1932

Abstract

Adequate micronutrient intake and status are global public health goals. Vitamin and mineral deficiencies are widespread and known to impair health and survival across the life stages. However, knowledge of molecular effects, metabolic pathways, biological responses to variation in micronutrient nutriture, and abilities to assess populations for micronutrient deficiencies and their pathology remain lacking. Rapidly evolving methodological capabilities in genomics, epigenomics, proteomics, and metabolomics offer unparalleled opportunities for the nutrition research community to link micronutrient exposure to cellular health; discover new, arguably essential micronutrients of microbial origin; and integrate methods of molecular biology, epidemiology, and intervention trials to develop novel approaches to assess and prevent micronutrient deficiencies in populations. In this review article, we offer new terminology to specify nutritional application of multiomic approaches and encourage collaboration across the basic to public health sciences to advance micronutrient deficiency prevention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062322-022751
2024-08-29
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-062322-022751.html?itemId=/content/journals/10.1146/annurev-nutr-062322-022751&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adaikalakoteswari A, Wood C, Mina TH, Webster C, Goljan I, et al. 2020.. Vitamin B12 deficiency and altered one-carbon metabolites in early pregnancy is associated with maternal obesity and dyslipidaemia. . Sci. Rep. 10:(1):11066
    [Crossref] [Google Scholar]
  2. 2.
    Adav SS, Wang Y. 2021.. Metabolomics signatures of aging: recent advances. . Aging Dis. 12:(2):64661
    [Crossref] [Google Scholar]
  3. 3.
    Akshaya KB, Anitha V, Nidhin M, Sudhakar YN, Louis G. 2020.. Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode. . Talanta 217::121028
    [Crossref] [Google Scholar]
  4. 4.
    Allen LH. 2024.. Micronutrients: assessment, requirements, deficiencies and interventions. . N. Engl. J. Med. In press
    [Google Scholar]
  5. 5.
    Alonso A, Marsal S, Julià A. 2015.. Analytical methods in untargeted metabolomics: state of the art in 2015. . Front. Bioeng. Biotechnol. 3::23
    [Crossref] [Google Scholar]
  6. 6.
    Armendares S, Salamanca F, Frenk S. 1971.. Chromosome abnormalities in severe protein calorie malnutrition. . Nature 232:(5308):27173
    [Crossref] [Google Scholar]
  7. 7.
    Baker ZN, Forny P, Pagliarini DJ. 2023.. Mitochondrial proteome research: the road ahead. . Nat. Rev. Mol. Cell Biol. 25:(1):6582
    [Crossref] [Google Scholar]
  8. 8.
    Balbo S, Turesky RJ, Villalta PW. 2014.. DNA adductomics. . Chem. Res. Toxicol. 27:(3):35666
    [Crossref] [Google Scholar]
  9. 9.
    Barnes S, Kim H. 2004.. Nutriproteomics: identifying the molecular targets of nutritive and non-nutritive components of the diet. . J. Biochem. Mol. Biol. 37:(1):5974
    [Google Scholar]
  10. 10.
    Blasco MA. 2007.. The epigenetic regulation of mammalian telomeres. . Nat. Rev. Genet. 8:(4):299309
    [Crossref] [Google Scholar]
  11. 11.
    Borel P, Moussa M, Reboul E, Lyan B, Defoort C, et al. 2009.. Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. . Br. J. Nutr. 101:(5):68087
    [Crossref] [Google Scholar]
  12. 12.
    Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, et al. 2013.. The human urine metabolome. . PLOS ONE 8:(9):e73076
    [Crossref] [Google Scholar]
  13. 13.
    Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, et al. 2003.. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. . PNAS 100:(24):1376166
    [Crossref] [Google Scholar]
  14. 14.
    Brito A, Grapov D, Fahrmann J, Harvey D, Green R, et al. 2017.. The human serum metabolome of vitamin B-12 deficiency and repletion, and associations with neurological function in elderly adults. . J. Nutr. 147:(10):183949
    [Crossref] [Google Scholar]
  15. 15.
    Bull CF, Mayrhofer G, O'Callaghan NJ, Au AY, Pickett HA, et al. 2014.. Folate deficiency induces dysfunctional long and short telomeres; both states are associated with hypomethylation and DNA damage in human WIL2-NS cells. . Cancer Prev. Res. 7:(1):12838
    [Crossref] [Google Scholar]
  16. 16.
    Burk RF, Hill KE. 2015.. Regulation of selenium metabolism and transport. . Annu. Rev. Nutr. 35::10934
    [Crossref] [Google Scholar]
  17. 17.
    Calcaterra V, Verduci E, Milanta C, Agostinelli M, Todisco CF, et al. 2023.. Micronutrient deficiency in children and adolescents with obesity—a narrative review. . Children 10:(4):695
    [Crossref] [Google Scholar]
  18. 18.
    Canela A, Klatt P, Blasco MA. 2007.. Telomere length analysis. . Methods Mol. Biol. 371::4572
    [Crossref] [Google Scholar]
  19. 19.
    Canela A, Vera E, Klatt P, Blasco MA. 2007.. High-throughput telomere length quantification by FISH and its application to human population studies. . PNAS 104:(13):53005
    [Crossref] [Google Scholar]
  20. 20.
    Canudas S, Becerra-Tomás N, Hernández-Alonso P, Galié S, Leung C, et al. 2020.. Mediterranean diet and telomere length: a systematic review and meta-analysis. . Adv. Nutr. 11:(6):154454
    [Crossref] [Google Scholar]
  21. 21.
    Castillo-Valenzuela O, Duarte L, Arredondo M, Iñiguez G, Villarroel L, Pérez-Bravo F. 2023.. Childhood obesity and plasma micronutrient deficit of Chilean children between 4 and 14 years old. . Nutrients 15:(7):1707
    [Crossref] [Google Scholar]
  22. 22.
    Cawthon RM. 2009.. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. . Nucleic Acids Res. 37:(3):e21
    [Crossref] [Google Scholar]
  23. 23.
    Chakrabarti A, Eiden M, Morin-Rivron D, Christinat N, Monteiro JP, et al. 2020.. Impact of multi-micronutrient supplementation on lipidemia of children and adolescents. . Clin. Nutr. 39:(7):221119
    [Crossref] [Google Scholar]
  24. 24.
    Chun J, Toldi G. 2022.. The impact of short-chain fatty acids on neonatal regulatory T cells. . Nutrients 14:(18):3670
    [Crossref] [Google Scholar]
  25. 25.
    Cirulli ET, Guo L, Leon Swisher C, Shah N, Huang L, et al. 2019.. Profound perturbation of the metabolome in obesity is associated with health risk. . Cell Metab. 29:(2):488500.e2
    [Crossref] [Google Scholar]
  26. 26.
    Cole RN, Ruczinski I, Schulze K, Christian P, Herbrich S, et al. 2013.. The plasma proteome identifies expected and novel proteins correlated with micronutrient status in undernourished Nepalese children. . J. Nutr. 143:(10):154048
    [Crossref] [Google Scholar]
  27. 27.
    Da Silva RR, Dorrestein PC, Quinn RA. 2015.. Illuminating the dark matter in metabolomics. . PNAS 112:(41):1254950
    [Crossref] [Google Scholar]
  28. 28.
    Deshmukh AS, Steenberg DE, Hostrup M, Birk JB, Larsen JK, et al. 2021.. Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. . Nat. Commun. 12:(1):304
    [Crossref] [Google Scholar]
  29. 29.
    Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, et al. 2021.. Advances and utility of the human plasma proteome. . J. Proteome Res. 20:(12):524163
    [Crossref] [Google Scholar]
  30. 30.
    Dhillon V, Bull C, Fenech M. 2016.. Telomeres, aging, and nutrition. . In Molecular Basis of Nutrition and Aging, ed. M Malavolta, E Mocchegiani , pp. 12940. Amsterdam:: Elsevier
    [Google Scholar]
  31. 31.
    Dieplinger H, Dieplinger B. 2015.. Afamin—a pleiotropic glycoprotein involved in various disease states. . Clin. Chim. Acta 446::10510
    [Crossref] [Google Scholar]
  32. 32.
    Dizdaroglu M, Coskun E, Jaruga P. 2015.. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. . Free Radic. Res. 49:(5):52548
    [Crossref] [Google Scholar]
  33. 33.
    Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, et al. 2014.. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. . Nat. Commun. 5::3746
    [Crossref] [Google Scholar]
  34. 34.
    Dong Z, Wan D, Yang H, Li G, Zhang Y, et al. 2020.. Effects of iron deficiency on serum metabolome, hepatic histology, and function in neonatal piglets. . Animals 10:(8):1353
    [Crossref] [Google Scholar]
  35. 35.
    Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, et al. 2019.. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. . Nat. Methods 16:(4):299302
    [Crossref] [Google Scholar]
  36. 36.
    Dumrongwongsiri O, Chongviriyaphan N, Chatvutinun S, Phoonlabdacha P, Sangcakul A, et al. 2021.. Dietary intake and milk micronutrient levels in lactating women with full and partial breastfeeding. . Matern. Child Health J. 25:(6):99197
    [Crossref] [Google Scholar]
  37. 37.
    Erhardt JG, Estes JE, Pfeiffer CM, Biesalski HK, Craft NE. 2004.. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive and simple sandwich enzyme-linked immunosorbent assay technique. . J. Nutr. 134:(11):312732
    [Crossref] [Google Scholar]
  38. 38.
    Eroglu A, Schulze KJ, Yager J, Cole RN, Christian P, et al. 2018.. Plasma proteins associated with circulating carotenoids in Nepalese school-aged children. . Arch Biochem. Biophys. 646::15360
    [Crossref] [Google Scholar]
  39. 39.
    Fenech M. 2007.. Cytokinesis-block micronucleus cytome assay. . Nat. Protoc. 2:(5):1084104
    [Crossref] [Google Scholar]
  40. 40.
    Fenech M, Baghurst P, Luderer W, Turner J, Record S, et al. 2005.. Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—results from a dietary intake and micronucleus index survey in South Australia. . Carcinogenesis 26:(5):99199
    [Crossref] [Google Scholar]
  41. 41.
    Fenech MF. 2010.. Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. . Am. J. Clin. Nutr. 91:(5):1438S54S
    [Crossref] [Google Scholar]
  42. 42.
    Fenech MF, Bull CF, Van Klinken BJ-W. 2023.. Protective effects of micronutrient supplements, phytochemicals and phytochemical-rich beverages and foods against DNA damage in humans: a systematic review of randomized controlled trials and prospective studies. . Adv. Nutr. 14:(6):133758
    [Crossref] [Google Scholar]
  43. 43.
    Ferreira AM, Grossmann J, Fortes C, Kilminster T, Scanlon T, et al. 2017.. The sheep (Ovis aries) muscle proteome: decoding the mechanisms of tolerance to seasonal weight loss using label-free proteomics. . J. Proteom. 161::5767
    [Crossref] [Google Scholar]
  44. 44.
    Fouquerel E, Barnes RP, Uttam S, Watkins SC, Bruchez MP, Opresko PL. 2019.. Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. . Mol. Cell 75:(1):11730.e6
    [Crossref] [Google Scholar]
  45. 45.
    García-Bailo B, Brenner DR, Nielsen D, Lee HJ, Domanski D, et al. 2012.. Dietary patterns and ethnicity are associated with distinct plasma proteomic groups. . Am. J. Clin. Nutr. 95:(2):35261
    [Crossref] [Google Scholar]
  46. 46.
    Gibson RS, Rahmannia S, Diana A, Leong C, Haszard JJ, et al. 2020.. Association of maternal diet, micronutrient status, and milk volume with milk micronutrient concentrations in Indonesian mothers at 2 and 5 months postpartum. . Am. J. Clin. Nutr. 112:(4):103950
    [Crossref] [Google Scholar]
  47. 47.
    Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, et al. 2022.. The Reactome pathway knowledgebase 2022. . Nucleic Acids Res. 50:(D1):D68792
    [Crossref] [Google Scholar]
  48. 48.
    Gold L, Walker JJ, Wilcox SK, Williams S. 2012.. Advances in human proteomics at high scale with the SOMAscan proteomics platform. . N. Biotechnol. 29:(5):54349
    [Crossref] [Google Scholar]
  49. 49.
    González-Domínguez R, Jáuregui O, Queipo-Ortuño MI, Andrés-Lacueva C. 2020.. Characterization of the human exposome by a comprehensive and quantitative large-scale multianalyte metabolomics platform. . Anal. Chem. 92:(20):1376775
    [Crossref] [Google Scholar]
  50. 50.
    Govindaraju DR, Innan H, Veitia RA. 2020.. The Muller's ratchet and aging. . Trends Genet. 36:(6):395402
    [Crossref] [Google Scholar]
  51. 51.
    Green R. 1995.. Metabolite assays in cobalamin and folate deficiency. . Baillieres Clin. Haematol. 8:(3):53366
    [Crossref] [Google Scholar]
  52. 52.
    Guan L, Wang Y, Lin L, Zou Y, Qiu L. 2024.. Variations in blood copper and possible mechanisms during pregnancy. . Biol. Trace Elem. Res. 202:(2):42941
    [Crossref] [Google Scholar]
  53. 53.
    Haggarty P, Hoad G, Campbell DM, Horgan GW, Piyathilake C, McNeill G. 2013.. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. . Am. J. Clin. Nutr. 97:(1):9499
    [Crossref] [Google Scholar]
  54. 54.
    Hellman NE, Gitlin JD. 2002.. Ceruloplasmin metabolism and function. . Annu. Rev. Nutr. 22::43958
    [Crossref] [Google Scholar]
  55. 55.
    Hibbert SA, Ozols M, Griffiths CEM, Watson REB, Bell M, Sherratt MJ. 2018.. Defining tissue proteomes by systematic literature review. . Sci. Rep. 8:(1):546
    [Crossref] [Google Scholar]
  56. 56.
    Hong R, Chandola U, Zhang L-F. 2017.. Cat-D: a targeted sequencing method for the simultaneous detection of small DNA mutations and large DNA deletions with flexible boundaries. . Sci. Rep. 7:(1):15701
    [Crossref] [Google Scholar]
  57. 57.
    Inst. Med. 2006.. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements 2006. Washington, DC:: National Academies Press
    [Google Scholar]
  58. 58.
    Issa J-P. 2014.. Aging and epigenetic drift: a vicious cycle. . J. Clin. Investig. 124:(1):2429
    [Crossref] [Google Scholar]
  59. 59.
    Jansz N. 2019.. DNA methylation dynamics at transposable elements in mammals. . Essays Biochem. 63:(6):67789
    [Crossref] [Google Scholar]
  60. 60.
    Jardim-Botelho A, Queiroz Gurgel R, Simeone Henriques G, dos Santos CB, Afonso Jordão A, et al. 2016.. Micronutrient deficiencies in normal and overweight infants in a low socio-economic population in north-east Brazil. . Paediatr. Int. Child Health 36:(3):198202
    [Crossref] [Google Scholar]
  61. 61.
    Jewison T, Su Y, Disfany FM, Liang Y, Knox C, et al. 2014.. SMPDB 2.0: big improvements to the Small Molecule Pathway Database. . Nucleic Acids Res. 42:(D1):D47884
    [Crossref] [Google Scholar]
  62. 62.
    Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. 2020.. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. . Ageing Res. Rev. 60::101070
    [Crossref] [Google Scholar]
  63. 63.
    Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 2023.. KEGG for taxonomy-based analysis of pathways and genomes. . Nucleic Acids Res. 51:(D1):D58792
    [Crossref] [Google Scholar]
  64. 64.
    Karkera N, Acharya S, Palaniappan SK. 2023.. Leveraging pre-trained language models for mining microbiome-disease relationships. . BMC Bioinform. 24:(1):290
    [Crossref] [Google Scholar]
  65. 65.
    Karu N, Deng L, Slae M, Guo AC, Sajed T, et al. 2018.. A review on human fecal metabolomics: methods, applications and the human fecal metabolome database. . Anal. Chim. Acta 1030::124
    [Crossref] [Google Scholar]
  66. 66.
    Kato TA. 2023.. Metaphase chromosome preparation and classification of chromosomal aberrations. . Methods Mol. Biol. 2519::915
    [Crossref] [Google Scholar]
  67. 67.
    Keats EC, Haider BA, Tam E, Bhutta ZA. 2019.. Multiple-micronutrient supplementation for women during pregnancy. . Cochrane Database Syst. Rev. 3:(3):CD004905
    [Google Scholar]
  68. 68.
    Kim K, Mall C, Taylor SL, Hitchcock S, Zhang C, et al. 2014.. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. . PLOS ONE 9:(1):e86223
    [Crossref] [Google Scholar]
  69. 69.
    Kimura M, Umegaki K, Higuchi M, Thomas P, Fenech M. 2004.. Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. . J. Nutr. 134:(1):4856
    [Crossref] [Google Scholar]
  70. 70.
    LeBoff MS, Chou SH, Murata EM, Donlon CM, Cook NR, et al. 2020.. Effects of supplemental vitamin D on bone health outcomes in women and men in the VITamin D and OmegA-3 TriaL (VITAL). . J. Bone Miner. Res. 35:(5):88393
    [Crossref] [Google Scholar]
  71. 71.
    Lee SE, Schulze KJ, Cole RN, Wu LSF, Yager JD, et al. 2016.. Biological systems of vitamin K: a plasma nutriproteomics study of subclinical vitamin K deficiency in 500 Nepalese children. . OMICS 20:(4):21423
    [Crossref] [Google Scholar]
  72. 72.
    Lee SE, Schulze K, Stewart CP, Cole RN, Wu LSF, et al. 2019.. Plasma proteome correlates of lipid and lipoprotein: biomarkers of metabolic diversity and inflammation in children of rural Nepal. . J. Lipid Res. 60:(1):14960
    [Crossref] [Google Scholar]
  73. 73.
    Lee SE, Schulze K, West KP. 2019.. Rainer Gross Award Lecture 2018: The childhood plasma proteome: discovering its applications in public health nutrition. . Food Nutr. Bull. 40:(2):14150
    [Crossref] [Google Scholar]
  74. 74.
    Lee SE, Stewart CP, Schulze KJ, Cole RN, Wu LSF, et al. 2017.. The plasma proteome is associated with anthropometric status of undernourished Nepalese school-aged children. . J. Nutr. 147::30414
    [Google Scholar]
  75. 75.
    Lee SE, West KP, Cole RN, Schulze KJ, Christian P, et al. 2015.. Plasma proteome biomarkers of inflammation in school aged children in Nepal. . PLOS ONE 10:(12):e0144279
    [Crossref] [Google Scholar]
  76. 76.
    Lee SE, West KP, Cole RN, Schulze KJ, Wu LSF, et al. 2018.. Novel plasma proteins in Nepalese school-aged children are associated with a small head size at birth. . Sci. Rep. 8::6390
    [Crossref] [Google Scholar]
  77. 77.
    Li T, Chen ZJ. 2018.. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. . J. Exp. Med. 215:(5):128799
    [Crossref] [Google Scholar]
  78. 78.
    Lie M, Thorstensen K. 2018.. A precise, sensitive and stable LC-MSMS method for detection of picomolar levels of serum aldosterone. . Scand. J. Clin. Lab. Investig. 78:(5):37985
    [Crossref] [Google Scholar]
  79. 79.
    Lin J, Epel E. 2022.. Stress and telomere shortening: insights from cellular mechanisms. . Ageing Res. Rev. 73::101507
    [Crossref] [Google Scholar]
  80. 80.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2023.. Hallmarks of aging: an expanding universe. . Cell 186:(2):24378
    [Crossref] [Google Scholar]
  81. 81.
    Lyons CE, Razzoli M, Bartolomucci A. 2023.. The impact of life stress on hallmarks of aging and accelerated senescence: connections in sickness and in health. . Neurosci. Biobehav. Rev. 153::105359
    [Crossref] [Google Scholar]
  82. 82.
    Ma S, Yim SH, Lee SG, Kim EB, Lee SR, et al. 2015.. Organization of the mammalian metabolome according to organ function, lineage specialization, and longevity. . Cell Metab. 22:(2):33243
    [Crossref] [Google Scholar]
  83. 83.
    Martinelli D, Travaglini L, Drouin CA, Ceballos-Picot I, Rizza T, et al. 2013.. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. . Brain 136:(Part 3):87281
    [Crossref] [Google Scholar]
  84. 84.
    McCourt AF, O'Sullivan AM. 2023.. Influence of vitamin D status and supplementation on metabolomic profiles of older adults. . Metabolites 13:(2):166
    [Crossref] [Google Scholar]
  85. 85.
    Ménézo Y, Dale B, Cohen M. 2010.. DNA damage and repair in human oocytes and embryos: a review. . Zygote 18:(4):35765
    [Crossref] [Google Scholar]
  86. 86.
    Merlo DF, Agramunt S, Anna L, Besselink H, Botsivali M, et al. 2014.. Micronuclei in cord blood lymphocytes and associations with biomarkers of exposure to carcinogens and hormonally active factors, gene polymorphisms, and gene expression: the NewGeneris cohort. . Environ. Health Perspect. 122:(2):193200
    [Crossref] [Google Scholar]
  87. 87.
    Mišík M, Staudinger M, Kundi M, Worel N, Nersesyan A, et al. 2023.. Use of the single cell gel electrophoresis assay for the detection of DNA-protective dietary factors: results of human intervention studies. . Mutat. Res. Rev. Mutat. Res. 791::108458
    [Crossref] [Google Scholar]
  88. 88.
    Mozaffarian D, Rosenberg I, Uauy R. 2018.. History of modern nutrition science—implications for current research, dietary guidelines, and food policy. . BMJ 361::k2392
    [Crossref] [Google Scholar]
  89. 89.
    Muslimovic A, Ismail IH, Gao Y, Hammarsten O. 2008.. An optimized method for measurement of gamma-H2AX in blood mononuclear and cultured cells. . Nat. Protoc. 3:(7):118793
    [Crossref] [Google Scholar]
  90. 90.
    Nakamura A, Sedelnikova OA, Redon C, Pilch DR, Sinogeeva NI, et al. 2006.. Techniques for γ-H2AX detection. . Methods Enzymol. 409::23650
    [Crossref] [Google Scholar]
  91. 91.
    Nakamura J, Mutlu E, Sharma V, Collins L, Bodnar W, et al. 2014.. The endogenous exposome. . DNA Repair 19::313
    [Crossref] [Google Scholar]
  92. 92.
    Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, et al. 2021.. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. . DNA Repair 101::103079
    [Crossref] [Google Scholar]
  93. 93.
    Nicholson JK, Holmes E, Wilson ID. 2005.. Gut microorganisms, mammalian metabolism and personalized health care. . Nat. Rev. Microbiol. 3:(5):43138
    [Crossref] [Google Scholar]
  94. 94.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, et al. 2022.. The complete sequence of a human genome. . Science 376:(6588):4453
    [Crossref] [Google Scholar]
  95. 95.
    Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, et al. 2023.. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. . Geroscience 45::3381408
    [Crossref] [Google Scholar]
  96. 96.
    Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, et al. 2021.. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. . Nucleic Acids Res. 49:(W1):W38896
    [Crossref] [Google Scholar]
  97. 97.
    Passarelli S, Free CM, Allen LH, Batis C, Beal T, et al. 2022.. Estimating national and subnational nutrient intake distributions of global diets. . Am. J. Clin. Nutr. 116:(2):55160
    [Crossref] [Google Scholar]
  98. 98.
    Peredo-Lovillo A, Romero-Luna HE, Jiménez-Fernández M. 2020.. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. . Food Res. Int. 136::109473
    [Crossref] [Google Scholar]
  99. 99.
    Petrera A, Von Toerne C, Behler J, Huth C, Thorand B, et al. 2021.. Multiplatform approach for plasma proteomics: complementarity of Olink proximity extension assay technology to mass spectrometry-based protein profiling. . J. Proteome Res. 20:(1):75162
    [Crossref] [Google Scholar]
  100. 100.
    Phillips NR, Sprouse ML, Roby RK. 2014.. Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay. . Sci. Rep. 4::3887
    [Crossref] [Google Scholar]
  101. 101.
    Phipps WS, Greene DN, Pflaum H, Laha TJ, Dickerson JA, et al. 2022.. Small volume retinol binding protein measurement by liquid chromatography-tandem mass spectrometry. . Clin. Biochem. 99::11117
    [Crossref] [Google Scholar]
  102. 102.
    Ponomarenko EA, Poverennaya EV, Ilgisonis EV, Pyatnitskiy MA, Kopylov AT, et al. 2016.. The size of the human proteome: the width and depth. . Int. J. Anal. Chem. 2016::7436849
    [Crossref] [Google Scholar]
  103. 103.
    Prá D, Bortoluzzi A, Müller LL, Hermes L, Horta JA, et al. 2011.. Iron intake, red cell indicators of iron status, and DNA damage in young subjects. . Nutrition 27:(3):29397
    [Crossref] [Google Scholar]
  104. 104.
    Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, et al. 2011.. The human serum metabolome. . PLOS ONE 6:(2):e16957
    [Crossref] [Google Scholar]
  105. 105.
    Ramirez-Gaona M, Marcu A, Pon A, Grant J, Wu A, Wishart DS. 2017.. A web tool for generating high quality machine-readable biological pathways. . J. Vis. Exp. 2017:(120):54869
    [Google Scholar]
  106. 106.
    Richards JB, Valdes AM, Gardner JP, Kato BS, Siva A, et al. 2008.. Homocysteine levels and leukocyte telomere length. . Atherosclerosis 200:(2):27177
    [Crossref] [Google Scholar]
  107. 107.
    Roberts LD, Souza AL, Gerszten RE, Clish CB. 2012.. Targeted metabolomics. . Curr. Protoc. Mol. Biol. 98::30.2.124
    [Google Scholar]
  108. 108.
    Ryan EP, Heuberger AL, Broeckling CD, Borresen EC, Tillotson C, Prenni JE. 2013.. Advances in nutritional metabolomics. . Curr. Metab. 1:(2):10920
    [Crossref] [Google Scholar]
  109. 109.
    Sandri BJ, Kim J, Lubach GR, Lock EF, Guerrero C, et al. 2022.. Tandem mass tag proteomic and untargeted metabolomic profiling reveals altered serum and CSF biochemical datasets in iron deficient monkeys. . Data Brief 45::108591
    [Crossref] [Google Scholar]
  110. 110.
    Scarpato R, Verola C, Fabiani B, Bianchi V, Saggese G, Federico G. 2011.. Nuclear damage in peripheral lymphocytes of obese and overweight Italian children as evaluated by the γ-H2AX focus assay and micronucleus test. . FASEB J. 25:(2):68593
    [Crossref] [Google Scholar]
  111. 111.
    Scholl PF, Cole RN, Ruczinski I, Gucek M, Diez R, et al. 2012.. Maternal serum proteome changes between the first and third trimester of pregnancy in rural Southern Nepal. . Placenta 33:(5):42432
    [Crossref] [Google Scholar]
  112. 112.
    Schulze KJ, Christian P, Wu LSF, Arguello M, Cui H, et al. 2014.. Micronutrient deficiencies are common in 6- to 8-year-old children of rural Nepal, with prevalence estimates modestly affected by inflammation. . J. Nutr. 144:(6):97987
    [Crossref] [Google Scholar]
  113. 113.
    Schulze KJ, Cole RN, Chaerkady R, Wu LSF, Nonyane BAS, et al. 2017.. Plasma selenium protein P isoform 1 (SEPP1): a predictor of selenium status in Nepalese children detected by plasma proteomics. . Int. J. Vitam. Nutr. Res. 87:(5–6):28796
    [Crossref] [Google Scholar]
  114. 114.
    Schulze KJ, Mehra S, Shaikh S, Ali H, Shamim AA, et al. 2019.. Antenatal multiple micronutrient supplementation compared to iron-folic acid affects micronutrient status but does not eliminate deficiencies in a randomized controlled trial among pregnant women of rural Bangladesh. . J. Nutr. 149:(7):126070
    [Crossref] [Google Scholar]
  115. 115.
    Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. 2021.. The central role of DNA damage in the ageing process. . Nature 592:(7856):695703
    [Crossref] [Google Scholar]
  116. 116.
    Selhub J, Jacques PF, Dallal G, Choumenkovitch S, Rogers G. 2008.. The use of blood concentrations of vitamins and their respective functional indicators to define folate and vitamin B12 status. . Food Nutr. Bull. 29:(Suppl. 2):S6773
    [Crossref] [Google Scholar]
  117. 117.
    Semba RD, Yuniar Y, Gamble MV, Natadisastra G, Muhilal. 2002.. Assessment of vitamin A status of preschool children in Indonesia using plasma retinol-binding protein. . J. Trop. Pediatr. 48:(2):8487
    [Crossref] [Google Scholar]
  118. 118.
    Senthamizhchelvan S, Pant GS, Rath GK, Julka PK, Nair O, et al. 2007.. Biodosimetry using chromosome aberrations in human lymphocytes. . Radiat. Prot. Dosimetry 123:(2):24145
    [Crossref] [Google Scholar]
  119. 119.
    Shannon OM, Ashor AW, Scialo F, Saretzki G, Martin-Ruiz C, et al. 2021.. Mediterranean diet and the hallmarks of ageing. . Eur. J. Clin. Nutr. 75:(8):117692
    [Crossref] [Google Scholar]
  120. 120.
    Sharma S, Kelly TK, Jones PA. 2010.. Epigenetics in cancer. . Carcinogenesis 31:(1):2736
    [Crossref] [Google Scholar]
  121. 121.
    Shin C, Baik I. 2016.. Leukocyte telomere length is associated with serum vitamin B12 and homocysteine levels in older adults with the presence of systemic inflammation. . Clin. Nutr. Res. 5:(1):714
    [Crossref] [Google Scholar]
  122. 122.
    Siametis A, Niotis G, Garinis GA. 2021.. DNA damage and the aging epigenome. . J. Investig. Dermatol. 141:(4):96167
    [Crossref] [Google Scholar]
  123. 123.
    Sincerbeaux G, Lee SE, Schulze K, Cole R, Wu LS-F, et al. 2022.. A plasma cuprome exists with predictors of copper status in Nepalese children. . Curr. Dev. Nutr. 6::714
    [Crossref] [Google Scholar]
  124. 124.
    Sincerbeaux G, Schulze K, Kim H, Baker S, Wu LS-F, et al. 2023.. A plasma cuprome reveals the biology and status of copper in 1st trimester pregnant women in rural Bangladesh. . Curr. Dev. Nutr. 7:(Suppl. 1):418 ( Abstr. )
    [Google Scholar]
  125. 125.
    Sloan DB, Broz AK, Sharbrough J, Wu Z. 2018.. Detecting rare mutations and DNA damage with sequencing-based methods. . Trends Biotechnol. 36:(7):72940
    [Crossref] [Google Scholar]
  126. 126.
    Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, et al. 2007.. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. . Anal. Chem. 79:(18):69957004
    [Crossref] [Google Scholar]
  127. 127.
    Stevens GA, Beal T, Mbuya MNN, Luo H, Neufeld LM, et al. 2022.. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. . Lancet Glob. Health 10:(11):e159099
    [Crossref] [Google Scholar]
  128. 128.
    Stewart C, Fanzo J, West K, Black R. 2020.. Nutrition. . In Global Health: Diseases, Programs, Systems, and Policies, ed. MH Merson, RE Black, AJ Mills , pp. 259333. Burlington, MA:: Jones & Bartlett Learning
    [Google Scholar]
  129. 129.
    Sun Y, Stransky S, Aguilan J, Koul S, Garforth SJ, et al. 2021.. High throughput and low bias DNA methylation and hydroxymethylation analysis by direct injection mass spectrometry. . Anal. Chim. Acta 1180::338880
    [Crossref] [Google Scholar]
  130. 130.
    Takic M, Zekovic M, Terzic B, Stojsavljevic A, Mijuskovic M, et al. 2021.. Zinc deficiency, plasma fatty acid profile and desaturase activities in hemodialysis patients: Is supplementation necessary?. Front. Nutr. 8::700450
    [Crossref] [Google Scholar]
  131. 131.
    Tavella RA, Vignol FS, Favero RF, da Silveira TB, dos Santos M, et al. 2022.. DNA damage in Brazilian newborns admitted to NICUs—association with maternal and neonatal outcomes. . Mutat. Res. Genet. Toxicol. Environ. Mutagen. 881::503521
    [Crossref] [Google Scholar]
  132. 132.
    Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, et al. 2009.. Buccal micronucleus cytome assay. . Nat. Protoc. 4:(6):82537
    [Crossref] [Google Scholar]
  133. 133.
    Thompson DS, Bourdon C, Massara P, Boyne MS, Forrester TE, et al. 2020.. Childhood severe acute malnutrition is associated with metabolic changes in adulthood. . JCI Insight 5:(24):e141316
    [Crossref] [Google Scholar]
  134. 134.
    Uebanso T, Yoshimoto A, Aizawa S, Nakamura M, Masuda R, et al. 2020.. Glycolate is a novel marker of vitamin B2 deficiency involved in gut microbe metabolism in mice. . Nutrients 12:(3):736
    [Crossref] [Google Scholar]
  135. 135.
    Ulvik A, Midttun Ø, McCann A, Meyer K, Tell G, et al. 2020.. Tryptophan catabolites as metabolic markers of vitamin B-6 status evaluated in cohorts of healthy adults and cardiovascular patients. . Am. J. Clin. Nutr. 111:(1):17886
    [Crossref] [Google Scholar]
  136. 136.
    Uppal K, Walker DI, Liu K, Li S, Go YM, Jones DP. 2016.. Computational metabolomics: a framework for the million metabolome. . Chem. Res. Toxicol. 29:(12):195675
    [Crossref] [Google Scholar]
  137. 137.
    van der Greef J, Hankemeier T, McBurney RN. 2006.. Metabolomics-based systems biology and personalized medicine: moving towards n = 1 clinical trials?. Pharmacogenomics 7:(7):108794
    [Crossref] [Google Scholar]
  138. 138.
    Vashi P, Edwin P, Popiel B, Lammersfeld C, Gupta D. 2016.. Methylmalonic acid and homocysteine as indicators of vitamin B-12 deficiency in cancer. . PLOS ONE 11:(1):e0147843
    [Crossref] [Google Scholar]
  139. 139.
    Wang F, Allen D, Tian S, Oler E, Gautam V, et al. 2022.. CFM-ID 4.0—a web server for accurate MS-based metabolite identification. . Nucleic Acids Res. 50:(W1):W16574
    [Crossref] [Google Scholar]
  140. 140.
    Wang M, Fan L, Wei W, Wang P, Yu Q, et al. 2021.. Integrated multi-omics uncovers reliable potential biomarkers and adverse effects of zinc deficiency. . Clin. Nutr. 40:(5):268396
    [Crossref] [Google Scholar]
  141. 141.
    Wani K, Aldape KD. 2016.. PCR techniques in characterizing DNA methylation. . Methods Mol. Biol. 1392::17786
    [Crossref] [Google Scholar]
  142. 142.
    Wen B, Njunge JM, Bourdon C, Gonzales GB, Gichuki BM, et al. 2022.. Systemic inflammation and metabolic disturbances underlie inpatient mortality among ill children with severe malnutrition. . Sci. Adv. 8:(7):eabj6779
    [Crossref] [Google Scholar]
  143. 143.
    West KP Jr., Schulze KJ. 2022.. Harnessing the plasma proteome to reveal hidden hunger. In Precision Nutrition for Low- and Middle-Income Countries: Hype or Hope?, pp. 4650. Basel, Switz:.: Sight and Life Foundation
    [Google Scholar]
  144. 144.
    West KP, Cole RN, Schulze K, Ruczinski I, Christian P, et al. 2012.. A plasma retinome in school aged children of Nepal. . FASEB J. 26:(S1):392. 6 (Abstr.)
    [Google Scholar]
  145. 145.
    West KP, Cole RN, Shrestha S, Schulze KJ, Lee SE, et al. 2015.. A plasma α-tocopherome can be identified from proteins associated with vitamin E status in school-aged children of Nepal. . J. Nutr. 145:(12):264656
    [Crossref] [Google Scholar]
  146. 146.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, et al. 2009.. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. . PNAS 106:(10):3698703
    [Crossref] [Google Scholar]
  147. 147.
    Wild CP. 2012.. The exposome: from concept to utility. . Int. J. Epidemiol. 41:(1):2432
    [Crossref] [Google Scholar]
  148. 148.
    Williams SA, Kivimaki M, Langenberg C, Hingorani AD, Casas JP, et al. 2019.. Plasma protein patterns as comprehensive indicators of health. . Nat. Med. 25:(12):185157
    [Crossref] [Google Scholar]
  149. 149.
    Wishart DS. 2019.. Metabolomics for investigating physiological and pathophysiological processes. . Physiol. Rev. 99:(4):181975
    [Crossref] [Google Scholar]
  150. 150.
    Wishart DS, Bartok B, Oler E, Liang KYH, Budinski Z, et al. 2021.. MarkerDB: an online database of molecular biomarkers. . Nucleic Acids Res. 49:(D1):D125967
    [Crossref] [Google Scholar]
  151. 151.
    Wishart DS, Guo A, Oler E, Wang F, Anjum A, et al. 2022.. HMDB 5.0: the Human Metabolome Database for 2022. . Nucleic Acids Res. 50:(D1):D62231
    [Crossref] [Google Scholar]
  152. 152.
    Wishart DS, Li C, Marcu A, Badran H, Pon A, et al. 2020.. PathBank: a comprehensive pathway database for model organisms. . Nucleic Acids Res. 48:(D1):D47078
    [Crossref] [Google Scholar]
  153. 153.
    Wishart DS, Oler E, Peters H, Guo A, Girod S, et al. 2023.. MiMeDB: the Human Microbial Metabolome Database. . Nucleic Acids Res. 51:(D1):D61120
    [Crossref] [Google Scholar]
  154. 154.
    Xiong RG, Zhou DD, Wu SX, Huang SY, Saimaiti A, et al. 2022.. Health benefits and side effects of short-chain fatty acids. . Foods 11:(18):2863
    [Crossref] [Google Scholar]
  155. 155.
    Yamaguchi Y, Zampino M, Tanaka T, Bandinelli S, Moaddel R, et al. 2022.. The plasma proteome fingerprint associated with circulating carotenoids and retinol in older adults. . J. Nutr. 152:(1):4048
    [Crossref] [Google Scholar]
  156. 156.
    Yao C, Feng Y-L. 2016.. A nontargeted screening method for covalent DNA adducts and DNA modification selectivity using liquid chromatography-tandem mass spectrometry. . Talanta 159::93102
    [Crossref] [Google Scholar]
  157. 157.
    Ye X, Li H, Anjum K, Zhong X, Miao S, et al. 2022.. Dual role of indoles derived from intestinal microbiota on human health. . Front. Immunol. 13::903526
    [Crossref] [Google Scholar]
  158. 158.
    Zhao Y, Simon M, Seluanov A, Gorbunova V. 2023.. DNA damage and repair in age-related inflammation. . Nat. Rev. Immunol. 23:(2):7589
    [Crossref] [Google Scholar]
  159. 159.
    Zheng X, Qiu Y, Zhong W, Baxter S, Su M, et al. 2013.. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. . Metabolomics 9:(4):81827
    [Crossref] [Google Scholar]
  160. 160.
    Zhong J, Karlsson O, Wang G, Li J, Guo Y, et al. 2017.. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. . PNAS 114:(13):35038
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nutr-062322-022751
Loading
/content/journals/10.1146/annurev-nutr-062322-022751
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error