1932

Abstract

The effects of saturated fatty acids (SFAs) on cardiovascular disease (CVD) risk are modulated by the nutrients that replace them and their food matrices. Replacement of SFAs with polyunsaturated fatty acids has been associated with reduced CVD risk, although there is heterogeneity in both fatty acid categories. In contrast, replacement of SFAs with carbohydrates, particularly sugar, has been associated with no improvement or even a worsening of CVD risk, at least in part through effects on atherogenic dyslipidemia, a cluster of traits including small, dense low-density lipoprotein particles. The effects of dietary SFAs on insulin sensitivity, inflammation, vascular function, and thrombosis are less clear. There is growing evidence that SFAs in the context of dairy foods, particularly fermented dairy products, have neutral or inverse associations with CVD. Overall dietary patterns emphasizing vegetables, fish, nuts, and whole versus processed grains form the basis of heart-healthy eating and should supersede a focus on macronutrient composition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071714-034449
2015-07-17
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/nutr/35/1/annurev-nutr-071714-034449.html?itemId=/content/journals/10.1146/annurev-nutr-071714-034449&mimeType=html&fmt=ahah

Literature Cited

  1. Abete I, Romaguera D, Vieira AR, Lopez de Munain A, Norat T. 1.  2014. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br. J. Nutr. 112:762–75 [Google Scholar]
  2. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP. 2.  et al. 1997. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group.. N. Engl. J. Med. 336:1117–24 [Google Scholar]
  3. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF. 3.  et al. 2005. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 294:2455–64 [Google Scholar]
  4. Astrup A. 4.  2014. Yogurt and dairy product consumption to prevent cardiometabolic diseases: epidemiologic and experimental studies. Am. J. Clin. Nutr. 99:1235–42S [Google Scholar]
  5. Astrup A, Dyerberg J, Elwood P, Hermansen K, Hu FB. 5.  et al. 2011. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: Where does the evidence stand in 2010?. Am. J. Clin. Nutr. 93:684–88 [Google Scholar]
  6. Astrup A, Pedersen SD. 6.  2012. Is a protein calorie better for weight control?. Am. J. Clin. Nutr. 95:535–36 [Google Scholar]
  7. Austin MA, Hokanson JE, Edwards KL. 7.  1998. Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol. 81:7–12B [Google Scholar]
  8. Azrad M, Turgeon C, Demark-Wahnefried W. 8.  2013. Current evidence linking polyunsaturated fatty acids with cancer risk and progression. Front. Oncol. 3:224 [Google Scholar]
  9. Baer DJ, Judd JT, Clevidence BA, Tracy RP. 9.  2004. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am. J. Clin. Nutr. 79:969–73 [Google Scholar]
  10. Baylin A, Campos H. 10.  2006. The use of fatty acid biomarkers to reflect dietary intake. Curr. Opin. Lipidol. 17:22–27 [Google Scholar]
  11. Bays HE, Tighe AP, Sadovsky R, Davidson MH. 11.  2008. Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert Rev. Cardiovasc. Ther. 6:391–409 [Google Scholar]
  12. Bazzano LA, Hu T, Reynolds K, Yao L, Bunol C. 12.  et al. 2014. Effects of low-carbohydrate and low-fat diets: a randomized trial. Ann. Intern. Med. 161:309–18 [Google Scholar]
  13. Behall KM, Howe JC. 13.  1995. Effect of long-term consumption of amylose versus amylopectin starch on metabolic variables in human subjects. Am. J. Clin. Nutr. 61:334–40 [Google Scholar]
  14. Behall KM, Scholfield DJ, Yuhaniak I, Canary J. 14.  1989. Diets containing high amylose versus amylopectin starch: effects on metabolic variables in human subjects. Am. J. Clin. Nutr. 49:337–44 [Google Scholar]
  15. Bergeron N, Havel RJ. 15.  1995. Influence of diets rich in saturated and omega-6 polyunsaturated fatty acids on the postprandial responses of apolipoproteins B-48, B-100, E, and lipids in triglyceride-rich lipoproteins. Arterioscler. Thromb. Vasc. Biol. 15:2111–21 [Google Scholar]
  16. Bergeron N, Havel RJ. 16.  1997. Assessment of postprandial lipemia: nutritional influences. Curr. Opin. Lipidol. 8:43–52 [Google Scholar]
  17. Berglund L, Lefevre M, Ginsberg HN, Kris-Etherton PM, Elmer PJ. 17.  et al. 2007. Comparison of monounsaturated fat with carbohydrates as a replacement for saturated fat in subjects with a high metabolic risk profile: studies in the fasting and postprandial states. Am. J. Clin. Nutr. 86:1611–20 [Google Scholar]
  18. Berneis KK, Krauss RM. 18.  2002. Metabolic origins and clinical significance of LDL heterogeneity. J. Lipid Res. 43:1363–79 [Google Scholar]
  19. Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE, Willett WC. 19.  2010. Major dietary protein sources and risk of coronary heart disease in women. Circulation 122:876–83 [Google Scholar]
  20. Biong AS, Muller H, Seljeflot I, Veierod MB, Pedersen JI. 20.  2004. A comparison of the effects of cheese and butter on serum lipids, haemostatic variables and homocysteine. Br. J. Nutr. 92:791–97 [Google Scholar]
  21. Boren J, Matikainen N, Adiels M, Taskinen MR. 21.  2014. Postprandial hypertriglyceridemia as a coronary risk factor. Clin. Chim. Acta 431:131–42 [Google Scholar]
  22. Brouwer IA, Wanders AJ, Katan MB. 22.  2010. Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans—a quantitative review. PLOS ONE 5:e9434 [Google Scholar]
  23. Bueno NB, de Melo IS, de Oliveira SL, da Rocha Ataide T. 23.  2013. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br. J. Nutr. 110:1178–87 [Google Scholar]
  24. Chait A, Kim F. 24.  2010. Saturated fatty acids and inflammation: Who pays the toll?. Arterioscler. Thromb. Vasc. Biol. 30:692–93 [Google Scholar]
  25. Chang CL, Torrejon C, Jung UJ, Graf K, Deckelbaum RJ. 25.  2014. Incremental replacement of saturated fats by n-3 fatty acids in high-fat, high-cholesterol diets reduces elevated plasma lipid levels and arterial lipoprotein lipase, macrophages and atherosclerosis in LDLR−/− mice. Atherosclerosis 234:401–9 [Google Scholar]
  26. Chardigny JM, Destaillats F, Malpuech-Brugere C, Moulin J, Bauman DE. 26.  et al. 2008. Do trans fatty acids from industrially produced sources and from natural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Results of the Trans Fatty Acids Collaboration (TRANSFACT) study. Am. J. Clin. Nutr. 87:558–66 [Google Scholar]
  27. Chiu S, Williams PT, Dawson T, Bergman RN, Stefanovski D. 27.  et al. 2014. Diets high in protein or saturated fat do not affect insulin sensitivity or plasma concentrations of lipids and lipoproteins in overweight and obese adults. J. Nutr. 144:1753–59 [Google Scholar]
  28. Chong MF, Fielding BA, Frayn KN. 28.  2007. Mechanisms for the acute effect of fructose on postprandial lipemia. Am. J. Clin. Nutr. 85:1511–20 [Google Scholar]
  29. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA. 29.  et al. 2014. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann. Intern. Med. 160:398–406 [Google Scholar]
  30. Clifton PM, Condo D, Keogh JB. 30.  2014. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets—a systematic review and meta analysis. Nutr. Metab. Cardiovasc. Dis. 24:224–35 [Google Scholar]
  31. Cortese C, Levy Y, Janus ED, Turner PR, Rao SN. 31.  et al. 1983. Modes of action of lipid-lowering diets in man: studies of apolipoprotein B kinetics in relation to fat consumption and dietary fatty acid composition. Eur. J. Clin. Invest. 13:79–85 [Google Scholar]
  32. Cox C, Mann J, Sutherland W, Chisholm A, Skeaff M. 32.  1995. Effects of coconut oil, butter, and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels. J. Lipid Res. 36:1787–95 [Google Scholar]
  33. Cox C, Sutherland W, Mann J, de Jong S, Chisholm A, Skeaff M. 33.  1998. Effects of dietary coconut oil, butter and safflower oil on plasma lipids, lipoproteins and lathosterol levels. Eur. J. Clin. Nutr. 52:650–54 [Google Scholar]
  34. Culling KS, Neil HA, Gilbert M, Frayn KN. 34.  2009. Effects of short-term low- and high-carbohydrate diets on postprandial metabolism in non-diabetic and diabetic subjects. Nutr. Metab. Cardiovasc. Dis. 19:345–51 [Google Scholar]
  35. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. 35.  1999. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99:779–85 [Google Scholar]
  36. de Oliveira Otto MC, Mozaffarian D, Kromhout D, Bertoni AG, Sibley CT. 36.  et al. 2012. Dietary intake of saturated fat by food source and incident cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 96:397–404 [Google Scholar]
  37. Degirolamo C, Shelness GS, Rudel LL. 37.  2009. LDL cholesteryl oleate as a predictor for atherosclerosis: evidence from human and animal studies on dietary fat. J. Lipid Res. 50:Suppl.S434–39 [Google Scholar]
  38. Denke MA. 38.  1995. Review of human studies evaluating individual dietary responsiveness in patients with hypercholesterolemia. Am. J. Clin. Nutr. 62:471–77S [Google Scholar]
  39. Denke MA, Adams-Huet B, Nguyen AT. 39.  2000. Individual cholesterol variation in response to a margarine- or butter-based diet: a study in families. JAMA 284:2740–47 [Google Scholar]
  40. 40. Diet. Guidel. Advis. Comm 2015. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: US Dep. Health Human Serv http://www.health.gov/dietaryguidelines/2015-scientific-report/ [Google Scholar]
  41. Dong JY, Zhang YH, Wang P, Qin LQ. 41.  2012. Meta-analysis of dietary glycemic load and glycemic index in relation to risk of coronary heart disease. Am. J. Cardiol. 109:1608–13 [Google Scholar]
  42. Dreon DM, Fernstrom HA, Campos H, Blanche P, Williams PT, Krauss RM. 42.  1998. Change in dietary saturated fat intake is correlated with change in mass of large low-density-lipoprotein particles in men. Am. J. Clin. Nutr. 67:828–36 [Google Scholar]
  43. Dreon DM, Fernstrom HA, Miller B, Krauss RM. 43.  1995. Apolipoprotein E isoform phenotype and LDL subclass response to a reduced-fat diet. Arterioscler. Thromb. Vasc. Biol. 15:105–11 [Google Scholar]
  44. Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL. 44.  et al. 2012. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA 307:2627–34 [Google Scholar]
  45. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N. 45.  et al. 2014. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63:2960–84 [Google Scholar]
  46. Elwood PC, Pickering JE, Givens DI, Gallacher JE. 46.  2010. The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: an overview of the evidence. Lipids 45:925–39 [Google Scholar]
  47. Elwood PC, Pickering JE, Hughes J, Fehily AM, Ness AR. 47.  2004. Milk drinking, ischaemic heart disease and ischaemic stroke II. Evidence from cohort studies. Eur. J. Clin. Nutr. 58:718–24 [Google Scholar]
  48. Erkkila A, de Mello VD, Riserus U, Laaksonen DE. 48.  2008. Dietary fatty acids and cardiovascular disease: an epidemiological approach. Prog. Lipid Res. 47:172–87 [Google Scholar]
  49. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D. 49.  et al. 2013. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368:1279–90 [Google Scholar]
  50. Farvid MS, Ding M, Pan A, Sun Q, Chiuve SE. 50.  et al. 2014. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation 130:1568–78 [Google Scholar]
  51. Fattore E, Bosetti C, Brighenti F, Agostoni C, Fattore G. 51.  2014. Palm oil and blood lipid-related markers of cardiovascular disease: a systematic review and meta-analysis of dietary intervention trials. Am. J. Clin. Nutr. 99:1331–50 [Google Scholar]
  52. Flock MR, Fleming JA, Kris-Etherton PM. 52.  2014. Macronutrient replacement options for saturated fat: effects on cardiovascular health. Curr. Opin. Lipidol. 25:67–74 [Google Scholar]
  53. Flock MR, Green MH, Kris-Etherton PM. 53.  2011. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv. Nutr. 2:261–74 [Google Scholar]
  54. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kroger J. 54.  et al. 2014. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2:810–18 [Google Scholar]
  55. Forsythe CE, Phinney SD, Feinman RD, Volk BM, Freidenreich D. 55.  et al. 2010. Limited effect of dietary saturated fat on plasma saturated fat in the context of a low carbohydrate diet. Lipids 45:947–62 [Google Scholar]
  56. Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ. 56.  et al. 2008. Comparison of low fat and low carbohydrate diets on circulating fatty acids composition and markers of inflammation. Lipids 43:65–77 [Google Scholar]
  57. Fredenrich A. 57.  1998. Role of apolipoprotein CIII in triglyceride-rich lipoprotein metabolism. Diabetes Metab. 24:490–95 [Google Scholar]
  58. Fung TT, Malik V, Rexrode KM, Manson JE, Willett WC, Hu FB. 58.  2009. Sweetened beverage consumption and risk of coronary heart disease in women. Am. J. Clin. Nutr. 89:1037–42 [Google Scholar]
  59. Furtado JD, Campos H, Appel LJ, Miller ER, Laranjo N. 59.  et al. 2008. Effect of protein, unsaturated fat, and carbohydrate intakes on plasma apolipoprotein B and VLDL and LDL containing apolipoprotein C-III: results from the OmniHeart Trial. Am. J. Clin. Nutr. 87:1623–30 [Google Scholar]
  60. Gardner CD. 60.  2012. Tailoring dietary approaches for weight loss. Int. J. Obes. Suppl. 2:S11–15 [Google Scholar]
  61. Gardner CD, Kiazand A, Alhassan S, Kim S, Stafford RS. 61.  et al. 2007. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women. The A TO Z Weight Loss Study: a randomized trial. JAMA 297:969–77 [Google Scholar]
  62. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB Sr. 62.  et al. 2014. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63:2935–59 [Google Scholar]
  63. Gogebakan O, Kohl A, Osterhoff MA, van Baak MA, Jebb SA. 63.  et al. 2011. Effects of weight loss and long-term weight maintenance with diets varying in protein and glycemic index on cardiovascular risk factors. The Diet, Obesity, and Genes (DiOGenes) study: a randomized, controlled trial. Circulation 124:2829–38 [Google Scholar]
  64. Goldbohm RA, Chorus AM, Galindo Garre F, Schouten LJ, van den Brandt PA. 64.  2011. Dairy consumption and 10-y total and cardiovascular mortality: a prospective cohort study in the Netherlands. Am. J. Clin. Nutr. 93:615–27 [Google Scholar]
  65. Guay V, Lamarche B, Charest A, Tremblay AJ, Couture P. 65.  2012. Effect of short-term low- and high-fat diets on low-density lipoprotein particle size in normolipidemic subjects. Metabolism 61:76–83 [Google Scholar]
  66. Halton TL, Willett WC, Liu S, Manson JE, Albert CM. 66.  et al. 2006. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N. Engl. J. Med. 355:1991–2002 [Google Scholar]
  67. Harvey KA, Walker CL, Xu Z, Whitley P, Pavlina TM. 67.  et al. 2010. Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J. Lipid Res. 51:3470–80 [Google Scholar]
  68. Hayes KC, Khosla P, Hajri T, Pronczuk A. 68.  1997. Saturated fatty acids and LDL receptor modulation in humans and monkeys. Prostaglandins Leukot. Essent. Fatty Acids 57:411–18 [Google Scholar]
  69. Heijnen ML, van Amelsvoort JM, Deurenberg P, Beynen AC. 69.  1996. Neither raw nor retrograded resistant starch lowers fasting serum cholesterol concentrations in healthy normolipidemic subjects. Am. J. Clin. Nutr. 64:312–18 [Google Scholar]
  70. Hjerpsted J, Leedo E, Tholstrup T. 70.  2011. Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. Am. J. Clin. Nutr. 94:1479–84 [Google Scholar]
  71. Hodson L, Skeaff CM, Fielding BA. 71.  2008. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47:348–80 [Google Scholar]
  72. Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR. 72.  et al. 2014. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 34:1069–77 [Google Scholar]
  73. Hooper L, Summerbell CD, Thompson R, Sills D, Roberts FG. 73.  et al. 2012. Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Database Syst. Rev. 5:CD002137 [Google Scholar]
  74. Howard BV, Van Horn L, Hsia J, Manson JE, Stefanick ML. 74.  et al. 2006. Low-fat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295:655–66 [Google Scholar]
  75. Hu FB. 75.  2010. Are refined carbohydrates worse than saturated fat?. Am. J. Clin. Nutr. 91:1541–42 [Google Scholar]
  76. Hu FB, Stampfer MJ, Manson JE, Ascherio A, Colditz GA. 76.  et al. 1999. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am. J. Clin. Nutr. 70:1001–8 [Google Scholar]
  77. Huff MW, Nestel PJ. 77.  1982. Metabolism of apolipoproteins CII, CIII1, CIII2 and VLDL-B in human subjects consuming high carbohydrate diets. Metabolism 31:493–98 [Google Scholar]
  78. Jakobsen MU, Dethlefsen C, Joensen AM, Stegger J, Tjonneland A. 78.  et al. 2010. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. Am. J. Clin. Nutr. 91:1764–68 [Google Scholar]
  79. Jakobsen MU, O'Reilly EJ, Heitmann BL, Pereira MA, Balter K. 79.  et al. 2009. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 89:1425–32 [Google Scholar]
  80. Jansen S, Lopez-Miranda J, Salas J, Castro P, Paniagua JA. 80.  et al. 1998. Plasma lipid response to hypolipidemic diets in young healthy non-obese men varies with body mass index. J. Nutr. 128:1144–49 [Google Scholar]
  81. Jebb SA, Lovegrove JA, Griffin BA, Frost GS, Moore CS. 81.  et al. 2010. Effect of changing the amount and type of fat and carbohydrate on insulin sensitivity and cardiovascular risk: the RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) trial. Am. J. Clin. Nutr. 92:748–58 [Google Scholar]
  82. Jenkins DJ, Vuksan V, Kendall CW, Wursch P, Jeffcoat R. 82.  et al. 1998. Physiological effects of resistant starches on fecal bulk, short chain fatty acids, blood lipids and glycemic index. J. Am. Coll. Nutr. 17:609–16 [Google Scholar]
  83. Jenkins DJ, Wong JM, Kendall CW, Esfahani A, Ng VW. 83.  et al. 2009. The effect of a plant-based low-carbohydrate (“Eco-Atkins”) diet on body weight and blood lipid concentrations in hyperlipidemic subjects. Arch. Intern. Med. 169:1046–54 [Google Scholar]
  84. Jiménez-Gómez Y, López-Miranda J, Blanco-Colio LM, Marin C, Pérez-Martinez P. 84.  et al. 2009. Olive oil and walnut breakfasts reduce the postprandial inflammatory response in mononuclear cells compared with a butter breakfast in healthy men. Atherosclerosis 204:e70–76 [Google Scholar]
  85. Johnston BC, Kanters S, Bandayrel K, Wu P, Naji F. 85.  et al. 2014. Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA 312:923–33 [Google Scholar]
  86. Karupaiah T, Tan CH, Chinna K, Sundram K. 86.  2011. The chain length of dietary saturated fatty acids affects human postprandial lipemia. J. Am. Coll. Nutr. 30:511–21 [Google Scholar]
  87. Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P, Sacks FM. 87.  2006. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 114:681–87 [Google Scholar]
  88. Keogh JB, Grieger JA, Noakes M, Clifton PM. 88.  2005. Flow-mediated dilatation is impaired by a high-saturated fat diet but not by a high-carbohydrate diet. Arterioscler. Thromb. Vasc. Biol. 25:1274–79 [Google Scholar]
  89. Keys A, Aravanis C, Blackburn HW, Van Buchem FS, Buzina R. 89.  et al. 1966. Epidemiological studies related to coronary heart disease: characteristics of men aged 40–59 in seven countries. Acta Med. Scand. Suppl. 460:1–392 [Google Scholar]
  90. Khosla P, Hayes KC. 90.  2012. Saturated fat and lipemia: importance of study design and triglyceride structure. Am. J. Clin. Nutr. 96:216–18; author reply 218–19 [Google Scholar]
  91. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E. 91.  et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85 [Google Scholar]
  92. Krauss RM. 92.  2005. Dietary and genetic probes of atherogenic dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 25:2265–72 [Google Scholar]
  93. Krauss RM. 93.  2014. All low-density lipoprotein particles are not created equal. Arterioscler. Thromb. Vasc. Biol. 34:959–61 [Google Scholar]
  94. Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT. 94.  2006. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am. J. Clin. Nutr. 83:1025–31; quiz 1205 [Google Scholar]
  95. Krauss RM, Siri PW. 95.  2004. Metabolic abnormalities: triglyceride and low-density lipoprotein. Endocrinol. Metab. Clin. North Am. 33:405–15 [Google Scholar]
  96. Kummerow FA. 96.  2013. Interaction between sphingomyelin and oxysterols contributes to atherosclerosis and sudden death. Am. J. Cardiovasc. Dis. 3:17–26 [Google Scholar]
  97. Lairon D, Defoort C. 97.  2011. Effects of nutrients on postprandial lipemia. Curr. Vasc. Pharmacol. 9:309–12 [Google Scholar]
  98. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A. 98.  et al. 2010. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 363:2102–13 [Google Scholar]
  99. Lee JE, McLerran DF, Rolland B, Chen Y, Grant EJ. 99.  et al. 2013. Meat intake and cause-specific mortality: a pooled analysis of Asian prospective cohort studies. Am. J. Clin. Nutr. 98:1032–41 [Google Scholar]
  100. Lefevre M, Champagne CM, Tulley RT, Rood JC, Most MM. 100.  2005. Individual variability in cardiovascular disease risk factor responses to low-fat and low-saturated-fat diets in men: body mass index, adiposity, and insulin resistance predict changes in LDL cholesterol. Am. J. Clin. Nutr. 82:957–63; quiz 1145–46 [Google Scholar]
  101. Liebman BF, Katan MB, Jacobson MF. 101.  2014. Association of dietary, circulating, and supplement fatty acids with coronary risk. Ann. Intern. Med. 161:454–55 [Google Scholar]
  102. Livesey G, Taylor R, Hulshof T, Howlett J. 102.  2008. Glycemic response and health—a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am. J. Clin. Nutr. 87:258–68S [Google Scholar]
  103. Lorenzen JK, Astrup A. 103.  2011. Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. Br. J. Nutr. 105:1823–31 [Google Scholar]
  104. Maki KC, Van Elswyk ME, Alexander DD, Rains TM, Sohn EL, McNeill S. 104.  2012. A meta-analysis of randomized controlled trials that compare the lipid effects of beef versus poultry and/or fish consumption. J. Clin. Lipidol. 6:352–61 [Google Scholar]
  105. Mangravite LM, Chiu S, Wojnoonski K, Rawlings RS, Bergeron N, Krauss RM. 105.  2011. Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source. J. Nutr. 141:2180–85 [Google Scholar]
  106. Manning PJ, Sutherland WH, McGrath MM, de Jong SA, Walker RJ, Williams MJ. 106.  2008. Postprandial cytokine concentrations and meal composition in obese and lean women. Obesity (Silver Spring) 16:2046–52 [Google Scholar]
  107. Manson JE, Bassuk SS, Lee IM, Cook NR, Albert MA. 107.  et al. 2012. The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp. Clin. Trials 33:159–71 [Google Scholar]
  108. Martínez-González MA, Zazpe I, Razquin C, Sánchez-Tainta A, Corella D. 108.  et al. 2014. Empirically-derived food patterns and the risk of total mortality and cardiovascular events in the PREDIMED study. Clin. Nutr. doi: 10.1016/j.clnu.2014.09.006 [Google Scholar]
  109. Masson CJ, Mensink RP. 109.  2011. Exchanging saturated fatty acids for (n-6) polyunsaturated fatty acids in a mixed meal may decrease postprandial lipemia and markers of inflammation and endothelial activity in overweight men. J. Nutr. 141:816–21 [Google Scholar]
  110. 110. Inst. Med (IOM) 2010. Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease Washington, DC: Natl. Acad. Press [Google Scholar]
  111. Mensink RP, Katan MB. 111.  1992. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler. Thromb. 12:911–19 [Google Scholar]
  112. Mensink RP, Zock PL, Katan MB, Hornstra G. 112.  1992. Effect of dietary cis and trans fatty acids on serum lipoprotein[a] levels in humans. J. Lipid Res. 33:1493–501 [Google Scholar]
  113. Mensink RP, Zock PL, Kester AD, Katan MB. 113.  2003. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77:1146–55 [Google Scholar]
  114. Mente A, de Koning L, Shannon HS, Anand SS. 114.  2009. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch. Intern. Med. 169:659–69 [Google Scholar]
  115. Micha R, Mozaffarian D. 115.  2010. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids 45:893–905 [Google Scholar]
  116. Micha R, Wallace SK, Mozaffarian D. 116.  2010. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation 121:2271–83 [Google Scholar]
  117. Miller PE, Van Elswyk M, Alexander DD. 117.  2014. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am. J. Hypertens. 27:885–96 [Google Scholar]
  118. Mora S, Caulfied MP, Wohlgemuth J, Chen Z, Superko HR, Glynn RJ, Ridker PM, Krauss RM. 118.  2015. Atherogenic lipoprotein subclasses determined by ion mobility analysis and first cardiovascular events after random allocation to high-intensity statin therapy or placebo: the JUPITER Trial. Manuscript submitted [Google Scholar]
  119. Mozaffarian D. 119.  2008. Fish and n-3 fatty acids for the prevention of fatal coronary heart disease and sudden cardiac death. Am. J. Clin. Nutr. 87:1991–96S [Google Scholar]
  120. Mozaffarian D, Appel LJ, Van Horn L. 120.  2011. Components of a cardioprotective diet: new insights. Circulation 123:2870–91 [Google Scholar]
  121. Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X. 121.  et al. 2010. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Ann. Intern. Med. 153:790–99 [Google Scholar]
  122. Mozaffarian D, Clarke R. 122.  2009. Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur. J. Clin. Nutr. 63:Suppl. 2S22–33 [Google Scholar]
  123. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. 123.  2006. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 354:1601–13 [Google Scholar]
  124. Mozaffarian D, Micha R, Wallace S. 124.  2010. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLOS Med. 7:e1000252 [Google Scholar]
  125. Muller H, Lindman AS, Brantsaeter AL, Pedersen JI. 125.  2003. The serum LDL/HDL cholesterol ratio is influenced more favorably by exchanging saturated with unsaturated fat than by reducing saturated fat in the diet of women. J. Nutr. 133:78–83 [Google Scholar]
  126. Musunuru K, Orho-Melander M, Caulfield MP, Li S, Salameh WA. 126.  et al. 2009. Ion mobility analysis of lipoprotein subfractions identifies three independent axes of cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 29:1975–80 [Google Scholar]
  127. Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM. 127.  et al. 2002. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J. Am. Coll. Cardiol. 39:1145–50 [Google Scholar]
  128. Nestel PJ, Chronopulos A, Cehun M. 128.  2005. Dairy fat in cheese raises LDL cholesterol less than that in butter in mildly hypercholesterolaemic subjects. Eur. J. Clin. Nutr. 59:1059–63 [Google Scholar]
  129. Nicholls SJ, Lundman P, Harmer JA, Cutri B, Griffiths KA. 129.  et al. 2006. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J. Am. Coll. Cardiol. 48:715–20 [Google Scholar]
  130. Noakes M, Clifton PM, Nestel PJ, Le Leu R, McIntosh G. 130.  1996. Effect of high-amylose starch and oat bran on metabolic variables and bowel function in subjects with hypertriglyceridemia. Am. J. Clin. Nutr. 64:944–51 [Google Scholar]
  131. Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS Jr. 131.  et al. 2006. Effects of low-carbohydrate versus low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 166:285–93 [Google Scholar]
  132. O'Connor LM, Lentjes MA, Luben RN, Khaw KT, Wareham NJ, Forouhi NG. 132.  2014. Dietary dairy product intake and incident type 2 diabetes: a prospective study using dietary data from a 7-day food diary. Diabetologia 57:909–17 [Google Scholar]
  133. Odegaard AO, Koh WP, Yuan JM, Gross MD, Pereira MA. 133.  2014. Dietary patterns and mortality in a Chinese population. Am. J. Clin. Nutr. 100:877–83 [Google Scholar]
  134. Ordovas JM. 134.  2006. Genetic interactions with diet influence the risk of cardiovascular disease. Am. J. Clin. Nutr. 83:443–46S [Google Scholar]
  135. Parish S, Offer A, Clarke R, Hopewell JC, Hill MR. 135.  et al. 2012. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study. Circulation 125:2469–78 [Google Scholar]
  136. Poppitt SD, Keogh GF, Lithander FE, Wang Y, Mulvey TB. 136.  et al. 2008. Postprandial response of adiponectin, interleukin-6, tumor necrosis factor-α, and C-reactive protein to a high-fat dietary load. Nutrition 24:322–29 [Google Scholar]
  137. Ramsden CE, Hibbeln JR, Majchrzak SF, Davis JM. 137.  2010. n-6 fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials. Br. J. Nutr. 104:1586–600 [Google Scholar]
  138. Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR. 138.  et al. 2013. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 346:e8707 [Google Scholar]
  139. Ras RT, Streppel MT, Draijer R, Zock PL. 139.  2013. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int. J. Cardiol. 168:344–51 [Google Scholar]
  140. Rasmussen BM, Vessby B, Uusitupa M, Berglund L, Pedersen E. 140.  et al. 2006. Effects of dietary saturated, monounsaturated, and n-3 fatty acids on blood pressure in healthy subjects. Am. J. Clin. Nutr. 83:221–26 [Google Scholar]
  141. Raz O, Steinvil A, Berliner S, Rosenzweig T, Justo D, Shapira I. 141.  2013. The effect of two iso-caloric meals containing equal amounts of fats with a different fat composition on the inflammatory and metabolic markers in apparently healthy volunteers. J. Inflamm. (Lond.) 10:3 [Google Scholar]
  142. Rees K, Hartley L, Flowers N, Clarke A, Hooper L. 142.  et al. 2013. “Mediterranean” dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 8:CD009825 [Google Scholar]
  143. Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. 143.  2012. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA 308:1024–33 [Google Scholar]
  144. Roche MM, Wang PP. 144.  2013. Sex differences in all-cause and cardiovascular mortality, hospitalization for individuals with and without diabetes, and patients with diabetes diagnosed early and late. Diabetes Care 36:2582–90 [Google Scholar]
  145. Rudel LL, Parks JS, Sawyer JK. 145.  1995. Compared with dietary monounsaturated and saturated fat, polyunsaturated fat protects African green monkeys from coronary artery atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15:2101–10 [Google Scholar]
  146. Sacks FM. 146.  2015. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr. Opin. Lipidol. 26:56–63 [Google Scholar]
  147. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH. 147.  et al. 2009. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 360:859–73 [Google Scholar]
  148. Sacks FM, Carey VJ, Anderson CA, Miller ER 3rd, Copeland T. 148.  et al. 2014. Effects of high versus low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: the OmniCarb Randomized Clinical Trial. JAMA 312:2531–41 [Google Scholar]
  149. Saito H, Kagaya M, Suzuki M, Yoshida A, Naito M. 149.  2013. Simultaneous ingestion of fructose and fat exacerbates postprandial exogenous lipidemia in young healthy Japanese women. J. Atheroscler. Thromb. 20:591–600 [Google Scholar]
  150. Sanders TA, Filippou A, Berry SE, Baumgartner S, Mensink RP. 150.  2011. Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. Am. J. Clin. Nutr. 94:1433–41 [Google Scholar]
  151. Sanders TA, Lewis FJ, Goff LM, Chowienczyk PJ, Group RS. 151.  2013. SFAs do not impair endothelial function and arterial stiffness. Am. J. Clin. Nutr. 98:677–83 [Google Scholar]
  152. Schwingshackl L, Hoffmann G. 152.  2013. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr. J. 12:48 [Google Scholar]
  153. Serra-Majem L, Roman B, Estruch R. 153.  2006. Scientific evidence of interventions using the Mediterranean diet: a systematic review. Nutr. Rev. 64:S27–47 [Google Scholar]
  154. Shepherd J, Packard CJ, Grundy SM, Yeshurun D, Gotto AM Jr, Taunton OD. 154.  1980. Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J. Lipid Res. 21:91–99 [Google Scholar]
  155. Shikany JM, Tinker LF, Neuhouser ML, Ma Y, Patterson RE. 155.  et al. 2010. Association of glycemic load with cardiovascular disease risk factors: the Women's Health Initiative Observational Study. Nutrition 26:641–47 [Google Scholar]
  156. Shin MJ, Krauss RM. 156.  2010. Apolipoprotein CIII bound to apoB-containing lipoproteins is associated with small, dense LDL independent of plasma triglyceride levels in healthy men. Atherosclerosis 211:337–41 [Google Scholar]
  157. Sievenpiper JL, de Souza RJ, Mirrahimi A, Yu ME, Carleton AJ. 157.  et al. 2012. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann. Intern. Med. 156:291–304 [Google Scholar]
  158. Simopoulos AP. 158.  2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 233:674–88 [Google Scholar]
  159. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. 159.  2010. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 91:535–46 [Google Scholar]
  160. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. 160.  2010. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 91:502–9 [Google Scholar]
  161. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. 161.  2010. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr. Atheroscler. Rep. 12:384–90 [Google Scholar]
  162. Siri-Tarino PW, Williams PT, Fernstrom HS, Rawlings RS, Krauss RM. 162.  2009. Reversal of small, dense LDL subclass phenotype by normalization of adiposity. Obesity (Silver Spring) 17:1768–75 [Google Scholar]
  163. Skeaff CM, Miller J. 163.  2009. Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Ann. Nutr. Metab. 55:173–201 [Google Scholar]
  164. Sluijs I, Forouhi NG, Beulens JW, van der Schouw YT, Agnoli C. 164.  et al. 2012. The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct Study. Am. J. Clin. Nutr. 96:382–90 [Google Scholar]
  165. Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, Hu FB, Engberink MF. 165.  et al. 2011. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 93:158–71 [Google Scholar]
  166. Sofi F, Abbate R, Gensini GF, Casini A. 166.  2010. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am. J. Clin. Nutr. 92:1189–96 [Google Scholar]
  167. Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y. 167.  et al. 2011. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J. Clin. Endocrinol. Metab. 96:E1596–605 [Google Scholar]
  168. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA. 168.  et al. 2009. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119:1322–34 [Google Scholar]
  169. Te Morenga LA, Howatson AJ, Jones RM, Mann J. 169.  2014. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 100:165–79 [Google Scholar]
  170. Tholstrup T, Hoy CE, Andersen LN, Christensen RD, Sandstrom B. 170.  2004. Does fat in milk, butter and cheese affect blood lipids and cholesterol differently?. J. Am. Coll. Nutr. 23:169–76 [Google Scholar]
  171. Tierney AC, McMonagle J, Shaw DI, Gulseth HL, Helal O. 171.  et al. 2011. Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome—LIPGENE: a European randomized dietary intervention study. Int. J. Obes. (Lond.) 35:800–9 [Google Scholar]
  172. Tsai MY, Steffen BT, Guan W, McClelland RL, Warnick R. 172.  et al. 2014. New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: the Multi-Ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 34:196–201 [Google Scholar]
  173. Turner JD, Le NA, Brown WV. 173.  1981. Effect of changing dietary fat saturation on low-density lipoprotein metabolism in man. Am. J. Physiol. 241:E57–63 [Google Scholar]
  174. Vafeiadou K, Weech M, Sharma V, Yaqoob P, Todd S. 174.  et al. 2012. A review of the evidence for the effects of total dietary fat, saturated, monounsaturated and n-6 polyunsaturated fatty acids on vascular function, endothelial progenitor cells and microparticles. Br. J. Nutr. 107:303–24 [Google Scholar]
  175. Vessby B, Uusitupa M, Hermansen K, Riccardi G, Rivellese AA. 175.  et al. 2001. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU Study. Diabetologia 44:312–19 [Google Scholar]
  176. Virtanen JK, Mursu J, Tuomainen T, Voutilainen S. 176.  2014. Dietary fatty acids and risk of coronary heart diesase in men: the Kuopio Ischemic Heart Disease Risk Factor Study. Arterioscler. Thromb. Vasc. Biol. 34:2679–87 [Google Scholar]
  177. Volk BM, Kunces LJ, Freidenreich DJ, Kupchak BR, Saenz C. 177.  et al. 2014. Effects of step-wise increases in dietary carbohydrate on circulating saturated fatty acids and palmitoleic acid in adults with metabolic syndrome. PLOS ONE 9:e113605 [Google Scholar]
  178. Voon PT, Ng TK, Lee VK, Nesaretnam K. 178.  2011. Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults. Am. J. Clin. Nutr. 94:1451–57 [Google Scholar]
  179. Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM. 179.  et al. 2006. n-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am. J. Clin. Nutr. 84:5–17 [Google Scholar]
  180. Wang D, Sievenpiper JL, de Souza RJ, Cozma AI, Chiavaroli L. 180.  et al. 2014. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 232:125–33 [Google Scholar]
  181. Warensjo E, Jansson JH, Cederholm T, Boman K, Eliasson M. 181.  et al. 2010. Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study. Am. J. Clin. Nutr. 92:194–202 [Google Scholar]
  182. Weggemans RM, Zock PL, Urgert R, Katan MB. 182.  1999. Differences between men and women in the response of serum cholesterol to dietary changes. Eur. J. Clin. Invest. 29:827–34 [Google Scholar]
  183. Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB. 183.  2010. Caloric sweetener consumption and dyslipidemia among US adults. JAMA 303:1490–97 [Google Scholar]
  184. Westerterp-Plantenga MS, Nieuwenhuizen A, Tome D, Soenen S, Westerterp KR. 184.  2009. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 29:21–41 [Google Scholar]
  185. Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS. 185.  et al. 2007. Low-carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 86:276–84 [Google Scholar]
  186. Wijendran V, Hayes KC. 186.  2004. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 24:597–615 [Google Scholar]
  187. Willett WC, Stampfer MJ, Sacks FM. 187.  2014. Association of dietary, circulating, and supplement fatty acids with coronary risk. Ann. Intern. Med. 161:453 [Google Scholar]
  188. Wu JH, Lemaitre RN, King IB, Song X, Psaty BM. 188.  et al. 2014. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the Cardiovascular Health Study. Circulation 130:1245–53 [Google Scholar]
  189. Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD. 189.  2012. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 96:1281–98 [Google Scholar]
  190. Yamagishi K, Iso H, Kokubo Y, Saito I, Yatsuya H. 190.  et al. 2013. Dietary intake of saturated fatty acids and incident stroke and coronary heart disease in Japanese communities: the JPHC Study. Eur. Heart J. 34:1225–32 [Google Scholar]
  191. Yang Q, Zhang Z, Gregg EW, Flanders WD, Merritt R, Hu FB. 191.  2014. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern. Med. 174:516–24 [Google Scholar]
  192. Yao Z, Wang Y. 192.  2012. Apolipoprotein C-III and hepatic triglyceride-rich lipoprotein production. Curr. Opin. Lipidol. 23:206–12 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071714-034449
Loading
/content/journals/10.1146/annurev-nutr-071714-034449
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error