmans GHK, Kingma BF, Fransen LFC, Nieuwenhuijzen GAP, Ruurda JP, van Hillegersberg R, et al. 2020.. Feeding protocol deviation after esophagectomy: a retrospective multicenter study. . Clin. Nutr. 39:(4):125863
    [Crossref] [Google Scholar]
  10. 10.
    Bicakli DH, Uslu R, Güney SC, Coker A. 2020.. The relationship between nutritional status, performance status, and survival among pancreatic cancer patients. . Nutr. Cancer 72:(2):2028
    [Crossref] [Google Scholar]
  11. 11.
    Böhne SEJ, Hiesmayr M, Sulz I, Tarantino S, Wirth R, Volkert D. 2020.. Recent and current low food intake–prevalence and associated factors in hospital patients from different medical specialities. . Eur. J. Clin. Nutr. 76:(10):144048
    [Crossref] [Google Scholar]
  12. 12.
    Bozzetti F, Gianotti L, Braga M, Di Carlo V, Mariani L. 2007.. Postoperative complications in gastrointestinal cancer patients: the joint role of the nutritional status and the nutritional support. . Clin. Nutr. 26:(6):698709
    [Crossref] [Google Scholar]
  13. 13.
    Braga M, Gianotti L, Gentilini O, Liotta S, Di Carlo V. 2002.. Feeding the gut early after digestive surgery: results of a nine-year experience. . Clin. Nutr. 21:(1):5965
    [Crossref] [Google Scholar]
  14. 14.
    Braga M, Pecorelli N, Ariotti R, Capretti G, Greco M, Balzano G, et al. 2014.. Enhanced recovery after surgery pathway in patients undergoing pancreaticoduodenectomy. . World J. Surg. 38:(11):296066
    [Crossref] [Google Scholar]
  15. 15.
    Bragg D, El-Sharkawy AM, Psaltis E, Maxwell-Armstrong CA, Lobo DN. 2015.. Postoperative ileus: recent developments in pathophysiology and management. . Clin. Nutr. 34:(3):36776
    [Crossref] [Google Scholar]
  16. 16.
    Brandstrup B, Tønnesen H, Beier-Holgersen R, Hjortsø E, Ørding H, et al. 2003.. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. . Ann. Surg. 238:(5):64148
    [Crossref] [Google Scholar]
  17. 17.
    Burden S, Todd C, Hill J, Lal S. 2012.. Pre-operative nutrition support in patients undergoing gastrointestinal surgery. . Cochrane Database Syst. Rev. 2012:(11):CD008879
    [Google Scholar]
  18. 18.
    Canelli R, Louca J, Hartman C, Bilotta F. 2023.. Preoperative carbohydrate load to reduce perioperative glycemic variability and improve surgical outcomes: a scoping review. . World J. Diabetes 14:(6):78394
    [Crossref] [Google Scholar]
  19. 19.
    Cao Y, Han D, Zhou X, Han Y, Zhang Y, Li H. 2022.. Effects of preoperative nutrition on postoperative outcomes in esophageal cancer: a systematic review and meta-analysis. . Dis. Esophagus 35:(3):doab028
    [Crossref] [Google Scholar]
  20. 20.
    Carli F, Charlebois P, Stein B, Feldman L, Zavorsky G, et al. 2010.. Randomized clinical trial of prehabilitation in colorectal surgery. . Br. J. Surg. 97:(8):118797
    [Crossref] [Google Scholar]
  21. 21.
    Cederholm T, Jensen GL, Correia MITD, Gonzalez MC, Fukushima R, et al. 2019.. GLIM criteria for the diagnosis of malnutrition—a consensus report from the global clinical nutrition community. . Clin. Nutr. 38:(1):19
    [Crossref] [Google Scholar]
  22. 22.
    Chapman SJ, Pericleous A, Downey C, Jayne DG. 2018.. Postoperative ileus following major colorectal surgery. . Br. J. Surg. 105:(7):797810
    [Crossref] [Google Scholar]
  23. 23.
    Chen CY, Tsai CY. 2012.. Ghrelin and motilin in the gastrointestinal system. . Curr. Pharm. Des. 18:(31):475565
    [Crossref] [Google Scholar]
  24. 24.
    Chen X, Wang P, Leng C, Sun H, Liu X, et al. 2022.. Early oral feeding after esophagectomy accelerated gut function recovery by regulating brain-gut peptide secretion. . Surgery 172:(3):91925
    [Crossref] [Google Scholar]
  25. 25.
    Cheung NW, Napier B, Zaccaria C, Fletcher JP. 2005.. Hyperglycemia is associated with adverse outcomes in patients receiving total parenteral nutrition. . Diabetes Care 28:(10):236771
    [Crossref] [Google Scholar]
  26. 26.
    Chowdhury AH, Adiamah A, Kushairi A, Varadhan KK, Krznaric Z, et al. 2020.. Perioperative probiotics or synbiotics in adults undergoing elective abdominal surgery: a systematic review and meta-analysis of randomized controlled trials. . Ann. Surg. 271:(6):103647
    [Crossref] [Google Scholar]
  27. 27.
    Clark AB, Reijnierse EM, Lim WK, Maier AB. 2020.. Prevalence of malnutrition comparing the GLIM criteria, ESPEN definition and MST malnutrition risk in geriatric rehabilitation patients: RESORT. . Clin. Nutr. 39:(11):350411
    [Crossref] [Google Scholar]
  28. 28.
    De Luca R, Gianotti L, Pedrazzoli P, Brunetti O, Rizzo A, et al. 2023.. Immunonutrition and prehabilitation in pancreatic cancer surgery: a new concept in the era of ERAS® and neoadjuvant treatment. . Eur. J. Surg. Oncol. 49:(3):54249
    [Crossref] [Google Scholar]
  29. 29.
    Denton C, Price A, Friend J, Manithody C, Blomenkamp K, et al. 2018.. Role of the gut–liver axis in driving parenteral nutrition-associated injury. . Children 5:(10):136
    [Crossref] [Google Scholar]
  30. 30.
    Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar MD, et al. 2022.. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. . Obes. Facts 15:(3):32135
    [Crossref] [Google Scholar]
  31. 31.
    Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ. 2019.. Gut microbiota and colonization resistance against bacterial enteric infection. . Microbiol. Mol. Biol. Rev. 83:(3): 10.1128/mmbr.00007-19
    [Crossref] [Google Scholar]
  32. 32.
    Dungan KM, Braithwaite SS, Preiser J-C. 2009.. Stress hyperglycaemia. . Lancet 373::1798807
    [Crossref] [Google Scholar]
  33. 33.
    Engelen MP, van der Meij BS, Deutz NE. 2016.. Protein anabolic resistance in cancer: Does it really exist?. Curr. Opin. Clin. Nutr. Metab. Care 19:(1):3947
    [Crossref] [Google Scholar]
  34. 34.
    Evans DC, Corkins MR, Malone A, Miller S, Mogensen KM, et al. 2021.. The use of visceral proteins as nutrition markers: an ASPEN position paper. . Nutr. Clin. Pract. 36:(1):2228
    [Crossref] [Google Scholar]
  35. 35.
    Famularo S, Donadon M, Roccamatisi L, Di Lucca G, Angrisani M, et al. 2023.. Association of indirect measurement of cell function by bioimpedance analysis with complications in oncologic hepatic surgery. . HPB 25:(3):28392
    [Crossref] [Google Scholar]
  36. 36.
    Fearon KC, Ljungqvist O, Von Meyenfeldt M, Revhaug A, Dejong CH, et al. 2005.. Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. . Clin. Nutr. 24:(3):46677
    [Crossref] [Google Scholar]
  37. 37.
    Feldman LS, Kaneva P, Demyttenaere S, Carli F, Fried GM, Mayo NE. 2009.. Validation of a physical activity questionnaire (CHAMPS) as an indicator of postoperative recovery after laparoscopic cholecystectomy. . Surgery 146:(1):3139
    [Crossref] [Google Scholar]
  38. 38.
    Fukuzawa J, Terashima H, Ohkohchi N. 2007.. Early postoperative oral feeding accelerates upper gastrointestinal anastomotic healing in the rat model. . World J. Surg. 31:(6):123439
    [Crossref] [Google Scholar]
  39. 39.
    Gerritsen A, Besselink MG, Cieslak KP, Vriens MR, Steenhagen E, et al. 2012.. Efficacy and complications of nasojejunal, jejunostomy and parenteral feeding after pancreaticoduodenectomy. . J. Gastrointest. Surg. 16:(6):114451
    [Crossref] [Google Scholar]
  40. 40.
    Gerritsen A, Besselink MG, Gouma DJ, Steenhagen E, Borel Rinkes IH, Molenaar IQ. 2013.. Systematic review of five feeding routes after pancreatoduodenectomy. . Br. J. Surg. 100:(5):58998; discuss. 599
    [Crossref] [Google Scholar]
  41. 41.
    Gerritsen A, Wennink RAW, Busch ORC, Borel Rinkes IHM, Kazemier G, et al. 2015.. Feeding patients with preoperative symptoms of gastric outlet obstruction after pancreatoduodenectomy: early oral or routine nasojejunal tube feeding?. Pancreatology 15:(5):54853
    [Crossref] [Google Scholar]
  42. 42.
    Gianotti L, Biffi R, Sandini M, Marrelli D, Vignali A, et al. 2018.. Preoperative oral carbohydrate load versus placebo in major elective abdominal surgery (PROCY): a randomized, placebo-controlled, multicenter, phase III trial. . Ann. Surg. 267:(4):62330
    [Crossref] [Google Scholar]
  43. 43.
    Gianotti L, Braga M, Fortis C, Soldini L, Vignali A, et al. 1999.. A prospective, randomized clinical trial on perioperative feeding with an arginine-, omega-3 fatty acid-, and RNA-enriched enteral diet: effect on host response and nutritional status. . JPEN J. Parenter. Enter. Nutr. 23:(6):31420
    [Crossref] [Google Scholar]
  44. 44.
    Gianotti L, Nespoli L, Sandini M. 2024.. Pharmaconutrition: which substrates?. Eur. J. Surg. Oncol. 50:(5):106798
    [Crossref] [Google Scholar]
  45. 45.
    Gianotti L, Sandini M, Hackert T. 2020.. Preoperative carbohydrates: What is new?. Curr. Opin. Clin. Nutr. Metab. Care 23:(4):26270
    [Crossref] [Google Scholar]
  46. 46.
    Gianotti L, Sandini M, Romagnoli S, Carli F, Ljungqvist O. 2020.. Enhanced recovery programs in gastrointestinal surgery: actions to promote optimal perioperative nutritional and metabolic care. . Clin. Nutr. 39:(7):201424
    [Crossref] [Google Scholar]
  47. 47.
    Gillis C, Buhler K, Bresee L, Carli F, Gramlich L, et al. 2018.. Effects of nutritional prehabilitation, with and without exercise, on outcomes of patients who undergo colorectal surgery: a systematic review and meta-analysis. . Gastroenterology 155:(2):391410.e4
    [Crossref] [Google Scholar]
  48. 48.
    Gillis C, Carli F. 2015.. Promoting perioperative metabolic and nutritional care. . Anesthesiology 123::145572
    [Crossref] [Google Scholar]
  49. 49.
    Gillis C, Fenton TR, Gramlich L, Keller H, Sajobi TT, et al. 2022.. Malnutrition modifies the response to multimodal prehabilitation: a pooled analysis of prehabilitation trials. . Appl. Physiol. Nutr. Metab. 47:(2):14150
    [Crossref] [Google Scholar]
  50. 50.
    Gillis C, Fenton TR, Gramlich L, Sajobi TT, Culos-Reed SN, et al. 2021.. Older frail prehabilitated patients who cannot attain a 400 m 6-min walking distance before colorectal surgery suffer more postoperative complications. . Eur. J. Surg. Oncol. 47:(4):87481
    [Crossref] [Google Scholar]
  51. 51.
    Gillis C, Fenton TR, Sajobi TT, Minnella EM, Awasthi R, et al. 2019.. Trimodal prehabilitation for colorectal surgery attenuates post-surgical losses in lean body mass: a pooled analysis of randomized controlled trials. . Clin. Nutr. 38:(3):105360
    [Crossref] [Google Scholar]
  52. 52.
    Gillis C, Loiselle SE, Fiore JF Jr., Awasthi R, Wykes L, et al. 2016.. Prehabilitation with whey protein supplementation on perioperative functional exercise capacity in patients undergoing colorectal resection for cancer: a pilot double-blinded randomized placebo-controlled trial. . J. Acad. Nutr. Diet. 116:(5):80212
    [Crossref] [Google Scholar]
  53. 53.
    Gillis C, Richer L, Fenton TR, Gramlich L, Keller H, et al. 2021.. Colorectal cancer patients with malnutrition suffer poor physical and mental health before surgery. . Surgery 170:(3):84147
    [Crossref] [Google Scholar]
  54. 54.
    Gillis C, Wischmeyer PE. 2019.. Pre-operative nutrition and the elective surgical patient: why, how and what?. Anaesthesia 74:(Suppl. 1):2735
    [Crossref] [Google Scholar]
  55. 55.
    Gomez-Perez SL, Haus JM, Sheean P, Patel B, Mar W, et al. 2016.. Measuring abdominal circumference and skeletal muscle from a single cross-sectional computed tomography image: a step-by-step guide for clinicians using National Institutes of Health ImageJ. . JPEN J. Parenter. Enter. Nutr. 40:(3):30818. Corrigendum . 2016.. JPEN J. Perenter. Enter. Nutr. 40:(5):74243
    [Google Scholar]
  56. 56.
    Greco M, Capretti G, Beretta L, Gemma M, Pecorelli N, Braga M. 2014.. Enhanced recovery program in colorectal surgery: a meta-analysis of randomized controlled trials. . World J. Surg. 38:(6):153141
    [Crossref] [Google Scholar]
  57. 57.
    Gruber ES, Jomrich G, Tamandl D, Gnant M, Schindl M, Sahora K. 2019.. Sarcopenia and sarcopenic obesity are independent adverse prognostic factors in resectable pancreatic ductal adenocarcinoma. . PLOS ONE 15:(12):e0244896
    [Crossref] [Google Scholar]
  58. 58.
    Gupta V. 2009.. Benefits versus risks: a prospective audit. Feeding jejunostomy during esophagectomy. . World J. Surg. 33:(7):143238
    [Crossref] [Google Scholar]
  59. 59.
    Gustafsson UO, Hausel J, Thorell A, Ljungqvist O, Soop M, et al. 2011.. Adherence to the enhanced recovery after surgery protocol and outcomes after colorectal cancer surgery. . Arch. Surg. 146:(5):57177
    [Crossref] [Google Scholar]
  60. 60.
    Gustafsson UO, Oppelstrup H, Thorell A, Nygren J, Ljungqvist O. 2016.. Adherence to the ERAS protocol is associated with 5-year survival after colorectal cancer surgery: a retrospective cohort study. . World J. Surg. 40:(7):174147
    [Crossref] [Google Scholar]
  61. 61.
    Gustafsson UO, Scott MJ, Hübner M, Nygren J, Demartines N, et al. 2019.. Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS) Society recommendations. . World J. Surg. 43::65995
    [Crossref] [Google Scholar]
  62. 62.
    Hajjar R, Gonzalez E, Fragoso G, Oliero M, Alaoui AA, Calve A, et al. 2023.. Gut microbiota influence anastomotic healing in colorectal cancer surgery through modulation of mucosal proinflammatory cytokines. . Gut 72:(6):114354
    [Crossref] [Google Scholar]
  63. 63.
    Han-Geurts IJ, Hop WC, Verhoef C, Tran KT, Tilanus HW. 2007.. Randomized clinical trial comparing feeding jejunostomy with nasoduodenal tube placement in patients undergoing oesophagectomy. . Br. J. Surg. 94:(1):3135
    [Crossref] [Google Scholar]
  64. 64.
    Herbert G, Perry R, Andersen HK, Atkinson C, Penfold C, et al. 2018.. Early enteral nutrition within 24 hours of lower gastrointestinal surgery versus later commencement for length of hospital stay and postoperative complications. . Cochrane Database Syst. Rev. 2018:(10):CD004080
    [Google Scholar]
  65. 65.
    Hruby W, Stellamor K. 1988.. Behavior of contrast media in liver tumors in computerized tomography—correlation between pharmacokinetics and histological structure. . Rontgenblatter 41:(4):13339
    [Google Scholar]
  66. 66.
    Hsiung T, Chao WP, Chai SW, Chou TC, Wang CY, Huang TS. 2023.. Laparoscopic versus open feeding jejunostomy: a systemic review and meta-analysis. . Surg. Endosc. 37:(4):248595
    [Crossref] [Google Scholar]
  67. 67.
    Ishida T, Makino T, Yamasaki M, Yamashita K, Tanaka K, et al. 2021.. Quantity and quality of skeletal muscle as an important predictor of clinical outcomes in patients with esophageal cancer undergoing esophagectomy after neoadjuvant chemotherapy. . Ann. Surg. Oncol. 28:(12):718595
    [Crossref] [Google Scholar]
  68. 68.
    Jabbar A, Chang WK, Dryden GW, McClave SA. 2003.. Gut immunology and the differential response to feeding and starvation. . Nutr. Clin. Pract. 18:(6):46182
    [Crossref] [Google Scholar]
  69. 69.
    Jang MK, Park C, Hong S, Li H, Rhee E, Doorenbos AZ. 2020.. Skeletal muscle mass change during chemotherapy: a systematic review and meta-analysis. . Anticancer Res. 40:(5):240918
    [Crossref] [Google Scholar]
  70. 70.
    Janssen HJB, Gantxegi A, Fransen LFC, Nieuwenhuijzen GAP, Luyer MDP. 2021.. Risk factors for failure of direct oral feeding following a totally minimally invasive esophagectomy. . Nutrients 13:(10):3616
    [Crossref] [Google Scholar]
  71. 71.
    Kao LS, Phatak UR. 2013.. Glycemic control and prevention of surgical site infection. . Surg. Infect. 14::43744
    [Crossref] [Google Scholar]
  72. 72.
    Kehlet H. 1997.. Multimodal approach to control postoperative pathophysiology and rehabilitation. . Br. J. Anaesth. 78:(5):60617
    [Crossref] [Google Scholar]
  73. 73.
    Kehlet H. 2000.. Postoperative ileus. . Gut 47:(Suppl. 4):iv8586
    [Google Scholar]
  74. 74.
    Kenny E, Samavat H, Touger-Decker R, Parrott JS, Byham-Gray L, August DA. 2022.. Adverse perioperative outcomes among patients undergoing gastrointestinal cancer surgery: quantifying attributable risk from malnutrition. . JPEN J. Parenter. Enter. Nutr. 46:(3):51725
    [Crossref] [Google Scholar]
  75. 75.
    Khan A, Wong J, Riedel B, Laing E, Beaumont A, et al. 2023.. The impact of peri-operative enteral immunonutrition on post-operative complications in gastrointestinal cancer surgery: a meta-analysis. . Ann. Surg. Oncol. 30:(6):361931
    [Crossref] [Google Scholar]
  76. 76.
    Kiran RP, Turina M, Hammel J. 2013.. The clinical significance of an elevated postoperative glucose value in nondiabetic patients after colorectal surgery: evidence for the need for tight glucose control?. Ann. Surg. 258::599604
    [Crossref] [Google Scholar]
  77. 77.
    Kolodziejczyk AA, Zheng D, Elinav E. 2019.. Diet–microbiota interactions and personalized nutrition. . Nat. Rev. Microbiol. 17:(12):74253
    [Crossref] [Google Scholar]
  78. 78.
    Kondrup J, Allison SP, Elia M, Vellas B, Plauth M, et al. 2003.. ESPEN guidelines for nutrition screening 2002. . Clin. Nutr. 22:(4):41521
    [Crossref] [Google Scholar]
  79. 79.
    Kudsk KA. 2001.. Importance of enteral feeding in maintaining gut integrity. . Tech. Gastrointest. Endosc. 3::28
    [Crossref] [Google Scholar]
  80. 80.
    Kudsk KA. 2002.. Current aspects of mucosal immunology and its influence by nutrition. . Am. J. Surg. 183:(4):39098
    [Crossref] [Google Scholar]
  81. 81.
    Kuwada K, Kikuchi S, Kuroda S, Yoshida R, Takagi K, et al. 2023.. Survival impact of postoperative skeletal muscle loss in gastric cancer patients who underwent gastrectomy. . Anticancer Res. 43:(1):22330
    [Crossref] [Google Scholar]
  82. 82.
    Lassen K, Kjaeve J, Fetveit T, Trano G, Sigurdsson HK, et al. 2008.. Allowing normal food at will after major upper gastrointestinal surgery does not increase morbidity: a randomized multicenter trial. . Ann. Surg. 247:(5):72129
    [Crossref] [Google Scholar]
  83. 83.
    Levy N, Quinlan J, El-Boghdadly K, Fawcett WJ, Agarwal V, et al. 2021.. An international multidisciplinary consensus statement on the prevention of opioid-related harm in adult surgical patients. . Anaesthesia 76:(4):52036
    [Crossref] [Google Scholar]
  84. 84.
    Lewis SR, Schofield-Robinson OJ, Alderson P, Smith AF. 2018.. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. . Cochrane Database Syst. Rev. 2018:(6):CD012276
    [Google Scholar]
  85. 85.
    Li C, Carli F, Lee L, Charlebois P, Stein B, et al. 2013.. Impact of a trimodal prehabilitation program on functional recovery after colorectal cancer surgery: a pilot study. . Surg. Endosc. 27:(4):107282
    [Crossref] [Google Scholar]
  86. 86.
    Li K, Zeng Z, Zhang Z, Ye X, Yu J, Kang W. 2023.. Comparisons of nutritional status and complications between patients with and without postoperative feeding jejunostomy tube in gastric cancer: a retrospective study. . J. Gastrointest. Oncol. 14:(1):97109
    [Crossref] [Google Scholar]
  87. 87.
    Ligthart-Melis GC, Luiking YC, Kakourou A, Cederholm T, Maier AB, de van der Schueren MAE. 2020.. Frailty, sarcopenia, and malnutrition frequently (co-)occur in hospitalized older adults: a systematic review and meta-analysis. . J. Am. Med. Direct. Assoc. 21:(9):121628
    [Crossref] [Google Scholar]
  88. 88.
    Littman DR, Pamer EG. 2011.. Role of the commensal microbiota in normal and pathogenic host immune responses. . Cell Host Microbe 10:(4):31123
    [Crossref] [Google Scholar]
  89. 89.
    Ljungqvist O, Gustafsson U, de Boer HD. 2023.. 20+years of enhanced recovery after surgery: What's next. . World J. Surg. 47:(5):108789
    [Crossref] [Google Scholar]
  90. 90.
    Ljungqvist O, Nelson G, Demartines N. 2020.. The post COVID-19 surgical backlog: Now is the time to implement Enhanced Recovery After Surgery (ERAS). . World J. Surg. 44:(10):319798
    [Crossref] [Google Scholar]
  91. 91.
    Ljungqvist O, Scott M, Fearon KC. 2017.. Enhanced recovery after surgery: a review. . JAMA Surg. 152:(3):29298
    [Crossref] [Google Scholar]
  92. 92.
    Lobo DN. 2009.. Fluid overload and surgical outcome: another piece in the jigsaw. . Ann. Surg. 249:(2):18688
    [Crossref] [Google Scholar]
  93. 93.
    Lobo DN, Gianotti L, Adiamah A, Barazzoni R, Deutz NEP, Dhatariya K, et al. 2020.. Perioperative nutrition: recommendations from the ESPEN expert group. . Clin. Nutr. 39:(11):321127
    [Crossref] [Google Scholar]
  94. 94.
    López-Rodríguez-Arias F, Sánchez-Guillén L, Lillo-García C, Aranaz-Ostáriz V, Alcaide MJ, et al. 2021.. Assessment of body composition as an indicator of early peripheral parenteral nutrition therapy in patients undergoing colorectal cancer surgery in an enhanced recovery program. . Nutrients 13:(9):3245
    [Crossref] [Google Scholar]
  95. 95.
    Markides GA, Al-Khaffaf B, Vickers J. 2011.. Nutritional access routes following oesophagectomy—a systematic review. . Eur. J. Clin. Nutr. 65:(5):56573
    [Crossref] [Google Scholar]
  96. 96.
    Martin L, Gillis C, Atkins M, Gillam M, Sheppard C, et al. 2019.. Implementation of an enhanced recovery after surgery program can change nutrition care practice: a multicenter experience in elective colorectal surgery. . JPEN J. Parenter. Enter. Nutr. 43:(2):20619
    [Crossref] [Google Scholar]
  97. 97.
    Martin L, Gioulbasanis I, Senesse P, Baracos VE. 2020.. Cancer-associated malnutrition and CT-defined sarcopenia and myosteatosis are endemic in overweight and obese patients. . JPEN J. Parenter. Enter. Nutr. 44:(2):22738
    [Crossref] [Google Scholar]
  98. 98.
    Mayanagi S, Tsubosa Y, Omae K, Niihara M, Uchida T, et al. 2017.. Negative impact of skeletal muscle wasting after neoadjuvant chemotherapy followed by surgery on survival for patients with thoracic esophageal cancer. . Ann. Surg. Oncol. 24:(12):374147
    [Crossref] [Google Scholar]
  99. 99.
    Mazaki T, Ebisawa K. 2008.. Enteral versus parenteral nutrition after gastrointestinal surgery: a systematic review and meta-analysis of randomized controlled trials in the English literature. . J. Gastrointest. Surg. 12:(4):73955
    [Crossref] [Google Scholar]
  100. 100.
    Mc Loughlin S, Terrasa SA, Ljungqvist O, Sanchez G, Garcia Fornari G, Alvarez AO. 2019.. Nausea and vomiting in a colorectal ERAS program: impact on nutritional recovery and the length of hospital stay. . Clin. Nutr. ESPEN 34::7380
    [Crossref] [Google Scholar]
  101. 101.
    Molenaar CJL, Minnella EM, Coca-Martinez M, ten Cate DWG, Regis M, et al. 2023.. Effect of multimodal prehabilitation on reducing postoperative complications and enhancing functional capacity following colorectal cancer surgery: the PREHAB randomized clinical trial. . JAMA Surg. 158:(6):57281
    [Crossref] [Google Scholar]
  102. 102.
    Montanari C, Parolisi S, Borghi E, Putignani L, Bassanini G, et al. 2021.. Dysbiosis, host metabolism, and non-communicable diseases: trialogue in the inborn errors of metabolism. . Front. Physiol. 12::716520
    [Crossref] [Google Scholar]
  103. 103.
    Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, et al. 2015.. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. . J. Gerontol. Ser. A Biol. Sci. Med. Sci. 70:(1):5762
    [Crossref] [Google Scholar]
  104. 104.
    Moya P, Soriano-Irigaray L, Ramirez JM, Garcea A, Blasco O, et al. 2016.. Perioperative standard oral nutrition supplements versus immunonutrition in patients undergoing colorectal resection in an Enhanced Recovery (ERAS) protocol: a multicenter randomized clinical trial (SONVI Study). . Medicine 95:(21):e3704
    [Crossref] [Google Scholar]
  105. 105.
    Ng SC, Hart AL, Kamm MA. 2009.. Mechanisms of action of probiotics: recent advances. . Inflamm. Bowel Dis. 15::30010
    [Crossref] [Google Scholar]
  106. 106.
    NICE-SUGAR Study Investig. 2009.. Intensive versus conventional glucose control in critically ill patients. . N. Engl. J. Med. 360::128397
    [Crossref] [Google Scholar]
  107. 107.
    Nygren J, Thorell A, Ljungqvist O. 2015.. Preoperative oral carbohydrate therapy. . Curr. Opin. Anaesthesiol. 28:(3):36469
    [Crossref] [Google Scholar]
  108. 108.
    Pang Q, Duan L, Jiang Y, Liu H. 2021.. Oncologic and long-term outcomes of enhanced recovery after surgery in cancer surgeries—a systematic review. . World J. Surg. Oncol. 19:(1):191
    [Crossref] [Google Scholar]
  109. 109.
    Pappas TN, Tache Y, Debas HT. 1985.. Opposing central and peripheral actions of brain-gut peptides: a basis for regulation of gastric function. . Surgery 98:(2):18390
    [Google Scholar]
  110. 110.
    Phillips SM. 2004.. Protein requirements and supplementation in strength sports. . Nutrition 20:(7–8):68995
    [Crossref] [Google Scholar]
  111. 111.
    Phillips SM. 2011.. The science of muscle hypertrophy: making dietary protein count. . Proc. Nutr. Soc. 70:(1):1003
    [Crossref] [Google Scholar]
  112. 112.
    Prado CM, Ford KL, Gonzalez MC, Murnane LC, Gillis C, et al. 2023.. Nascent to novel methods to evaluate malnutrition and frailty in the surgical patient. . JPEN J. Parenter. Enter. Nutr. 47:(Suppl. 1):S5468
    [Google Scholar]
  113. 113.
    Prado CM, Purcell SA, Laviano A. 2020.. Nutrition interventions to treat low muscle mass in cancer. . J. Cachexia Sarcopenia Muscle 11:(2):36680
    [Crossref] [Google Scholar]
  114. 114.
    Roberfroid M. 2007.. Prebiotics: the concept revisited. . J. Nutr. 137::830S37S
    [Crossref] [Google Scholar]
  115. 115.
    Roulin D, Blanc C, Muradbegovic M, Hahnloser D, Demartines N, Hubner M. 2014.. Enhanced recovery pathway for urgent colectomy. . World J. Surg. 38:(8):215359
    [Crossref] [Google Scholar]
  116. 116.
    Sandini M, Patino M, Ferrone CR, Alvarez-Pérez CA, Honselmann KC, et al. 2018.. Association between changes in body composition and neoadjuvant treatment for pancreatic cancer. . JAMA Surg. 153:(9):80915
    [Crossref] [Google Scholar]
  117. 117.
    Sanger GJ, Furness JB. 2016.. Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. . Nat. Rev. Gastroenterol. Hepatol. 13:(1):3848
    [Crossref] [Google Scholar]
  118. 118.
    Schmidt PT, Holst JJ. 2000.. Tachykinins in regulation of gastric motility and secretion. . Cell Mol. Life Sci. 57:(4):57988
    [Crossref] [Google Scholar]
  119. 119.
    Schorghuber M, Fruhwald S. 2018.. Effects of enteral nutrition on gastrointestinal function in patients who are critically ill. . Lancet Gastroenterol. Hepatol. 3:(4):28187
    [Crossref] [Google Scholar]
  120. 120.
    Schricker T, Latterman R, Carli F. 2020.. Physiology and pathophysiology of ERAS. . In Enhanced Recovery After Surgery: A Complete Guide to Optimizing Outcomes, ed. O Ljungqvist, NK Francis, RD Urman , pp. 1122. Cham, Switz:.: Springer Nature
    [Google Scholar]
  121. 121.
    Scott MJ, Aggarwal G, Aitken RJ, Anderson ID, Balfour A, et al. 2023.. Consensus guidelines for perioperative care for emergency laparotomy Enhanced Recovery After Surgery (ERAS®) Society recommendations part 2—emergency laparotomy: intra- and postoperative care. . World J. Surg. 47:(8):185080
    [Crossref] [Google Scholar]
  122. 122.
    Senkal M, Kemen M, Homann HH, Eickhoff U, Baier J, Zumtobel V. 1995.. Modulation of postoperative immune response by enteral nutrition with a diet enriched with arginine, RNA, and omega-3 fatty acids in patients with upper gastrointestinal cancer. . Eur. J. Surg. 161:(2):11522
    [Google Scholar]
  123. 123.
    Shafi S, Aboutanos MB, Agarwal S Jr., Brown CV, Crandall M, et al. 2013.. Emergency general surgery: definition and estimated burden of disease. . J. Trauma Acute Care Surg. 74:(4):109297
    [Crossref] [Google Scholar]
  124. 124.
    Shin CH, Long DR, McLean D, Grabitz SD, Ladha K, et al. 2018.. Effects of intraoperative fluid management on postoperative outcomes: a hospital registry study. . Ann. Surg. 267:(6):108492
    [Crossref] [Google Scholar]
  125. 125.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, et al. 2014.. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. . Immunity 40:(1):12839
    [Crossref] [Google Scholar]
  126. 126.
    Skeie E, Tangvik RJ, Nymo LS, Harthug S, Lassen K, Viste A. 2020.. Weight loss and BMI criteria in GLIM's definition of malnutrition is associated with postoperative complications following abdominal resections—results from a National Quality Registry. . Clin. Nutr. 39:(5):159399
    [Crossref] [Google Scholar]
  127. 127.
    Soop M, Nygren J, Myrenfors P. 2001.. Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance. . Am. J. Physiol. Endocrinol. Metab. 280::E57683
    [Crossref] [Google Scholar]
  128. 128.
    Spanjersberg WR, van Sambeeck JD, Bremers A, Rosman C, van Laarhoven CJ. 2015.. Systematic review and meta-analysis for laparoscopic versus open colon surgery with or without an ERAS programme. . Surg. Endosc. 29:(12):344353
    [Crossref] [Google Scholar]
  129. 129.
    Sun HB, Li Y, Liu XB, Wang ZF, Zhang RX, et al. 2019.. Impact of an early oral feeding protocol on inflammatory cytokine changes after esophagectomy. . Ann. Thorac. Surg. 107:(3):91220
    [Crossref] [Google Scholar]
  130. 130.
    Thanh N, Nelson A, Wang X, Faris P, Wasylak T, et al. 2020.. Return on investment of the Enhanced Recovery After Surgery (ERAS) multiguideline, multisite implementation in Alberta, Canada. . Can. J. Surg. 63:(6):E54250
    [Crossref] [Google Scholar]
  131. 131.
    Thomas G, Tahir MR, Bongers BC, Kallen VL, Slooter GD, van Meeteren NL. 2019.. Prehabilitation before major intra-abdominal cancer surgery: a systematic review of randomised controlled trials. . Eur. J. Anaesthesiol. 36:(12):93345
    [Crossref] [Google Scholar]
  132. 132.
    Varadhan KK, Lobo DN. 2010.. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. . Proc. Nutr. Soc. 69:(4):48898
    [Crossref] [Google Scholar]
  133. 133.
    Varadhan KK, Neal KR, Dejong CH, Fearon KC, Ljungqvist O, Lobo DN. 2010.. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. . Clin. Nutr. 29:(4):43440
    [Crossref] [Google Scholar]
  134. 134.
    Visioni A, Shah R, Gabriel E, Attwood K, Kukar M, Nurkin S. 2018.. Enhanced recovery after surgery for noncolorectal surgery? A systematic review and meta-analysis of major abdominal surgery. . Ann. Surg. 267:(1):5765
    [Crossref] [Google Scholar]
  135. 135.
    Wang P-Y, Chen X-K, Liu Q, Yu Y-K, Xu L, et al. 2020.. Highlighting sarcopenia management for promoting surgical outcomes in esophageal cancers: evidence from a prospective cohort study. . Int. J. Surg. 83::20615
    [Crossref] [Google Scholar]
  136. 136.
    Weimann A, Braga M, Carli F, Higashiguchi T, Hübner M, et al. 2017.. ESPEN guideline: clinical nutrition in surgery. . Clin. Nutr. 36:(3):62350
    [Crossref] [Google Scholar]
  137. 137.
    Weimann A, Braga M, Carli F, Higashiguchi T, Hübner M, et al. 2021.. ESPEN practical guideline: clinical nutrition in surgery. . Clin. Nutr. 40:(7):474561
    [Crossref] [Google Scholar]
  138. 138.
    Willcutts KF, Chung MC, Erenberg CL, Finn KL, Schirmer BD, Byham-Gray LD. 2016.. Early oral feeding as compared with traditional timing of oral feeding after upper gastrointestinal surgery: a systematic review and meta-analysis. . Ann. Surg. 264:(1):5463
    [Crossref] [Google Scholar]
  139. 139.
    Wischmeyer PE, Carli F, Evans DC, Guilbert S, Kozar R, et al. 2018.. American Society for Enhanced Recovery and Perioperative Quality Initiative joint consensus statement on nutrition screening and therapy within a surgical enhanced recovery pathway. . Anesth Analg. 126:(6):188395. Erratum . 2018.. Anesth. Analg. 127:(5):e95
    [Google Scholar]
  140. 140.
    Wobith M, Herbst C, Lurz M, Haberzettl D, Fischer M, Weimann A. 2022.. Evaluation of malnutrition in patients undergoing major abdominal surgery using GLIM criteria and comparing CT and BIA for muscle mass measurement. . Clin. Nutr. ESPEN 50::14854
    [Crossref] [Google Scholar]
  141. 141.
    You K, Sohn DK, Park SS, Park SC, Oh JH, et al. 2022.. Factors associated with diet failure after colon cancer surgery. . Surg. Endosc. 36:(5):286168
    [Crossref] [Google Scholar]
  142. 142.
    Young-Fadok TM, Cramer RC. 2020.. Regional Anestehsia Techniques for abdominal operations. . In Enhanced Recovery After Surgery: A Complete Guide to Optimizing Outcomes, ed. O Ljungqvist, NK Francis, RD Urman , pp. 14962. Cham, Switz:.: Springer Nature
    [Google Scholar]
  143. 143.
    Zhang X, Tang M, Zhang Q, Zhang KP, Guo ZQ, et al. 2021.. The GLIM criteria as an effective tool for nutrition assessment and survival prediction in older adult cancer patients. . Clin. Nutr. 40:(3):122432
    [Crossref] [Google Scholar]
  144. 144.
    Zhang XY, Zhang XZ, Lu FY, Zhang Q, Chen W, et al. 2020.. Factors associated with failure of enhanced recovery after surgery program in patients undergoing pancreaticoduodenectomy. . Hepatobiliary Pancreat. Dis. Int. 19:(1):5157
    [Crossref] [Google Scholar]
  145. 145.
    Zhang Y, Xin Y, Sun P, Cheng D, Xu M, et al. 2019.. Factors associated with failure of Enhanced Recovery After Surgery (ERAS) in colorectal and gastric surgery. . Scand. J. Gastroenterol. 54:(9):112431
    [Crossref] [Google Scholar]
  146. 146.
    Zheng Z, Hu Y, Tang J, Xu W, Zhu W, Zhang W. 2023.. The implication of gut microbiota in recovery from gastrointestinal surgery. . Front. Cell Infect. Microbiol. 13::1110787
    [Crossref] [Google Scholar]
  147. 147.
    Zhong JX, Kang K, Shu XL. 2015.. Effect of nutritional support on clinical outcomes in perioperative malnourished patients: a meta-analysis. . Asia Pac. J. Clin. Nutr. 24:(3):36778
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-062222-021228
Loading
/content/journals/10.1146/annurev-nutr-062222-021228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error