In contrast to the spectacular advances in the first half of the twentieth century with micronutrient-related diseases, human nutrition science has failed to stem the more recent rise of obesity and associated cardiometabolic disease (OACD). This failure has triggered debate on the problems and limitations of the field and what change is needed to address these. We briefly review the two broad historical phases of human nutrition science and then provide an overview of the main problems that have been implicated in the poor progress of the field with solving OACD. We next introduce the field of nutritional ecology and show how its ecological-evolutionary foundations can enrich human nutrition science by providing the theory to help address its limitations. We end by introducing a modeling approach from nutritional ecology, termed nutritional geometry, and demonstrate how it can help to implement ecological and evolutionary theory in human nutrition to provide new direction and to better understand and manage OACD.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allison DB, Bassaganya-Riera J, Burlingame B, Brown AW, le Coutre J. 1.  et al. 2015. Goals in nutrition science 2015–2020. Front. Nutr. 2:26 [Google Scholar]
  2. Anderson JW, Konz EC, Jenkins DJA. 2.  2000. Health advantages and disadvantages of weight reducing diets: a computer analysis and critical review. J. Am. Coll. Nutr. 19:5578–90 [Google Scholar]
  3. Anthes E. 3.  2015. The trouble with checklists. Nature 523:516–18 [Google Scholar]
  4. Archer E, Pavela G, Lavie CJ. 4.  2015. A discussion of the refutation of memory-based dietary assessment methods (M-MBs): the rhetorical defense of pseudoscientific and inadmissible evidence. Mayo Clinic Proc. 90:121734–40 [Google Scholar]
  5. Astrup A, Raben A, Geiker N. 5.  2015. The role of higher protein diets in weight control and obesity-related comorbidities. Int. J. Obes. 39:5721–26 [Google Scholar]
  6. Beauman C, Cannon G, Elmadfa I, Glasauer P, Hoffmann I. 6.  et al. 2005. The principles, definition and dimensions of the new nutrition science. Public Health Nutr. 8:6A695–98 [Google Scholar]
  7. Belovsky GE. 7.  1987. Hunter-gatherer foraging: a linear programming approach. J. Anthropol. Archaeol. 6:29–76 [Google Scholar]
  8. Bernays EA. 8.  2001. Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu. Rev. Entomol. 46:703–27 [Google Scholar]
  9. Boersma M, Elser JJ. 9.  2006. Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87:51325–30 [Google Scholar]
  10. Brooks RC, Simpson SJ, Raubenheimer D. 10.  2010. The price of protein: combining evolutionary and economic analysis to understand excessive energy consumption. Obes. Rev. 11:12887–94 [Google Scholar]
  11. Campbell CP, Raubenheimer D, Badaloo AV, Gluckman PD, Martinez C. 11.  et al. 2016. Developmental contributions to macronutrient selection: a randomized controlled trial in adult survivors of malnutrition. Evol. Med. Public Health 2016:15869 [Google Scholar]
  12. Canella DS, Levy RB, Bortoletto Martins AP, Claro RM, Moubarac J-C. 12.  et al. 2014. Ultra-processed food products and obesity in Brazilian households (2008–2009). PLOS ONE 9:e92752 [Google Scholar]
  13. Cannon G. 13.  2002. Nutrition: the new world map. Asia Pac. J. Clin. Nutr. 11:Suppl. 3S480–97 [Google Scholar]
  14. Carpenter KJ. 14.  2003a. A short history of nutritional science: part 1 (1785–1885). J. Nutr. 133:3638–45 [Google Scholar]
  15. Carpenter KJ. 15.  2003b. A short history of nutritional science: part 2 (1885–1912). J. Nutr. 133:4975–84 [Google Scholar]
  16. Carpenter KJ. 16.  2003c. A short history of nutritional science: part 3 (1912–1944). J. Nutr. 133:103023–32 [Google Scholar]
  17. Carpenter KJ. 17.  2003d. A short history of nutritional science: part 4 (1945–1985). J. Nutr. 133:103331–42 [Google Scholar]
  18. Chandon P, Wansink B. 18.  2012. Does food marketing need to make us fat? A review and solutions. Nutr. Rev. 70:10571–93 [Google Scholar]
  19. Csete ME, Doyle JC. 19.  2002. Reverse engineering of biological complexity. Science 295:55601664–69 [Google Scholar]
  20. Dennett DC. 20.  1995. Darwin's Dangerous Idea: Evolution and the Meanings of Life New York: Simon & Schuster [Google Scholar]
  21. Denton D. 21.  1984. The Hunger for Salt. An Anthropological, Physiological and Medical Analysis Berlin: Springer-Verlag [Google Scholar]
  22. Doering F, Stroehle A. 22.  2015. Nutritional biology: a neglected basic discipline of nutritional science. Genes Nutr. 10:655 [Google Scholar]
  23. Dominy NJ, Lucas PW, Osorio D, Yamashita N. 23.  2001. The sensory ecology of primates. Evol. Anthropol. 10:5171–86 [Google Scholar]
  24. Downey M. 24.  2015. The putative 104 causes of obesity update. Downey Obes. Rep. http://downeyobesityreport.com/2015/10/the-putative-104-causes-of-obesity-update [Google Scholar]
  25. Drouin G, Godin J-R, Page B. 25.  2011. The genetics of vitamin C loss in vertebrates. Curr. Genom. 12:5371–78 [Google Scholar]
  26. Elango R, Humayun MA, Ball RO, Pencharz PB. 26.  2010. Evidence that protein requirements have been significantly underestimated. Curr. Opin. Clin. Nutr. Metab. Care 13:152–57 [Google Scholar]
  27. Fardet A, Rock E. 27.  2014. Toward a new philosophy of preventive nutrition: from a reductionist to a holistic paradigm to improve nutritional recommendations. Adv. Nutr. 5:430–46 [Google Scholar]
  28. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M. 28.  et al. 2015. The global burden of cancer 2013. JAMA Oncol. 1:4505–27 [Google Scholar]
  29. Gosby AK, Conigrave AD, Lau NS, Iglesias MA, Hall RM. 29.  et al. 2011. Testing protein leverage in lean humans: a randomised controlled experimental study. PLOS ONE 6:10e25929 [Google Scholar]
  30. Gosby AK, Conigrave AD, Raubenheimer D, Simpson SJ. 30.  2014. Protein leverage and energy intake. Obes. Rev. 15:3183–91 [Google Scholar]
  31. Hall KD, Bemis T, Brychta R, Chen KY, Courville A. 31.  et al. 2015. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metab. 22:427–36 [Google Scholar]
  32. Hammond RA, Dube L. 32.  2012. A systems science perspective and transdisciplinary models for food and nutrition security. PNAS 109:3112356–63 [Google Scholar]
  33. Hardy K, Brand-Miller J, Brown KD, Thomas MG, Copeland L. 33.  2015. The importance of dietary carbohydrate in human evolution. Q. Rev. Biol. 90:3251–68 [Google Scholar]
  34. Hill K. 34.  1988. Macronutrient modifications of optimal foraging theory—an approach using indifference curves applied to some modern foragers. Hum. Ecol. 16:2157–97 [Google Scholar]
  35. Hills TT. 35.  2006. Animal foraging and the evolution of goal-directed cognition. Cogn. Sci. 30:13–41 [Google Scholar]
  36. Hockett B. 36.  2016. Why celebrate the death of primitive economic man? Human nutritional ecology in the 21st century. J. Archaeol. Sci. Rep. 5:617–21 [Google Scholar]
  37. Hockett B, Haws J. 37.  2003. Nutritional ecology and diachronic trends in Paleolithic diet and health. Evol. Anthropol. 12:5211–16 [Google Scholar]
  38. Hockett B, Haws JA. 38.  2005. Nutritional ecology and the human demography of Neandertal extinction. Quat. Int. 137:121–34 [Google Scholar]
  39. Hoffmann I. 39.  2003. Transcending reductionism in nutrition research. Am. J. Clin. Nutr. 78:3 Suppl.514–16S [Google Scholar]
  40. Houston AI, Higginson AD, McNamara JM. 40.  2011. Optimal foraging for multiple nutrients in an unpredictable environment. Ecol. Lett. 14:111101–7 [Google Scholar]
  41. Hujoel P. 41.  2009. Dietary carbohydrates and dental-systemic diseases. J. Dent. Res. 88:6490–502 [Google Scholar]
  42. Hutchinson JMC. 42.  2005. Is more choice always desirable? Evidence and arguments from leks, food selection, and environmental enrichment. Biol. Rev. 80:173–92 [Google Scholar]
  43. Hutchinson JMC, Gigerenzer G. 43.  2005. Simple heuristics and rules of thumb: where psychologists and behavioural biologists might meet. Behav. Process. 69:297–124 [Google Scholar]
  44. Irschick D, Dyer L, Sherry TW. 44.  2005. Phylogenetic methodologies for studying specialization. Oikos 110:2404–8 [Google Scholar]
  45. Jacobs DR Jr, Tapsell LC. 45.  2007. Food, not nutrients, is the fundamental unit in nutrition. Nutr. Rev. 65:10439–50 [Google Scholar]
  46. Jacobs DR Jr, Temple NJ. 46.  2012. Food synergy: a paradigm shift in nutrition science. Nutritional Health—Strategies for Disease Prevention NJ Temple, T Wilson, DR Jacobs Jr 311–22 New York: Springer [Google Scholar]
  47. Kelly R. 47.  2013. The Lifeways of Hunter-Gatherers: The Foraging Spectrum Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  48. Krueger PM, Reither EN. 48.  2015. Mind the gap: race/ethnic and socioeconomic disparities in obesity. Curr. Diabetes Rep. 15:1195 [Google Scholar]
  49. Kussmann M, Morine MJ, Hager J, Sonderegger B, Kaput J. 49.  2013. Perspective: a systems approach to diabetes research. Front. Genet. 4:205 [Google Scholar]
  50. Lanska DJ. 50.  2010. Historical aspects of the major neurological vitamin deficiency disorders: overview and fat-soluble vitamin A. Handbook Clin. Neurol. 95:435–44 [Google Scholar]
  51. Leitzmann C, Cannon G. 51.  2005. Dimensions, domains and principles of the new nutrition science. Public Health Nutr. 8:6A787–94 [Google Scholar]
  52. Levenstein H. 52.  2003. Revolution at the Table: The Transformation of the American Diet Berkeley: Univ. Calif. Press [Google Scholar]
  53. Lieberman LS. 53.  2006. Evolutionary and anthropological perspectives on optimal foraging in obesogenic environments. Appetite 47:3–9 [Google Scholar]
  54. Lounsbury DW, Hirsch GB, Vega C, Schwartz CE. 54.  2014. Understanding social forces involved in diabetes outcomes: a systems science approach to quality-of-life research. Qual. Life Res. 23:3959–69 [Google Scholar]
  55. Mattei J, Malik V, Wedick NM, Hu FB, Spiegelman D. 55.  et al. 2015. Reducing the global burden of type 2 diabetes by improving the quality of staple foods: the Global Nutrition and Epidemiologic Transition Initiative. Glob. Health 11:23 [Google Scholar]
  56. Mertz W. 56.  1981. The essential trace elements. Science 213:45141332–38 [Google Scholar]
  57. Monteiro CA, Levy RB, Claro R, Martins APB, Louzada MLC. 57.  et al. 2013. Ultra-processed food and drink products and obesity: a new hypothesis, and evidence. Ann. Nutr. Metab. 63:Suppl. 11007 [Google Scholar]
  58. Moran TH, Schulkin J. 58.  2000. Curt Richter and regulatory physiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:2R357–63 [Google Scholar]
  59. Nestle M. 59.  2002. Food Politics: How the Food Industry Influences Nutrition and Health Berkeley: Univ. Calif. Press [Google Scholar]
  60. Ng M, Fleming T, Robinson M, Thomson B, Graetz N. 60.  et al. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:9945766–81 [Google Scholar]
  61. Oliveros E, Somers VK, Sochor O, Goel K, Lopez-Jimenez F. 61.  2014. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 56:4426–33 [Google Scholar]
  62. Pittendrigh CS. 62.  1958. Adaptation, natural selection and behavior. Behaviour and Evolution A Roe, GG Simpson 390–416 New Haven, CT: Yale Univ. Press [Google Scholar]
  63. Popkin BM. 63.  2015. Nutrition transition and the global diabetes epidemic. Curr. Diabetes Rep. 15:964 [Google Scholar]
  64. Raubenheimer D. 64.  2011. Toward a quantitative nutritional ecology: the right-angled mixture triangle. Ecol. Monogr. 81:3407–27 [Google Scholar]
  65. Raubenheimer D, Gosby AK, Simpson SJ. 65.  2015a. Integrating nutrients, foods, diets, and appetites with obesity and cardiometabolic health. Obesity 23:91741–42 [Google Scholar]
  66. Raubenheimer D, Lee K-P, Simpson SJ. 66.  2005. Does Bertrand's rule apply to macronutrients?. Proc. R. Soc. B 272:15792429–34 [Google Scholar]
  67. Raubenheimer D, Machovsky-Capuska GE, Chapman CA, Rothman JM. 67.  2015b. Geometry of nutrition in field studies: an illustration using wild primates. Oecologia 177:1223–34 [Google Scholar]
  68. Raubenheimer D, Machovsky-Capuska GE, Gosby AK, Simpson S. 68.  2014a. Nutritional ecology of obesity: from humans to companion animals. Br. J. Nutr. 113:Suppl.S26–39 [Google Scholar]
  69. Raubenheimer D, Rothman JM, Pontzer H, Simpson SJ. 69.  2014b. Macronutrient contributions of insects to the diets of hunter-gatherers: a geometric analysis. J. Hum. Evol. 71:70–76 [Google Scholar]
  70. Raubenheimer D, Simpson SJ. 70.  1993. The geometry of compensatory feeding in the locust. Anim. Behav. 45:5953–64 [Google Scholar]
  71. Raubenheimer D, Simpson SJ. 71.  2010. Hunger and satiety. Encyclopedia of Animal Behaviour M Breed, J Moore 117–26 Amsterdam: Elsevier [Google Scholar]
  72. Raubenheimer D, Simpson SJ, Mayntz D. 72.  2009. Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol. 23:14–16 [Google Scholar]
  73. Raubenheimer D, Simpson SJ, Tait AH. 73.  2012. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. B 367:15961628–46 [Google Scholar]
  74. Richard L, Gauvin L, Raine K. 74.  2011. Ecological models revisited: their uses and evolution in health promotion over two decades. Annu. Rev. Public Health 32:307–26 [Google Scholar]
  75. Robinson EA, Ryan GD, Newman JA. 75.  2012. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194:2321–36 [Google Scholar]
  76. Rosenfeld L. 76.  1997. Vitamine—vitamin. The early years of discovery. Clin. Chem. 43:4680–85 [Google Scholar]
  77. Roth GA, Nguyen G, Forouzanfar MH, Mokdad AH, Naghavi M, Murray CJL. 77.  2015. Estimates of global and regional premature cardiovascular mortality in 2025. Circulation 132:131270–82 [Google Scholar]
  78. Santich B. 78.  2005. Paradigm shifts in the history of dietary advice in Australia. Nutr. Diet. 62:4152–57 [Google Scholar]
  79. Schulkin J. 79.  2001. Sodium Hunger: The Search for a Salty Taste Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  80. Scrinis G. 80.  2013. Nutritionism: The Science and Politics of Dietary Advice New York: Columbia Univ. Press [Google Scholar]
  81. Semba RD. 81.  2012. The discovery of the vitamins. Int. J. Vitam. Nutr. Res. 82:310–15 [Google Scholar]
  82. Simon HA. 82.  1997. Models of Bounded Rationality 3 Cambridge, MA: MIT Press [Google Scholar]
  83. Simpson SJ, Le Couteur DG, Raubenheimer D. 83.  2015. Putting the balance back in diet. Cell 161:118–23 [Google Scholar]
  84. Simpson SJ, Raubenheimer D. 84.  1993. A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos. Trans. R. Soc. B 342:1302381–402 [Google Scholar]
  85. Simpson SJ, Raubenheimer D. 85.  2005. Obesity: the protein leverage hypothesis. Obes. Rev. 6:2133–42 [Google Scholar]
  86. Simpson SJ, Raubenheimer D. 86.  2012. The Nature of Nutrition Princeton, NJ: Princeton Univ. Press [Google Scholar]
  87. Simpson SJ, Sibly RM, Lee KP, Behmer ST, Raubenheimer D. 87.  2004. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68:61299–311 [Google Scholar]
  88. Siri-Tarino PW, Chiu S, Bergeron N, Krauss RM. 88.  2015. Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. Annu. Rev. Nutr. 35:517–43 [Google Scholar]
  89. Sjogren P, Becker W, Warensjo E, Olsson E, Byberg L. 89.  et al. 2010. Mediterranean and carbohydrate-restricted diets and mortality among elderly men: a cohort study in Sweden. Am. J. Clin. Nutr. 92:4967–74 [Google Scholar]
  90. Smith R. 90.  2014. Are some diets “mass murder”?. BMJ 349:g7654 [Google Scholar]
  91. Solon-Biet SM, McMahon AC, Ballard JWO, Ruohonen K, Wu LE. 91.  et al. 2014. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19:3418–30 [Google Scholar]
  92. Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. 92.  2015. Macronutrients and caloric intake in health and longevity. J. Endocrinol. 226:1R17–28 [Google Scholar]
  93. Speakman JR. 93.  2013. Evolutionary perspectives on the obesity epidemic: adaptive, maladaptive, and neutral viewpoints. Annu. Rev. Nutr. 33:289–317 [Google Scholar]
  94. Stefani MC, Humphries DL. 94.  2014. Boundary development in the field of international nutrition science. Adv. Nutr. 5:193–98 [Google Scholar]
  95. Stroehle A, Doering F. 95.  2010. Molecularization in nutritional science: a view from philosophy of science. Mol. Nutr. Food Res. 54:101385–404 [Google Scholar]
  96. Sundar A, Kardes FR. 96.  2015. The role of perceived variability and the health halo effect in nutritional inference and consumption. Psychol. Mark. 32:5512–21 [Google Scholar]
  97. Thompson NS. 97.  1987. The misappropriation of teleonomy. Perspectives in Ethology PPG Bateson, PH Klopfer 259–74 New York: Plenum [Google Scholar]
  98. Tordoff MG. 98.  2001. Calcium: taste, intake, and appetite. Physiol. Rev. 81:41567–97 [Google Scholar]
  99. Van Noorden R. 99.  2015. Interdisciplinary research by the numbers. Nature 525:7569306–7 [Google Scholar]
  100. Waldbauer GP, Friedman S. 100.  1991. Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36:43–63 [Google Scholar]
  101. Wells JCK. 101.  2006. The evolution of human fatness and susceptibility to obesity: an ethological approach. Biol. Rev. 81:2183–205 [Google Scholar]
  102. Wilcox DC, Wilcox BJ, Todoriki H, Suzuki M. 102.  2009. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr. 28:Suppl.500–16S [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error