1932

Abstract

The dietary choices a mother makes during pregnancy offer her developing fetus its earliest exposure to the family's culinary preferences. This comprehensive literature review synthesizes five decades of research, which has provided valuable insights into fetal flavor learning. Converging evidence across various species supports the functionality of fetal chemoreceptive systems by the end of gestation, enabling the detection of an extensive array of chemosensory cues derived from the maternal diet and transmitted to the amniotic fluid. The fetus effectively encodes these flavors, resulting in their enhanced acceptance after birth. While existing studies predominantly concentrate on fetal learning about odor volatiles, limited evidence suggests a capacity for learning about gustatory (i.e., taste) properties. Examining whether these prenatal odor, taste, and flavor experiences translate into enduring shifts in dietary behaviors beyond weaning remains a crucial avenue for further investigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-121222-101404
2024-08-29
2025-05-01
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-121222-101404.html?itemId=/content/journals/10.1146/annurev-nutr-121222-101404&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abate P, Pepino MY, Dominguez HD, Spear NE, Molina JC. 2000.. Fetal associative learning mediated through maternal alcohol intoxication. . Alcohol. Clin. Exp. Res. 24:(1):3947
    [Crossref] [Google Scholar]
  2. 2.
    Abate P, Spear NE, Molina JC. 2001.. Fetal and infantile alcohol-mediated associative learning in the rat. . Alcohol. Clin. Exp. Res. 25:(7):98998
    [Google Scholar]
  3. 3.
    Abate P, Varlinskaya EI, Cheslock SJ, Spear NE, Molina JC. 2002.. Neonatal activation of alcohol-related prenatal memories: impact on the first suckling response. . Alcohol. Clin. Exp. Res. 26:(10):151222
    [Crossref] [Google Scholar]
  4. 4.
    Altbäcker V, Hudson R, Bilkó Á. 1995.. Rabbit-mothers’ diet influences pups’ later food choice. . Ethology 99:(1–2):10716
    [Crossref] [Google Scholar]
  5. 5.
    Arias C, Chotro MG. 2005.. Increased preference for ethanol in the infant rat after prenatal ethanol exposure, expressed on intake and taste reactivity tests. . Alcohol. Clin. Exp. Res. 29:(3):33746
    [Crossref] [Google Scholar]
  6. 6.
    Arias C, Chotro MG. 2005.. Increased palatability of ethanol after prenatal ethanol exposure is mediated by the opioid system. . Pharmacol. Biochem. Behav. 82:(3):43442
    [Crossref] [Google Scholar]
  7. 7.
    Ashman AM, Collins CE, Hure AJ, Jensen M, Oldmeadow C. 2016.. Maternal diet during early childhood, but not pregnancy, predicts diet quality and fruit and vegetable acceptance in offspring. . Matern. Child Nutr. 12:(3):57990
    [Crossref] [Google Scholar]
  8. 8.
    Bachmanov AA, Kiefer SW, Molina JC, Tordoff MG, Duffy VB, et al. 2003.. Chemosensory factors influencing alcohol perception, preferences, and consumption. . Alcohol. Clin. Exp. Res. 27:(2):22031
    [Crossref] [Google Scholar]
  9. 9.
    Barlow LA. 2015.. Progress and renewal in gustation: new insights into taste bud development. . Development 142:(21):362029
    [Crossref] [Google Scholar]
  10. 10.
    Bartocci M, Winberg J, Papendieck G, Mustica T, Serra G, Lagercrantz H. 2001.. Cerebral hemodynamic response to unpleasant odors in the preterm newborn measured by near-infrared spectroscopy. . Pediatr. Res. 50:(3):32430
    [Crossref] [Google Scholar]
  11. 11.
    Bartoshuk LM, Sims CA, Colquhoun TA, Snyder DJ. 2019.. What Aristotle didn't know about flavor. . Am. Psychol. 74:(9):100311
    [Crossref] [Google Scholar]
  12. 12.
    Bayol SA, Farrington SJ, Stickland NC. 2007.. A maternal “junk food” diet in pregnancy and lactation promotes an exacerbated taste for “junk food” and a greater propensity for obesity in rat offspring. . Br. J. Nutr. 98:(4):84351
    [Crossref] [Google Scholar]
  13. 13.
    Beall MH, van den Wijngaard JPHM, van Gemert MJC, Ross MG. 2007.. Amniotic fluid water dynamics. . Placenta 28:(8–9):81623
    [Crossref] [Google Scholar]
  14. 14.
    Becques A, Larose C, Gouat P, Serra J. 2009.. Effects of pre- and postnatal olfactogustatory experience on early preferences at birth and dietary selection at weaning in kittens. . Chem. Senses 35:(1):4145
    [Crossref] [Google Scholar]
  15. 15.
    Bertin A, Calandreau L, Arnould C, Nowak R, Levy F, et al. 2010.. In ovo olfactory experience influences post-hatch feeding behaviour in young chickens. . Ethology 116:(11):102737
    [Crossref] [Google Scholar]
  16. 16.
    Bilkó Á, Altbäcker V, Hudson R. 1994.. Transmission of food preference in the rabbit: the means of information transfer. . Physiol. Behav. 56:(5):90712
    [Crossref] [Google Scholar]
  17. 17.
    Bloomfield FH, Alexander T, Muelbert M, Beker F. 2017.. Smell and taste in the preterm infant. . Early Hum. Dev. 114::3134
    [Crossref] [Google Scholar]
  18. 18.
    Bradley R, Mistretta C. 1972.. The morphological and functional development of fetal gustatory receptors. . In Oral Physiology, ed. N Emmelin, Y Zotterman , pp. 23953. Oxford, UK:: Pergamon Press Ltd.
    [Google Scholar]
  19. 19.
    Browne JV. 2008.. Chemosensory development in the fetus and newborn. . Newborn Infant Nurs. Rev. 8:(4):18086
    [Crossref] [Google Scholar]
  20. 20.
    Bushdid C, Magnasco MO, Vosshall LB, Keller A. 2014.. Humans can discriminate more than 1 trillion olfactory stimuli. . Science 343:(6177):137072
    [Crossref] [Google Scholar]
  21. 21.
    Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS. 2006.. The receptors and cells for mammalian taste. . Nature 444:(7117):28894
    [Crossref] [Google Scholar]
  22. 22.
    Choo E, Wong L, Chau P, Bushnell J, Dando R. 2020.. Offspring of obese mice display enhanced intake and sensitivity for palatable stimuli, with altered expression of taste signaling elements. . Sci. Rep. 10:(1):12776
    [Crossref] [Google Scholar]
  23. 23.
    Chotro MG, Arias C. 2003.. Prenatal exposure to ethanol increases ethanol consumption: a conditioned response?. Alcohol 30:(1):1928
    [Crossref] [Google Scholar]
  24. 24.
    Chotro MG, Arias C, Laviola G. 2007.. Increased ethanol intake after prenatal ethanol exposure: studies with animals. . Neurosci. Biobehav. Rev. 31:(2):18191
    [Crossref] [Google Scholar]
  25. 25.
    Chotro MG, Kraebel KS, McKinzie DL, Molina JC, Spear N. 1996.. Prenatal and postnatal ethanol exposure influences preweanling rats’ behavioral and autonomic responding to ethanol odor. . Alcohol 13:(4):37785
    [Crossref] [Google Scholar]
  26. 26.
    Chotro MG, Molina JC. 1990.. Acute ethanol contamination of the amniotic fluid during gestational day 21: postnatal changes in alcohol responsiveness in rats. . Dev. Psychobiol. 23:(6):53547
    [Crossref] [Google Scholar]
  27. 27.
    Chotro MG, Molina JC. 1992.. Bradycardiac responses elicited by alcohol odor in rat neonates: influence of in utero experience with ethanol. . Psychopharmacology 106:(4):49196
    [Crossref] [Google Scholar]
  28. 28.
    Chuah MI, Zheng DR. 1987.. Olfactory marker protein is present in olfactory receptor cells of human fetuses. . Neuroscience 23:(1):36370
    [Crossref] [Google Scholar]
  29. 29.
    Coker CR, Keller BN, Arnold AC, Silberman Y. 2021.. Impact of high-fat diet and ethanol consumption on neurocircuitry regulating emotional processing and metabolic function. . Front. Behav. Neurosci. 14::601111
    [Crossref] [Google Scholar]
  30. 30.
    Coles CD, Platzman KA, Raskind-Hood CL, Brown RT, Falek A, Smith IE. 1997.. A comparison of children affected by prenatal alcohol exposure and attention deficit, hyperactivity disorder. . Alcohol. Clin. Exp. Res. 21:(1):15061
    [Crossref] [Google Scholar]
  31. 31.
    Coppola DM, Millar LC. 1997.. Olfaction in utero: behavioral studies of the mouse fetus. . Behav. Process. 39:(1):5368
    [Crossref] [Google Scholar]
  32. 32.
    Coureaud G, Schaal B, Hudson R, Orgeur P, Coudert P. 2002.. Transnatal olfactory continuity in the rabbit: behavioral evidence and short-term consequence of its disruption. . Dev. Psychobiol. 40:(4):37290
    [Crossref] [Google Scholar]
  33. 33.
    De Snoo K. 1937.. Das trinkende Kind im Uterus. . Gynecol. Obstet. Investig. 105:(2–3):8897
    [Crossref] [Google Scholar]
  34. 34.
    DeCasper AJ, Fifer WP. 1980.. Of human bonding: newborns prefer their mothers’ voices. . Science 208:(4448):117476
    [Crossref] [Google Scholar]
  35. 35.
    Delwiche J. 2004.. The impact of perceptual interactions on perceived flavor. . Food Qual. Prefer. 15:(2):13746
    [Crossref] [Google Scholar]
  36. 36.
    Di Lorenzo PM, Kiefer SW, Rice AG, Garcia J. 1986.. Neural and behavioral responsivity to ethyl alcohol as a tastant. . Alcohol 3:(1):5561
    [Crossref] [Google Scholar]
  37. 37.
    Domínguez HD, López MF, Molina JC. 1998.. Neonatal responsiveness to alcohol odor and infant alcohol intake as a function of alcohol experience during late gestation. . Alcohol 16:(2):10917
    [Crossref] [Google Scholar]
  38. 38.
    Drake AJ, Reynolds RM. 2010.. Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. . Reproduction 140:(3):38798
    [Crossref] [Google Scholar]
  39. 39.
    Eckstein A. 1927.. Zur Physiologie der Geschmacksempfindung und des Saugreflexes bei Säuglingen. . Z. Kinderheilkd. 45:(1):118
    [Crossref] [Google Scholar]
  40. 40.
    El-Haddad MA, Ismail Y, Guerra C, Day L, Ross MG. 2002.. Effect of oral sucrose on ingestive behavior in the near-term ovine fetus. . Am. J. Obstet. Gynecol. 187:(4):898901
    [Crossref] [Google Scholar]
  41. 41.
    El-Sharaby A, Ueda K, Kurisu K, Wakisaka S. 2001.. Development and maturation of taste buds of the palatal epithelium of the rat: histological and immunohistochemical study. . Anat. Rec. 265:(3):26068
    [Crossref] [Google Scholar]
  42. 42.
    El-Sharaby A, Ueda K, Wakisaka S. 2001.. Differentiation of the lingual and palatal gustatory epithelium of the rat as revealed by immunohistochemistry of α-gustducin. . Arch. Histol. Cytol. 64:(4):4019
    [Crossref] [Google Scholar]
  43. 43.
    Faas AE, March SM, Moya PR, Molina JC. 2015.. Alcohol odor elicits appetitive facial expressions in human neonates prenatally exposed to the drug. . Physiol. Behav. 148::7886
    [Crossref] [Google Scholar]
  44. 44.
    Faas AE, Spontón ED, Moya PR, Molina JC. 2000.. Differential responsiveness to alcohol odor in human neonates: effects of maternal consumption during gestation. . Alcohol 22:(1):717
    [Crossref] [Google Scholar]
  45. 45.
    Farbman AI. 1986.. Prenatal development of mammalian olfactory receptor cells. . Chem. Senses 11:(1):318
    [Crossref] [Google Scholar]
  46. 46.
    Fulgione D, Trapanese M, Buglione M, Rippa D, Polese G, et al. 2017.. Pre-birth sense of smell in the wild boar: the ontogeny of the olfactory mucosa. . Zoology 123::1115
    [Crossref] [Google Scholar]
  47. 47.
    Gaillard D, Kinnamon SC. 2019.. New evidence for fat as a primary taste quality. . Acta Physiol. 226:(1):e13246
    [Crossref] [Google Scholar]
  48. 48.
    Ganchrow J, Mennella J. 2003.. The ontogeny of human flavor perception. . In Handbook of Olfaction and Gustation, ed. R Doty , pp. 82346. New York:: Marcel Dekker, Inc. , 2nd ed..
    [Google Scholar]
  49. 49.
    Gilpin AR. 1993.. Table for conversion of Kendall's tau to Spearman's rho within the context of measures of magnitude of effect for meta-analysis. . Educ. Psychol. Meas. 53:(1):8792
    [Crossref] [Google Scholar]
  50. 50.
    Glendinning JI, Gillman J, Zamer H, Margolskee RF, Sclafani A. 2012.. The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. . Physiol. Behav. 107:(1):5058
    [Crossref] [Google Scholar]
  51. 51.
    Glendinning JI, Tang J, Morales Allende AP, Bryant BP, Youngentob L, Youngentob SL. 2017.. Fetal alcohol exposure reduces responsiveness of taste nerves and trigeminal chemosensory neurons to ethanol and its flavor components. . J. Neurophysiol. 118:(2):1198209
    [Crossref] [Google Scholar]
  52. 52.
    Harmancıoğlu B, Kabaran S. 2023.. Maternal high fat diets: impacts on offspring obesity and epigenetic hypothalamic programming. . Front. Genet. 14::1158089
    [Crossref] [Google Scholar]
  53. 53.
    Hartmann C, Cupisti S, Dittrich R, Buettner A. 2014.. Identification of odor-active substances in individual low-volume amniotic fluid samples by a sensorially targeted gas chromatographic-olfactometric approach. . Chemosens. Percept. 7:(1):3139
    [Crossref] [Google Scholar]
  54. 54.
    Hauser GJ, Chitayat D, Berns L, Braver D, Muhlbauer B. 1985.. Peculiar odours in newborns and maternal prenatal ingestion of spicy food. . Eur. J. Pediatr. 144:(4):403
    [Crossref] [Google Scholar]
  55. 55.
    Hayashi M, Shimazaki Y, Kamata S, Kakiichi N, Ikeda M. 1991.. Disposition of ethanol and acetaldehyde in maternal blood, fetal blood, and amniotic fluid of near-term pregnant rats. . Bull. Environ. Contam. Toxicol. 47:(2):18489
    [Crossref] [Google Scholar]
  56. 56.
    Hepper P. 1995.. Human fetal “olfactory” learning. . Int. J. Prenat. Perinat. Psychol. Med. 7:(2):14751
    [Google Scholar]
  57. 57.
    Hepper PG, Wells DL. 2006.. Perinatal olfactory learning in the domestic dog. . Chem. Senses 31:(3):20712
    [Crossref] [Google Scholar]
  58. 58.
    Hepper PG, Wells DL, Dornan JC, Lynch C. 2013.. Long-term flavor recognition in humans with prenatal garlic experience. . Dev. Psychobiol. 55:(5):56874
    [Crossref] [Google Scholar]
  59. 59.
    Hepper PG, Wells DL, Millsopp S, Kraehenbuehl K, Lyn SA, Mauroux O. 2012.. Prenatal and early sucking influences on dietary preference in newborn, weaning, and young adult cats. . Chem. Senses 37:(8):75566
    [Crossref] [Google Scholar]
  60. 60.
    Herz RS. 2016.. The role of odor-evoked memory in psychological and physiological health. . Brain Sci. 6:(3):22
    [Crossref] [Google Scholar]
  61. 61.
    Hollingworth H, Poffenberger A. 1917.. The Sense of Taste. New York:: Moffat, Yard and Company
    [Google Scholar]
  62. 62.
    Hummel T, Frasnelli J. 2019.. The intranasal trigeminal system. . Handb. Clin. Neurol. 164::11934
    [Crossref] [Google Scholar]
  63. 63.
    Jaime-Lara R, Brooks B, Vizioli C, Chiles M, Nawal N, et al. 2023.. A systematic review of the biological mediators of fat taste and smell. . Physiol. Rev. 103:(1):855918
    [Crossref] [Google Scholar]
  64. 64.
    Jones L, Moschonis G, Oliveira A, de Lauzon-Guillain B, Manios Y, et al. 2015.. The influence of early feeding practices on healthy diet variety score among pre-school children in four European birth cohorts. . Public Health Nutr. 18:(10):177484
    [Crossref] [Google Scholar]
  65. 65.
    Kamenetzky GV, Suárez AB, Ifran MC, Nizhnikov ME, Pautassi RM. 2018.. Influence of prenatal pre-exposure to an odor on intake behavior of an aversive solution in newborn rats. . Neurosci. Lett. 673::711
    [Crossref] [Google Scholar]
  66. 66.
    Kikut-Ligaj D, Trzcielinska-Lorych J. 2015.. How taste works: cells, receptors and gustatory perception. . Cell. Mol. Biol. Lett. 20:(5):699716
    [Crossref] [Google Scholar]
  67. 67.
    Kinnamon JC, Henzler DM, Royer SM. 1993.. HVEM ultrastructural analysis of mouse fungiform taste buds, cell types, and associated synapses. . Microsc. Res. Tech. 26:(2):14256
    [Crossref] [Google Scholar]
  68. 68.
    Kurian SM, Naressi RG, Manoel D, Barwich AS, Malnic B, Saraiva LR. 2021.. Odor coding in the mammalian olfactory epithelium. . Cell Tissue Res. 383:(1):44556
    [Crossref] [Google Scholar]
  69. 69.
    Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, et al. 2005.. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. . J. Clin. Investig. 115:(11):317784
    [Crossref] [Google Scholar]
  70. 70.
    Lecanuet JP, Schaal B. 1996.. Fetal sensory competencies. . Eur. J. Obstet. Gynecol. Reprod. Biol. 68:(1–2):123
    [Crossref] [Google Scholar]
  71. 71.
    Lenhard W, Lenhard A. 2022.. Computation of effect sizes. . Psychometrica. https://doi.org/10.13140/RG.2.2.17823.92329
    [Google Scholar]
  72. 72.
    Lévy F, Badonnel K, Bertin A, Cornilleau F, Durieux D, et al. 2020.. Artificial milk preference of newborn lambs is prenatally influenced by transfer of the flavor from the maternal diet to the amniotic fluid. . Physiol. Behav. 227::113166
    [Crossref] [Google Scholar]
  73. 73.
    Liley AW. 1972.. The foetus as a personality. . Aust. New Zeal. J. Psychiatry 6:(2):99105
    [Crossref] [Google Scholar]
  74. 74.
    Lim J, Johnson MB. 2011.. Potential mechanisms of retronasal odor referral to the mouth. . Chem. Senses 36:(3):28389
    [Crossref] [Google Scholar]
  75. 75.
    Lioret S, Cameron AJ, McNaughton SA, Crawford D, Spence AC, et al. 2015.. Association between maternal education and diet of children at 9 months is partially explained by mothers’ diet. . Matern. Child Nutr. 11:(4):93647
    [Crossref] [Google Scholar]
  76. 76.
    Malnic B, Hirono J, Sato T, Buck LB. 1999.. Combinatorial receptor codes for odors. . Cell 96:(5):71323
    [Crossref] [Google Scholar]
  77. 77.
    Maone TR, Mattes RD, Bernbaum JC, Beauchamp GK. 1990.. A new method for delivering a taste without fluids to preterm and term infants. . Dev. Psychobiol. 23:(2):17991
    [Crossref] [Google Scholar]
  78. 78.
    March SM, Abate P, Spear NE, Molina JC. 2009.. Fetal exposure to moderate ethanol doses: heightened operant responsiveness elicited by ethanol-related reinforcers. . Alcohol. Clin. Exp. Res. 33:(11):198193
    [Crossref] [Google Scholar]
  79. 79.
    Margarit T, Lancet D. 1993.. Expression of olfactory receptor and transduction genes during rat development. . Dev. Brain Res. 73:(1):716
    [Crossref] [Google Scholar]
  80. 80.
    McGann JP. 2017.. Poor human olfaction is a 19th-century myth. . Science 356:(6338):eaam7263
    [Crossref] [Google Scholar]
  81. 81.
    Mennella JA. 1995.. Mother's milk: a medium for early flavor experiences. . J. Hum. Lact. 11:(1):3945
    [Crossref] [Google Scholar]
  82. 82.
    Mennella JA, Beauchamp GK. 1991.. Maternal diet alters the sensory qualities of human milk and the nursling's behavior. . Pediatrics 88:(4):73744
    [Google Scholar]
  83. 83.
    Mennella JA, Jagnow CP, Beauchamp GK. 2001.. Prenatal and postnatal flavor learning by human infants. . Pediatrics 107:(6):E88
    [Crossref] [Google Scholar]
  84. 84.
    Mennella JA, Johnson A, Beauchamp GK. 1995.. Garlic ingestion by pregnant women alters the odor of amniotic fluid. . Chem. Senses 20:(2):2079
    [Crossref] [Google Scholar]
  85. 85.
    Mennella JA, Nolden AA, Bobowski N. 2018.. Measuring sweet and bitter taste in children: individual variation due to age and taste genetics. . In Pediatric Food Preferences and Eating Behaviors, ed. JC Lumeng, JO Fisher , pp. 134. London:: Academic Press
    [Google Scholar]
  86. 86.
    Mezei GC, Ural SH, Hajnal A. 2020.. Differential effects of maternal high fat diet during pregnancy and lactation on taste preferences in rats. . Nutrients 12::3553
    [Crossref] [Google Scholar]
  87. 87.
    Mickley GA, Lovelace JD, Farrell ST, Chang KS. 1995.. The intensity of a fetal taste aversion is modulated by the anesthesia used during conditioning. . Dev. Brain Res. 85:(1):11927
    [Crossref] [Google Scholar]
  88. 88.
    Mickley GA, Remmers-Roeber DR, Dengler CM, Kenmuir CL, Crouse C. 2001.. Paradoxical effects of ketamine on the memory of fetuses of different ages. . Dev. Brain Res. 127:(1):7176
    [Crossref] [Google Scholar]
  89. 89.
    Mickley GA, Remmers-Roeber DR, Crouse C, Walker C, Dengler C. 2000.. Detection of novelty by perinatal rats. . Physiol. Behav. 70:(3–4):21725
    [Crossref] [Google Scholar]
  90. 90.
    Miller JL, Sonies BC, Macedonia C. 2003.. Emergence of oropharyngeal, laryngeal and swallowing activity in the developing fetal upper aerodigestive tract: an ultrasound evaluation. . Early Hum. Dev. 71:(1):6187
    [Crossref] [Google Scholar]
  91. 91.
    Miranda-Morales RS, D'Aloisio G, Anunziata F, Abate P, Molina JC. 2020.. Fetal alcohol programming of subsequent alcohol affinity: a review based on preclinical, clinical and epidemiological studies. . Front. Behav. Neurosci. 14::515618
    [Crossref] [Google Scholar]
  92. 92.
    Mirpuri J. 2021.. Evidence for maternal diet-mediated effects on the offspring microbiome and immunity: implications for public health initiatives. . Pediatr. Res. 89:(2):3016
    [Crossref] [Google Scholar]
  93. 93.
    Molina JC, Chotro MG. 1989.. Acute alcohol intoxication paired with appetitive reinforcement: effects upon ethanol intake in infant rats. . Behav. Neural Biol. 51:(3):32645
    [Crossref] [Google Scholar]
  94. 94.
    Morales I, Berridge KC. 2020.. ‘Liking’ and ‘wanting’ in eating and food reward: brain mechanisms and clinical implications. . Physiol. Behav. 227::113152
    [Crossref] [Google Scholar]
  95. 95.
    Nolte DL, Provenza FD, Callan R, Panter KE. 1992.. Garlic in the ovine fetal environment. . Physiol. Behav. 52:(6):109193
    [Crossref] [Google Scholar]
  96. 96.
    Okubo H, Miyake Y, Sasaki S, Tanaka K, Murakami K, et al. 2014.. Dietary patterns in infancy and their associations with maternal socio-economic and lifestyle factors among 758 Japanese mother-child pairs: the Osaka Maternal and Child Health Study. . Matern. Child Nutr. 10:(2):21325
    [Crossref] [Google Scholar]
  97. 97.
    Prescott J, Johnstone V, Francis J. 2004.. Odor-taste interactions: effects of attentional strategies during exposure. . Chem. Senses 29:(4):33140
    [Crossref] [Google Scholar]
  98. 98.
    Pritchard T, Norgren R. 2004.. Gustatory system. . In The Human Nervous System, ed. G Paxinos, JK Mai , pp. 117196. Boston:: Elsevier Academic. , 2nd ed..
    [Google Scholar]
  99. 99.
    Rolls ET. 2019.. Taste and smell processing in the brain. . Handb. Clin. Neurol. 164::97118
    [Crossref] [Google Scholar]
  100. 100.
    Ronca AE, Alberts JR. 1990.. Heart rate development and sensory-evoked cardiac responses in perinatal rats. . Physiol. Behav. 47:(6):107582
    [Crossref] [Google Scholar]
  101. 101.
    Ross MG, Nijland MJM. 1997.. Fetal swallowing: relation to amniotic fluid regulation. . Clin. Obstet. Gynecol. 40:(2):35265
    [Crossref] [Google Scholar]
  102. 102.
    Ross MG, Nijland MJM. 1998.. Development of ingestive behavior. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 274:(4):R87993
    [Crossref] [Google Scholar]
  103. 103.
    Ross S, Fisher AE, King D. 1957.. Sucking behavior: a review of the literature. . J. Genet. Psychol. 91:(1):6381
    [Crossref] [Google Scholar]
  104. 104.
    Rozin P. 1982.. “ Taste-smell confusions” and the duality of the olfactory sense. . Percept. Psychophys. 31:(4):397401
    [Crossref] [Google Scholar]
  105. 105.
    Schaal B. 2017.. Infants and children making sense of scents. . In Springer Handbook of Odor, ed. A Buettner , pp. 82747. Verlag:: Springer
    [Google Scholar]
  106. 106.
    Schaal B, Hummel T, Soussignan R. 2004.. Olfaction in the fetal and premature infant: functional status and clinical implications. . Clin. Perinatol. 31:(2):26185
    [Crossref] [Google Scholar]
  107. 107.
    Schaal B, Marlier L, Soussignan R. 2000.. Human foetuses learn odours from their pregnant mother's diet. . Chem. Senses 25:(6):72937
    [Crossref] [Google Scholar]
  108. 108.
    Schaal B, Orgeur P. 1992.. Olfaction in utero: Can the rodent model be generalized?. Q. J. Exp. Psychol. Sect. B 44:(3–4):24578
    [Google Scholar]
  109. 109.
    Schaeffer JP. 1910.. The lateral wall of the cavum nasi in man, with especial reference to the various developmental stages. . J. Morphol. 21:(4):613707
    [Crossref] [Google Scholar]
  110. 110.
    Schneider ML, Moore CF, Adkins MM. 2011.. The effects of prenatal alcohol exposure on behavior: rodent and primate studies. . Neuropsychol. Rev. 21:(2):186203
    [Crossref] [Google Scholar]
  111. 111.
    Shipley MT, Ennis M, Puche AC. 2008.. The olfactory system. . In Neuroscience in Medicine, pp. 61122. Totowa, NJ:: Humana Press Inc. , 3rd ed..
    [Google Scholar]
  112. 112.
    Simitzis PE, Deligeorgis SG, Bizelis JA, Fegeros K. 2008.. Feeding preferences in lambs influenced by prenatal flavour exposure. . Physiol. Behav. 93:(3):52936
    [Crossref] [Google Scholar]
  113. 113.
    Small DM. 2012.. Flavor is in the brain. . Physiol. Behav. 107:(4):54052
    [Crossref] [Google Scholar]
  114. 114.
    Smotherman W, Robinson S. 1987.. Psychobiology of fetal experience in the rat. . In Perinatal Development, ed. N Krasnegor, E Blass, M Hofer, W Smotherman , pp. 3960. New York:: Academic Press
    [Google Scholar]
  115. 115.
    Smotherman W, Robinson S. 1988.. Behavior of rat fetuses following chemical or tactile stimulation. . Behav. Neurosci. 102:(1):2434
    [Crossref] [Google Scholar]
  116. 116.
    Smotherman W, Robinson S. 1990.. Rat fetuses respond to chemical stimuli in gas phase. . Physiol. Behav. 47:(5):86368
    [Crossref] [Google Scholar]
  117. 117.
    Smotherman W, Robinson S, Ronca A, Alberts J, Hepper P. 1991.. Heart rate response of the rat fetus and neonate to a chemosensory stimulus. . Physiol. Behav. 50:(1):4752
    [Crossref] [Google Scholar]
  118. 118.
    Smotherman WP. 1982.. In utero chemosensory experience alters taste preferences and corticosterone responsiveness. . Behav. Neural Biol. 36:(1):6168
    [Crossref] [Google Scholar]
  119. 119.
    Smotherman WP, Robinson SR. 1985.. The rat fetus in its environment: behavioral adjustments to novel, familiar, aversive, and conditioned stimuli presented in utero. . Behav. Neurosci. 99:(3):52130
    [Crossref] [Google Scholar]
  120. 120.
    Sneddon H, Hadden R, Hepper PG. 1998.. Chemosensory learning in the chicken embryo. . Physiol. Behav. 64:(2):13339
    [Crossref] [Google Scholar]
  121. 121.
    Spahn JM, Callahan EH, Spill MK, Wong YP, Benjamin-Neelon SE, et al. 2019.. Influence of maternal diet on flavor transfer to amniotic fluid and breast milk and children's responses: a systematic review. . Am. J. Clin. Nutr. 109::1003S26S
    [Crossref] [Google Scholar]
  122. 122.
    Spence C. 2016.. Oral referral: on the mislocalization of odours to the mouth. . Food Qual. Prefer. 50::11728
    [Crossref] [Google Scholar]
  123. 123.
    Spence C. 2020.. Multisensory flavor perception: a cognitive neuroscience perspective. . In Multisensory Perception: From Laboratory to Clinic, ed. K Sathian, V Ramachandran , pp. 22137. London:: Academic Press
    [Google Scholar]
  124. 124.
    Stevenson RJ, Boakes RA, Prescott J. 1998.. Changes in odor sweetness resulting from implicit learning of a simultaneous odor-sweetness association: an example of learned synesthesia. . Learn. Motiv. 29:(2):11332
    [Crossref] [Google Scholar]
  125. 125.
    Stevenson RJ, Prescott J, Boakes RA. 1995.. The acquisition of taste properties by odors. . Learn. Motiv. 26:(4):43355
    [Crossref] [Google Scholar]
  126. 126.
    Stickrod G, Kimble D, Smotherman W. 1982.. In utero taste/odor aversion conditioning in the rat. . Physiol. Behav. 28:(1):57
    [Crossref] [Google Scholar]
  127. 127.
    Stickrod G, Kimble D, Smotherman W. 1982.. Met-enkephalin effects on associations formed in utero. . Peptides 3:(6):88183
    [Crossref] [Google Scholar]
  128. 128.
    Suliburska J, Kocyłowski R, Komorowicz I, Grzesiak M, Bogdański P, Barałkiewicz D. 2016.. Concentrations of mineral in amniotic fluid and their relations to selected maternal and fetal parameters. . Biol. Trace Elem. Res. 172:(1):3745
    [Crossref] [Google Scholar]
  129. 129.
    Taruno A, Nomura K, Kusakizako T, Ma Z, Nureki O, Foskett JK. 2021.. Taste transduction and channel synapses in taste buds. . Pflügers Arch. Eur. J. Physiol. 473:(1):313
    [Crossref] [Google Scholar]
  130. 130.
    Tatzer E, Schubert MT, Timischl W, Simbruner G. 1985.. Discrimination of taste and preference for sweet in premature babies. . Early Hum. Dev. 12:(1):2330
    [Crossref] [Google Scholar]
  131. 131.
    Terrier LM, Hadjikhani N, Destrieux C. 2022.. The trigeminal pathways. . J. Neurol. 269:(7):344360
    [Crossref] [Google Scholar]
  132. 132.
    Todrank J, Heth G, Restrepo D. 2011.. Effects of in utero odorant exposure on neuroanatomical development of the olfactory bulb and odour preferences. . Proc. R. Soc. B Biol. Sci. 278:(1714):194955
    [Crossref] [Google Scholar]
  133. 133.
    Treesukosol Y, Sun B, Moghadam AA, Liang NC, Tamashiro KL, Moran TH. 2014.. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 306:(7):R499509
    [Crossref] [Google Scholar]
  134. 134.
    Underwood MA, Gilbert WM, Sherman MP. 2005.. Amniotic fluid: not just fetal urine anymore. . J. Perinatol. 25:(5):34148
    [Crossref] [Google Scholar]
  135. 135.
    Underwood MA, Sherman MP. 2006.. Nutritional characteristics of amniotic fluid. . NeoReviews 7:(6):e31016
    [Crossref] [Google Scholar]
  136. 136.
    Ustun B, Covey J, Reissland N. 2023.. Chemosensory continuity from prenatal to postnatal life in humans: a systematic review and meta-analysis. . PLOS ONE 18:(3):e0283314
    [Crossref] [Google Scholar]
  137. 137.
    Ustun B, Reissland N, Covey J, Schaal B, Blissett J. 2022.. Flavor sensing in utero and emerging discriminative behaviors in the human fetus. . Psychol. Sci. 33:(10):165163
    [Crossref] [Google Scholar]
  138. 138.
    Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. 2011.. Food and drug reward: overlapping circuits in human obesity and addiction. . Curr. Top. Behav. Neurosci. 11::124
    [Crossref] [Google Scholar]
  139. 139.
    Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. 2010.. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. . Endocrinology 151:(10):475664
    [Crossref] [Google Scholar]
  140. 140.
    Wagner S, Issanchou S, Chabanet C, Lange C, Schaal B, Monnery-Patris S. 2019.. Weanling infants prefer the odors of green vegetables, cheese, and fish when their mothers consumed these foods during pregnancy and/or lactation. . Chem. Senses 44:(4):25765
    [Crossref] [Google Scholar]
  141. 141.
    Wells DL, Hepper PG. 2006.. Prenatal olfactory learning in the domestic dog. . Anim. Behav. 72:(3):68186
    [Crossref] [Google Scholar]
  142. 142.
    Witt M, Reutter K. 1996.. Embryonic and early fetal development of human taste buds: a transmission electron microscopical study. . Anat. Rec. 246:(4):50723
    [Crossref] [Google Scholar]
  143. 143.
    Witt M, Reutter K. 1998.. Innervation of developing human taste buds. An immunohistochemical study. . Histochem. Cell Biol. 109:(3):28191
    [Crossref] [Google Scholar]
  144. 144.
    Youngentob SL, Glendinning JI. 2009.. Fetal ethanol exposure increases ethanol intake by making it smell and taste better. . PNAS 106:(13):535964
    [Crossref] [Google Scholar]
  145. 145.
    Zajonc R. 1968.. Attitudinal effects of mere exposure. . J. Pers. Soc. Psychol. 9:(2):127
    [Crossref] [Google Scholar]
  146. 146.
    Zajonc R. 2001.. Mere exposure: a gateway to the subliminal. . Curr. Dir. Psychol. Sci. 10:(6):22428
    [Crossref] [Google Scholar]
  147. 147.
    Zelner I, Koren G. 2013.. Pharmacokinetics of ethanol in the maternal-fetal unit. . J. Popul. Ther. Clin. Pharmacol. 20:(3):25965
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-121222-101404
Loading
/content/journals/10.1146/annurev-nutr-121222-101404
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error