1932

Abstract

Intensive longitudinal models (ILMs) allow researchers to analyze nested data collected through frequent measurements—typically 20 or more repeated occasions—over densely spaced durations. Rather than being a single statistical approach, ILMs encompass various models unified by their capability to handle densely collected longitudinal data. We briefly summarize the nature of intensive longitudinal designs and why such designs require the use of ILMs. We then provide a classification typology to help readers understand the features of an ILM they should adopt. This classification typology provides the structure for a narrative review of existing ILM research. We conclude with specific recommendations for using ILMs to enhance theory, design, and analysis. Altogether, ILMs are a fairly straightforward extension of longitudinal models many researchers already use, and so we encourage their application to a broader range of theories and topics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-orgpsych-110622-054803
2025-01-21
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/orgpsych/12/1/annurev-orgpsych-110622-054803.html?itemId=/content/journals/10.1146/annurev-orgpsych-110622-054803&mimeType=html&fmt=ahah

Literature Cited

  1. Adler AB, Bliese PD, Barsade SG, Sowden WJ. 2022.. Hitting the mark: the influence of emotional culture on resilient performance. . J. Appl. Psychol. 107::31927
    [Crossref] [Google Scholar]
  2. Allport GW. 1942.. The use of personal documents in psychological science. . Soc. Sci. Res. Counc. Bull. 49::1236
    [Google Scholar]
  3. Angrist JD, Pischke JS. 2010.. The credibility revolution in empirical economics: how better research design is taking the con out of econometrics. . J. Econ. Perspect. 24::330
    [Crossref] [Google Scholar]
  4. Baethge A, Vahle-Hinz T, Rigotti T. 2020.. Coworker support and its relationship to allostasis during a workday: a diary study on trajectories of heart rate variability during work. . J. Appl. Psychol. 105::50626
    [Crossref] [Google Scholar]
  5. Barnes CM, Lucianetti L, Bhave DP, Christian MS. 2015.. “ You wouldn't like me when I'm sleepy”: leaders’ sleep, daily abusive supervision, and work unit engagement. . Acad. Manag. J. 58::141937
    [Crossref] [Google Scholar]
  6. Barney J. 1991.. Firm resources and sustained competitive advantage. . J. Manag. 17::99120
    [Google Scholar]
  7. Bauer TN, Erdogan B, Caughlin D, Ellis AM, Kurkoski J. 2021.. Jump-starting the socialization experience: the longitudinal role of day 1 newcomer resources on adjustment. . J. Manag. 47::222661
    [Google Scholar]
  8. Beal DJ. 2015.. ESM 2.0: state of the art and future potential of experience sampling methods in organizational research. . Annu. Rev. Organ. Psychol. Organ. Behav. 2::383407
    [Crossref] [Google Scholar]
  9. Bell A, Jones K. 2015.. Explaining fixed effects: random effects modeling of time-series cross-sectional and panel data. . Political Sci. Res. Methods 3::13353
    [Crossref] [Google Scholar]
  10. Blagoev B, Hernes T, Kunisch S, Schultz M. 2023.. Time as a research lens: a conceptual review and research agenda. . J. Manag. 50:(6):215296
    [Google Scholar]
  11. Bliese PD, Adler AB, Flynn PJ. 2017.. Transition processes: a review and synthesis integrating methods and theory. . Annu. Rev. Organ. Psychol. Organ. Behav. 4::26386
    [Crossref] [Google Scholar]
  12. Bliese PD, Kautz J, Lang JW. 2020a.. Discontinuous growth models: illustrations, recommendations, and an R function for generating the design matrix. . In Handbook on the Temporal Dynamics of Organizational Behavior, ed. Y Griep, SD Hansen , pp. 31950. Northampton, MA:: Edward Elgar
    [Google Scholar]
  13. Bliese PD, Lang JWB. 2016.. Understanding relative and absolute change in discontinuous growth models: coding alternatives and implications for hypothesis testing. . Organ. Res. Methods 19::56292
    [Crossref] [Google Scholar]
  14. Bliese PD, Ployhart RE. 2002.. Growth modeling using random coefficient models: model building, testing, and illustrations. . Organ. Res. Methods 5::36287
    [Crossref] [Google Scholar]
  15. Bliese PD, Schepker DJ, Essman SM, Ployhart RE. 2020b.. Bridging methodological divides between macro- and micro-research: endogeneity and methods for panel data. . J. Manag. 46::7099
    [Google Scholar]
  16. Bolger N, Davis A, Rafaeli E. 2003.. Diary methods: capturing life as it is lived. . Annu. Rev. Psychol. 54::579616
    [Crossref] [Google Scholar]
  17. Bolger N, Laurenceau JP. 2013.. Intensive Longitudinal Methods: An Introduction to Diary and Experience Sampling Research. New York:: Guilford
    [Google Scholar]
  18. Bollen KA, Curran PJ. 2006.. Latent Curve Models: A Structural Equation Perspective. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  19. Box GEP, Jenkins GM. 1970.. Time Series Analysis: Forecasting and Control. San Francisco:: Holden-Day
    [Google Scholar]
  20. Brauer M, Curtin JJ. 2018.. Linear mixed-effects models and the analysis of nonindependent data: a unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. . Psychol. Methods 23::389411
    [Crossref] [Google Scholar]
  21. Butts MM, Becker WJ, Boswell WR. 2015.. Hot buttons and time sinks: the effects of electronic communication during nonwork time on emotions and work-nonwork conflict. . Acad. Manag. J. 58::76388
    [Crossref] [Google Scholar]
  22. Chen G, Ployhart RE, Thomas HC, Anderson N, Bliese PD. 2011.. The power of momentum: a new model of dynamic relationships between job satisfaction change and turnover intentions. . Acad. Manag. J. 54::15981
    [Crossref] [Google Scholar]
  23. Collins LM. 2006.. Analysis of longitudinal data: the integration of theoretical model, temporal design, and statistical model. . Annu. Rev. Psychol. 57::50528
    [Crossref] [Google Scholar]
  24. Cook TD, Campbell DT, Shadish W. 2002.. Experimental and Quasi-Experimental Designs for Generalized Causal Inference, Vol. 1195. Boston:: Houghton Mifflin
    [Google Scholar]
  25. Cooke NJ, Gorman JC, Myers CW, Duran JL. 2013.. Interactive team cognition. . Cogn. Sci. 37::25585
    [Crossref] [Google Scholar]
  26. Croissant Y, Millo G. 2008.. Panel data econometrics in R: the plm package. . J. Stat. Softw. 27::143
    [Crossref] [Google Scholar]
  27. Cunningham S. 2021.. Causal Inference: The Mixtape. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  28. Curran P, Bauer D. 2022.. What exactly qualifies as intensive longitudinal data and why am I not able to use more traditional growth models to study stability and change over time?. CenterStat. https://centerstat.org/ild-help-desk/
    [Google Scholar]
  29. Curran PJ, Bauer DJ. 2011.. The disaggregation of within-person and between-person effects in longitudinal models of change. . Annu. Rev. Psychol. 62::583619
    [Crossref] [Google Scholar]
  30. Firebaugh G. 1978.. A rule for inferring individual-level relationships from aggregate data. . Am. Sociol. Rev. 43::55772
    [Crossref] [Google Scholar]
  31. Fisher GG, Matthews RA, Gibbons AM. 2016.. Developing and investigating the use of single-item measures in organizational research. . J. Occup. Health Psychol. 21::323
    [Crossref] [Google Scholar]
  32. Flynn PJ, Awaysheh A, Flynn BB, Bliese PD. 2024.. From intent to impact: a proactive event approach to sustainability across time. . J. Manag. https://doi.org/10.1177/01492063231224370
    [Google Scholar]
  33. Fu SQ, Greco LM, Lennard AC, Dimotakis N. 2021.. Anxiety responses to the unfolding COVID-19 crisis: patterns of change in the experience of prolonged exposure to stressors. . J. Appl. Psychol. 106::4861
    [Crossref] [Google Scholar]
  34. Fuller JA, Stanton JM, Fisher GG, Spitzmüller C, Russell SS, Smith PC. 2003.. A lengthy look at the daily grind: time series analysis of events, mood, stress, and satisfaction. . J. Appl. Psychol. 88::101933
    [Crossref] [Google Scholar]
  35. Gabriel AS, Podsakoff NP, Beal DJ, Scott BA, Sonnentag S, et al. 2019.. Experience sampling methods: a discussion of critical trends and considerations for scholarly advancement. . Organ. Res. Methods 22::9691006
    [Crossref] [Google Scholar]
  36. George JM, Jones GR. 2000.. The role of time in theory and theory building. . J. Manag. 26::65784
    [Google Scholar]
  37. Gersick CJ. 1988.. Time and transition in work teams: toward a new model of group development. . Acad. Manag. J. 31::941
    [Crossref] [Google Scholar]
  38. Hale D Jr., Ployhart RE, Shepherd W. 2016.. A two-phase longitudinal model of a turnover event: disruption, recovery rates, and moderators of collective performance. . Acad. Manag. J. 59::90629
    [Crossref] [Google Scholar]
  39. Hamaker EL. 2023.. The within-between dispute in cross-lagged panel research and how to move forward. . Psychol. Methods. https://doi.org/10.1037/met0000600
    [Google Scholar]
  40. Hamaker EL, Ceulemans E, Grasman RPPP, Tuerlinckx F. 2015.. Modeling affect dynamics: state of the art and future challenges. . Emotion Rev. 7::31622
    [Crossref] [Google Scholar]
  41. Hamaker EL, Muthén B. 2020.. The fixed versus random effects debate and how it relates to centering in multilevel modeling. . Psychol. Methods 25::36579
    [Crossref] [Google Scholar]
  42. Hendricks JL, Hancock J, Caldas M, Ostermeier K, Cooper D. 2024.. Moving on: exploring the implications of leader departure and incoming temporary leaders for collective turnover and unit performance. . J. Appl. Psychol. 109::6176
    [Crossref] [Google Scholar]
  43. Hofmann DA, Gavin M. 1998.. Centering decisions in hierarchical linear models: theoretical and methodological implications for research in organizations. . J. Manag. 24::62341
    [Google Scholar]
  44. Hom PW, Lee TW, Shaw JD, Hausknecht JP. 2017.. One hundred years of employee turnover theory and research. . J. Appl. Psychol. 102::53045
    [Crossref] [Google Scholar]
  45. Hu J, He W, Zhou K. 2020.. The mind, the heart, and the leader in times of crisis: how and when COVID-19-triggered mortality salience relates to state anxiety, job engagement, and prosocial behavior. . J. Appl. Psychol. 105::121833
    [Crossref] [Google Scholar]
  46. Hülsheger UR. 2016.. From dawn till dusk: shedding light on the recovery process by investigating daily change patterns in fatigue. . J. Appl. Psychol. 101::90514
    [Crossref] [Google Scholar]
  47. Jebb AT, Tay L. 2017.. Introduction to time series analysis for organizational research: methods for longitudinal analyses. . Organ. Res. Methods 20::6194
    [Crossref] [Google Scholar]
  48. Kammeyer-Mueller J, Wanberg C, Rubenstein A, Song Z. 2013.. Support, undermining, and newcomer socialization: fitting in during the first 90 days. . Acad. Manag. J. 56:: 110424
    [Crossref] [Google Scholar]
  49. Lafit G, Adolf JK, Dejonckheere E, Myin-Germeys I, Viechtbauer W, Ceulemans E. 2021.. Selection of the number of participants in intensive longitudinal studies: a user-friendly Shiny app and tutorial for performing power analysis in multilevel regression models that account for temporal dependencies. . Adv. Methods Pract. Psychol. Sci. 4:(1):2515245920978738
    [Crossref] [Google Scholar]
  50. Lang JWB, Bliese PD. 2024.. The plausibility of alternative data generating mechanisms: comment on and attempt at replication of Dishop (2022). . Psychol. Methods. https://dx.doi.org/10.1037/met0000650
    [Google Scholar]
  51. Langley A, Bell E, Bliese P, LeBaron C, Gruber M. 2023.. Opening up AMJ's research methods repertoire. . Acad. Manag. J. 66::71119
    [Crossref] [Google Scholar]
  52. LePine JA. 2005.. Adaptation of teams in response to unforeseen change: effects of goal difficulty and team composition in terms of cognitive ability and goal orientation. . J. Appl. Psychol. 90::115367
    [Crossref] [Google Scholar]
  53. Li AN, Tangirala S. 2022.. How employees’ voice helps teams remain resilient in the face of exogenous change. . J. Appl. Psychol. 107::66892
    [Crossref] [Google Scholar]
  54. Lim S, Ilies R, Koopman J, Christoforou P, Arvey RD. 2018.. Emotional mechanisms linking incivility at work to aggression and withdrawal at home: an experience-sampling study. . J. Manag. 44::2888908
    [Google Scholar]
  55. Liu Y, Song Y, Koopmann J, Wang M, Chang CHD, Shi J. 2017.. Eating your feelings? Testing a model of employees’ work-related stressors, sleep quality, and unhealthy eating. . J. Appl. Psychol. 102::123758
    [Crossref] [Google Scholar]
  56. Marks MA, Mathieu JE, Zaccaro SJ. 2001.. A temporally based framework and taxonomy of team processes. . Acad. Manag. Rev. 26::35676
    [Crossref] [Google Scholar]
  57. Matta FK, Scott BA, Colquitt JA, Koopman J, Passantino LG. 2017.. Is consistently unfair better than sporadically fair? An investigation of justice variability and stress. . Acad. Manag. J. 60::74370
    [Crossref] [Google Scholar]
  58. McAfee A, Brynjolfsson E, Davenport TH, Patil DJ, Barton D. 2012.. Big data: the management revolution. . Harv. Bus. Rev. 90::6068
    [Google Scholar]
  59. McCormick BW, Reeves CJ, Downes PE, Li N, Ilies R. 2020.. Scientific contributions of within-person research in management: making the juice worth the squeeze. . J. Manag. 46::32150
    [Google Scholar]
  60. McNeish D, Hamaker EL. 2020.. A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. . Psychol. Methods 25::61035
    [Crossref] [Google Scholar]
  61. McNeish D, Kelley K. 2019.. Fixed effects models versus mixed effects models for clustered data: reviewing the approaches, disentangling the differences, and making recommendations. . Psychol. Methods 24::2035
    [Crossref] [Google Scholar]
  62. McNeish D, MacKinnon DP. 2022.. Intensive longitudinal mediation in Mplus. . Psychol. Methods. https://doi.org/10.1037/met0000536
    [Google Scholar]
  63. McNeish D, MacKinnon DP, Marsch LA, Poldrack RA. 2021.. Measurement in intensive longitudinal data. . Struct. Equ. Model. 28::80722
    [Crossref] [Google Scholar]
  64. Mischel W, Shoda Y. 1995.. A cognitive-affective system theory of personality: reconceptualizing situations, dispositions, dynamics, and invariance in personality structure. . Psychol. Rev. 102::24668
    [Crossref] [Google Scholar]
  65. Morgeson FP, Hofmann DA. 1999.. The structure and function of collective constructs: implications for multilevel research and theory development. . Acad. Manag. Rev. 24::24965
    [Crossref] [Google Scholar]
  66. Morgeson FP, Mitchell TR, Liu D. 2015.. Event system theory: an event-oriented approach to the organizational sciences. . Acad. Manag. Rev. 40::51537
    [Crossref] [Google Scholar]
  67. Neustrom MW, Norton WM. 1993.. The impact of drunk driving legislation in Louisiana. . J. Safety Res. 24::10721
    [Crossref] [Google Scholar]
  68. Newell A. 1990.. Unified Theories of Cognition (The William James Lectures, 1987). Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  69. Niessen C, Jimmieson NL. 2016.. Threat of resource loss: the role of self-regulation in adaptive task performance. . J. Appl. Psychol. 101::45062
    [Crossref] [Google Scholar]
  70. Niessen C, Lang JW. 2021.. Cognitive control strategies and adaptive performance in a complex work task. . J. Appl. Psychol. 106::158699
    [Crossref] [Google Scholar]
  71. Park S, Luciano MM, Mathieu JE, Fenters VW. 2023.. Intra-individual conflict and task performance in a multiteam context: examining the structural elements of conflict experience. . Acad. Manag. J. 67::3360
    [Crossref] [Google Scholar]
  72. Ployhart RE, Vandenberg RJ. 2010.. Longitudinal research: the theory, design, and analysis of change. . J. Manag. 36::94120
    [Google Scholar]
  73. Reilly G, Nyberg AJ, Maltarich M, Weller I. 2014.. Human capital flows: using context-emergent turnover (CET) theory to explore the process by which turnover, hiring, and job demands affect patient satisfaction. . Acad. Manag. J. 57::76690
    [Crossref] [Google Scholar]
  74. Schultzberg M, Muthén B. 2018.. Number of subjects and time points needed for multilevel time-series analysis: a simulation study of dynamic structural equation modeling. . Struct. Equ. Model. 25::495515
    [Crossref] [Google Scholar]
  75. Shao Y, Fang Y, Wang M, Chang CHD, Wang L. 2021.. Making daily decisions to work from home or to work in the office: the impacts of daily work-and COVID-related stressors on next-day work location. . J. Appl. Psychol. 106::82538
    [Crossref] [Google Scholar]
  76. Shipp AJ, Cole MS. 2015.. Time in individual-level organizational studies: What is it, how is it used, and why isn't it exploited more often?. Annu. Rev. Organ. Psychol. Organ. Behav. 2::23760
    [Crossref] [Google Scholar]
  77. Shockley KM, Gabriel AS, Robertson D, Rosen CC, Chawla N, et al. 2021.. The fatiguing effects of camera use in virtual meetings: a within-person field experiment. . J. Appl. Psychol. 106::113755
    [Crossref] [Google Scholar]
  78. Singer JD, Willett JB. 2003.. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. New York:: Oxford Univ. Press
    [Google Scholar]
  79. Speyer LG, Murray AL, Kievit R. 2024.. Investigating moderation effects at the within-person level using intensive longitudinal data: a two-level dynamic structural equation modelling approach in Mplus. . Multivar. Behav. Res. 59::62037
    [Crossref] [Google Scholar]
  80. Strizver SD, Ployhart RE. 2024.. Conceptualizing team disruption through an event-system framework. . Group Organ. Manag. 49::471506
    [Crossref] [Google Scholar]
  81. Swider BW, Yang J, Wang M. 2023.. The use of trajectories in management research: a review and insights for future research. . J. Manag. 50:(6):201245
    [Google Scholar]
  82. Tan X, Shiyko MP, Li R, Li Y, Dierker L. 2012.. A time-varying effect model for intensive longitudinal data. . Psychol. Methods 17::6177
    [Crossref] [Google Scholar]
  83. Tonidandel S, King EB, Cortina JM. 2018.. Big data methods: leveraging modern data analytic techniques to build organizational science. . Organ. Res. Methods 21::52547
    [Crossref] [Google Scholar]
  84. Uitdewilligen S, Rico R, Waller MJ. 2018.. Fluid and stable: dynamics of team action patterns and adaptive outcomes. . J. Organ. Behav. 39::111328
    [Crossref] [Google Scholar]
  85. Walls TA, Schafer JL, eds. 2006.. Models for Intensive Longitudinal Data. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  86. Wang M, Zhou L, Zhang Z. 2016.. Dynamic modeling. . Annu. Rev. Organ. Psychol. Organ. Behav. 3::24166
    [Crossref] [Google Scholar]
  87. Zhao HH, Shipp AJ, Carter K, Gonzalez-Mulé E, Xu E. 2024.. Time and change: a meta-analysis of temporal decisions in longitudinal studies. . J. Organ. Behav. 45:(4):62040
    [Crossref] [Google Scholar]
  88. Zhou L, Wang M, Chang CH, Liu S, Zhan Y, Shi J. 2017.. Commuting stress process and self-regulation at work: moderating roles of daily task significance, family interference with work, and commuting means efficacy. . Pers. Psychol. 70::891922
    [Crossref] [Google Scholar]
  89. Zhou L, Wang M, Zhang Z. 2021.. Intensive longitudinal data analyses with dynamic structural equation modeling. . Organ. Res. Methods 24::21950
    [Crossref] [Google Scholar]
  90. Zyphur MJ, Allison PD, Tay L, Voelkle MC, Preacher KJ, et al. 2020.. From data to causes I: building a general cross-lagged panel model (GCLM). . Organ. Res. Methods 23::65187
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-orgpsych-110622-054803
Loading
/content/journals/10.1146/annurev-orgpsych-110622-054803
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error