1932

Abstract

Recognizing the importance of leukocyte trafficking in inflammation led to some therapeutic breakthroughs. However, many inflammatory pathologies remain without specific therapy. This review discusses leukocytes in the context of sterile inflammation, a process caused by sterile (non-microbial) molecules, comprising damage-associated molecular patterns (DAMPs). DAMPs bind specific receptors to activate inflammation and start a highly optimized sequence of immune cell recruitment of neutrophils and monocytes to initiate effective tissue repair. When DAMPs are cleared, the recruited leukocytes change from a proinflammatory to a reparative program, a switch that is locally supervised by invariant natural killer T cells. In addition, neutrophils exit the inflammatory site and reverse transmigrate back to the bloodstream. Inflammation persists when the program switch or reverse transmigration fails, or when the coordinated leukocyte effort cannot clear the immunostimulatory molecules. The latter causes inappropriate leukocyte activation, a driver of many pathologies associated with poor lifestyle choices. We discuss lifestyle-associated inflammatory diseases and their corresponding immunostimulatory lifestyle-associated molecular patterns (LAMPs) and distinguish them from DAMPs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032847
2020-01-24
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032847.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032847&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Baggiolini M. 2015. CXCL8—the first chemokine. Front. Immunol. 6:285
    [Google Scholar]
  2. 2. 
    Shachar I, Karin N. 2013. The dual roles of inflammatory cytokines and chemokines in the regulation of autoimmune diseases and their clinical implications. J. Leukoc. Biol. 93:51–61
    [Google Scholar]
  3. 3. 
    Wood KJ, Bushell A, Hester J 2012. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 12:417–30
    [Google Scholar]
  4. 4. 
    Nagarsheth N, Wicha MS, Zou W 2017. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17:559–72
    [Google Scholar]
  5. 5. 
    Jacquelot N, Duong CPM, Belz GT, Zitvogel L 2018. Targeting chemokines and chemokine receptors in melanoma and other cancers. Front. Immunol. 9:2480
    [Google Scholar]
  6. 6. 
    Epelman S, Liu PP, Mann DL 2015. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol. 15:117–29
    [Google Scholar]
  7. 7. 
    Fujita K, Hayashi T, Matsushita M, Uemura M, Nonomura N 2019. Obesity, inflammation, and prostate cancer. J. Clin. Med. 8:201
    [Google Scholar]
  8. 8. 
    Gao B, Ahmad MF, Nagy LE, Tsukamoto H 2019. Inflammatory pathways in alcoholic steatohepatitis. J. Hepatol. 70:249–59
    [Google Scholar]
  9. 9. 
    Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454:428–35
    [Google Scholar]
  10. 10. 
    McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I et al. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–66
    [Google Scholar]
  11. 11. 
    Liew PX, Lee WY, Kubes P 2017. iNKT cells orchestrate a switch from inflammation to resolution of sterile liver injury. Immunity 47:752–65
    [Google Scholar]
  12. 12. 
    Viola A, Luster AD. 2008. Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 48:171–97
    [Google Scholar]
  13. 13. 
    Andonegui G, Zhou H, Bullard D, Kelly MM, Mullaly SC et al. 2009. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J. Clin. Investig. 119:1921–30
    [Google Scholar]
  14. 14. 
    Seki E, Brenner DA. 2008. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48:322–35
    [Google Scholar]
  15. 15. 
    Deppermann C, Kubes P. 2018. Start a fire, kill the bug: the role of platelets in inflammation and infection. Innate Immun 24:335–48
    [Google Scholar]
  16. 16. 
    Jenne CN, Kubes P. 2015. Platelets in inflammation and infection. Platelets 26:286–92
    [Google Scholar]
  17. 17. 
    Huber-Lang M, Lambris JD, Ward PA 2018. Innate immune responses to trauma. Nat. Immunol. 19:327–41
    [Google Scholar]
  18. 18. 
    Paidassi H, Tacnet-Delorme P, Garlatti V, Darnault C, Ghebrehiwet B et al. 2008. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition. J. Immunol. 180:2329–38
    [Google Scholar]
  19. 19. 
    Burk AM, Martin M, Flierl MA, Rittirsch D, Helm M et al. 2012. Early complementopathy after multiple injuries in humans. Shock 37:348–54
    [Google Scholar]
  20. 20. 
    Ganter MT, Brohi K, Cohen MJ, Shaffer LA, Walsh MC et al. 2007. Role of the alternative pathway in the early complement activation following major trauma. Shock 28:29–34
    [Google Scholar]
  21. 21. 
    Nieswandt B, Brakebusch C, Bergmeier W, Schulte V, Bouvard D et al. 2001. Glycoprotein VI but not α2β1 integrin is essential for platelet interaction with collagen. EMBO J 20:2120–30
    [Google Scholar]
  22. 22. 
    Nieswandt B, Watson SP. 2003. Platelet–collagen interaction: Is GPVI the central receptor. ? Blood 102:449–61
    [Google Scholar]
  23. 23. 
    Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P 2005. Platelets express functional Toll-like receptor-4. Blood 106:2417–23
    [Google Scholar]
  24. 24. 
    Wagner DD, Burger PC. 2003. Platelets in inflammation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 23:2131–37
    [Google Scholar]
  25. 25. 
    Zarbock A, Singbartl K, Ley K 2006. Complete reversal of acid-induced acute lung injury by blocking of platelet–neutrophil aggregation. J. Clin. Investig. 116:3211–19
    [Google Scholar]
  26. 26. 
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S 2007. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7:678–89
    [Google Scholar]
  27. 27. 
    Butcher EC. 1991. Leukocyte–endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–36
    [Google Scholar]
  28. 28. 
    Ley K, Gaehtgens P, Fennie C, Singer M, Lasky L, Rosen S 1991. Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 77:2553–55
    [Google Scholar]
  29. 29. 
    Springer TA. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–14
    [Google Scholar]
  30. 30. 
    von Andrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors KE, Butcher EC 1991. Two-step model of leukocyte–endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. PNAS 88:7538–42
    [Google Scholar]
  31. 31. 
    Yipp BG, Kim JH, Lima R, Zbytnuik LD, Petri B et al. 2017. The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci. Immunol. 2: eaam8929
    [Google Scholar]
  32. 32. 
    McDonald B, McAvoy EF, Lam F, Gill V, de la Motte C et al. 2008. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J. Exp. Med. 205:915–27
    [Google Scholar]
  33. 33. 
    Nourshargh S, Alon R. 2014. Leukocyte migration into inflamed tissues. Immunity 41:694–707
    [Google Scholar]
  34. 34. 
    Nourshargh S, Hordijk PL, Sixt M 2010. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 11:366–78
    [Google Scholar]
  35. 35. 
    Pober JS, Sessa WC. 2007. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7:803–15
    [Google Scholar]
  36. 36. 
    Lukens JR, Gross JM, Kanneganti TD 2012. IL-1 family cytokines trigger sterile inflammatory disease. Front. Immunol. 3:315
    [Google Scholar]
  37. 37. 
    Block H, Herter JM, Rossaint J, Stadtmann A, Kliche S et al. 2012. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia–reperfusion injury. J. Exp. Med. 209:407–21
    [Google Scholar]
  38. 38. 
    Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC 1998. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279:381–84
    [Google Scholar]
  39. 39. 
    Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E et al. 2005. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat. Immunol. 6:497–506
    [Google Scholar]
  40. 40. 
    Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY et al. 2000. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13:759–69
    [Google Scholar]
  41. 41. 
    Shattil SJ. 2005. Integrins and Src: dynamic duo of adhesion signaling. Trends Cell Biol 15:399–403
    [Google Scholar]
  42. 42. 
    Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C et al. 2006. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating β2 integrin affinity and valency in neutrophils, but are required for β2 integrin-mediated outside-in signaling involved in sustained adhesion. J. Immunol. 177:604–11
    [Google Scholar]
  43. 43. 
    McDonald B, Kubes P. 2011. Cellular and molecular choreography of neutrophil recruitment to sites of sterile inflammation. J. Mol. Med. 89:1079–88
    [Google Scholar]
  44. 44. 
    Schenkel AR, Mamdouh Z, Muller WA 2004. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat. Immunol. 5:393–400
    [Google Scholar]
  45. 45. 
    Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P 2006. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203:2569–75
    [Google Scholar]
  46. 46. 
    Shulman Z, Shinder V, Klein E, Grabovsky V, Yeger O et al. 2009. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30:384–96
    [Google Scholar]
  47. 47. 
    Fine N, Dimitriou ID, Rullo J, Sandi MJ, Petri B et al. 2016. GEF-H1 is necessary for neutrophil shear stress–induced migration during inflammation. J. Cell Biol. 215:107–19
    [Google Scholar]
  48. 48. 
    Muller WA. 2011. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. Mech. Dis. 6:323–44
    [Google Scholar]
  49. 49. 
    Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS et al. 2007. Transcellular diapedesis is initiated by invasive podosomes. Immunity 26:784–97
    [Google Scholar]
  50. 50. 
    Millan J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ 2006. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat. Cell Biol. 8:113–23
    [Google Scholar]
  51. 51. 
    Feng D, Nagy JA, Dvorak HF, Dvorak AM 2002. Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Microsc. Res. Tech. 57:289–326
    [Google Scholar]
  52. 52. 
    Sabeh F, Shimizu-Hirota R, Weiss SJ 2009. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185:11–19
    [Google Scholar]
  53. 53. 
    Voisin MB, Nourshargh S. 2013. Neutrophil transmigration: emergence of an adhesive cascade within venular walls. J. Innate Immun. 5:336–47
    [Google Scholar]
  54. 54. 
    Voisin MB, Pröbstl D, Nourshargh S 2010. Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am. J. Pathol. 176:482–95
    [Google Scholar]
  55. 55. 
    Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C et al. 2006. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203:1519–32
    [Google Scholar]
  56. 56. 
    Finsterbusch M, Voisin MB, Beyrau M, Williams TJ, Nourshargh S 2014. Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J. Exp. Med. 211:1307–14
    [Google Scholar]
  57. 57. 
    Proebstl D, Voisin MB, Woodfin A, Whiteford J, D'Acquisto F et al. 2012. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209:1219–34
    [Google Scholar]
  58. 58. 
    Rowe RG, Weiss SJ. 2008. Breaching the basement membrane: who, when and how. ? Trends Cell Biol 18:560–74
    [Google Scholar]
  59. 59. 
    Pober JS, Tellides G. 2012. Participation of blood vessel cells in human adaptive immune responses. Trends Immunol 33:49–57
    [Google Scholar]
  60. 60. 
    Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M et al. 2013. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol. 14:41–51
    [Google Scholar]
  61. 61. 
    Ayres-Sander CE, Lauridsen H, Maier CL, Sava P, Pober JS, Gonzalez AL 2013. Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLOS ONE 8:e60025
    [Google Scholar]
  62. 62. 
    Girbl T, Lenn T, Perez L, Rolas L, Barkaway A et al. 2018. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity 49:1062–76
    [Google Scholar]
  63. 63. 
    Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W et al. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–75
    [Google Scholar]
  64. 64. 
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T et al. 2010. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–7
    [Google Scholar]
  65. 65. 
    McDonald B, Kubes P. 2012. Neutrophils and intravascular immunity in the liver during infection and sterile inflammation. Toxicol. Pathol. 40:157–65
    [Google Scholar]
  66. 66. 
    Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55
    [Google Scholar]
  67. 67. 
    Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N et al. 2006. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–95
    [Google Scholar]
  68. 68. 
    Wang J. 2018. Neutrophils in tissue injury and repair. Cell Tissue Res 371:531–39
    [Google Scholar]
  69. 69. 
    Gong Y, Koh DR. 2010. Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model. Cell Tissue Res 339:437–48
    [Google Scholar]
  70. 70. 
    Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M et al. 2015. Neutrophils: between host defence, immune modulation, and tissue injury. PLOS Pathogens 11:e1004651
    [Google Scholar]
  71. 71. 
    Jorch SK, Kubes P. 2017. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23:279–87
    [Google Scholar]
  72. 72. 
    Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE et al. 2009. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of α-defensins. J. Immunol. 183:2122–32
    [Google Scholar]
  73. 73. 
    Soehnlein O, Lindbom L. 2010. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10:427–39
    [Google Scholar]
  74. 74. 
    Jones HR, Robb CT, Perretti M, Rossi AG 2016. The role of neutrophils in inflammation resolution. Semin. Immunol. 28:137–45
    [Google Scholar]
  75. 75. 
    Gasser O, Schifferli JA. 2004. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104:2543–48
    [Google Scholar]
  76. 76. 
    Ariel A, Fredman G, Sun Y-P, Kantarci A, Van Dyke TE et al. 2006. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat. Immunol. 7:1209–16
    [Google Scholar]
  77. 77. 
    Rhys HI, Dell'Accio F, Pitzalis C, Moore A, Norling LV, Perretti M 2018. Neutrophil microvesicles from healthy control and rheumatoid arthritis patients prevent the inflammatory activation of macrophages. EBioMedicine 29:60–69
    [Google Scholar]
  78. 78. 
    Kasten KR, Muenzer JT, Caldwell CC 2010. Neutrophils are significant producers of IL-10 during sepsis. Biochem. Biophys. Res. Commun. 393:28–31
    [Google Scholar]
  79. 79. 
    Tamassia N, Zimmermann M, Castellucci M, Ostuni R, Bruderek K et al. 2013. An inactive chromatin configuration at the IL-10 locus in human neutrophils. J. Immunol. 190:1921–25
    [Google Scholar]
  80. 80. 
    Davey MS, Tamassia N, Rossato M, Bazzoni F, Calzetti F et al. 2011. Failure to detect production of IL-10 by activated human neutrophils. Nat. Immunol. 12:1017–18
    [Google Scholar]
  81. 81. 
    Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P 2017. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358:111–16
    [Google Scholar]
  82. 82. 
    de Oliveira S, Rosowski EE, Huttenlocher A 2016. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16:378–91
    [Google Scholar]
  83. 83. 
    Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A 2006. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80:1281–88
    [Google Scholar]
  84. 84. 
    Buckley CD, Ross EA, McGettrick HM, Osborne CE, Haworth O et al. 2006. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J. Leukoc. Biol. 79:303–11
    [Google Scholar]
  85. 85. 
    Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D et al. 2011. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12:761–69
    [Google Scholar]
  86. 86. 
    Colom B, Bodkin JV, Beyrau M, Woodfin A, Ody C et al. 2015. Leukotriene B4–neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity 42:1075–86
    [Google Scholar]
  87. 87. 
    Elks PM, van Eeden FJ, Dixon G, Wang X, Reyes-Aldasoro CC et al. 2011. Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood 118:712–22
    [Google Scholar]
  88. 88. 
    Powell D, Tauzin S, Hind LE, Deng Q, Beebe DJ, Huttenlocher A 2017. Chemokine signaling and the regulation of bidirectional leukocyte migration in interstitial tissues. Cell Rep 19:1572–85
    [Google Scholar]
  89. 89. 
    Wu D, Zeng Y, Fan Y, Wu J, Mulatibieke T et al. 2016. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury. Sci. Rep. 6:20545
    [Google Scholar]
  90. 90. 
    Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT et al. 2008. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112:1461–71
    [Google Scholar]
  91. 91. 
    Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH et al. 2015. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212:447–56
    [Google Scholar]
  92. 92. 
    Adams Erin J, López-Sagaseta J 2011. The immutable recognition of CD1d. Immunity 34:281–83
    [Google Scholar]
  93. 93. 
    Brigl M, Brenner MB. 2004. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22:817–90
    [Google Scholar]
  94. 94. 
    Facciotti F, Ramanjaneyulu GS, Lepore M, Sansano S, Cavallari M et al. 2012. Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat. Immunol. 13:474–80
    [Google Scholar]
  95. 95. 
    Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M et al. 2005. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLOS Biol 3:e113
    [Google Scholar]
  96. 96. 
    Liew PX, Kubes P. 2015. Intravital imaging—dynamic insights into natural killer T cell biology. Front. Immunol. 6:240
    [Google Scholar]
  97. 97. 
    Lee W-Y, Moriarty TJ, Wong CHY, Zhou H, Strieter RM et al. 2010. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11:295–302
    [Google Scholar]
  98. 98. 
    Velázquez P, Cameron TO, Kinjo Y, Nagarajan N, Kronenberg M, Dustin ML 2008. Activation by innate cytokines or microbial antigens can cause arrest of natural killer T cell patrolling of liver sinusoids. J. Immunol. 180:2024–28
    [Google Scholar]
  99. 99. 
    Wong CH, Jenne CN, Lee WY, Leger C, Kubes P 2011. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334:101–5
    [Google Scholar]
  100. 100. 
    Wang J, Kubes P. 2016. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 165:668–78
    [Google Scholar]
  101. 101. 
    Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD et al. 2011. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–88
    [Google Scholar]
  102. 102. 
    Deniset JF, Belke D, Lee WY, Jorch SK, Deppermann C et al. 2019. Gata6+ pericardial cavity macrophages relocate to the injured heart and prevent cardiac fibrosis. Immunity 51:131–40e135100
    [Google Scholar]
  103. 103. 
    Takahashi K, Hata J-I, Mukai K, Sawasaki Y 1991. Close similarity between cultured human omental mesothelial cells and endothelial cells in cytochemical markers and plasminogen activator production. In Vitro Cell. Dev. Biol. Anim. 27:542–48
    [Google Scholar]
  104. 104. 
    Epelman S, Lavine KJ, Randolph GJ 2014. Origin and functions of tissue macrophages. Immunity 41:21–35
    [Google Scholar]
  105. 105. 
    Merad M, Ginhoux F, Collin M 2008. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8:935–47
    [Google Scholar]
  106. 106. 
    David BA, Rezende RM, Antunes MM, Santos MM, Freitas Lopes MA et al. 2016. Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 151:1176–91
    [Google Scholar]
  107. 107. 
    Kratofil RM, Kubes P, Deniset JF 2017. Monocyte conversion during inflammation and injury. Arterioscler. Thromb. Vasc. Biol. 37:35–42
    [Google Scholar]
  108. 108. 
    Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA et al. 2014. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114:1611–22
    [Google Scholar]
  109. 109. 
    Lucas T, Waisman A, Ranjan R, Roes J, Krieg T et al. 2010. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184:3964–77
    [Google Scholar]
  110. 110. 
    Yatim N, Cullen S, Albert ML 2017. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17:262–75
    [Google Scholar]
  111. 111. 
    Adair-Kirk TL, Senior RM. 2008. Fragments of extracellular matrix as mediators of inflammation. Int. J. Biochem. Cell Biol. 40:1101–10
    [Google Scholar]
  112. 112. 
    Miller YI, Chang MK, Binder CJ, Shaw PX, Witztum JL 2003. Oxidized low density lipoprotein and innate immune receptors. Curr. Opin. Lipidol. 14:437–45
    [Google Scholar]
  113. 113. 
    Gisterå A, Hansson GK. 2017. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13:368–80
    [Google Scholar]
  114. 114. 
    Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y et al. 2013. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19:1166–72
    [Google Scholar]
  115. 115. 
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9:847–56
    [Google Scholar]
  116. 116. 
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–77
    [Google Scholar]
  117. 117. 
    Dalbeth N, Merriman TR, Stamp LK 2016. Gout. Lancet 388:2039–52
    [Google Scholar]
  118. 118. 
    Shi Y, Mucsi AD, Ng G 2010. Monosodium urate crystals in inflammation and immunity. Immunol. Rev. 233:203–17
    [Google Scholar]
  119. 119. 
    Martinon F, Mayor A, Tschopp J 2009. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27:229–65
    [Google Scholar]
  120. 120. 
    Otsuki T, Maeda M, Murakami S, Hayashi H, Miura Y et al. 2007. Immunological effects of silica and asbestos. Cell. Mol. Immunol. 4:261–68
    [Google Scholar]
  121. 121. 
    Wagner GR. 1997. Asbestosis and silicosis. Lancet 349:1311–15
    [Google Scholar]
  122. 122. 
    Mariani E, Lisignoli G, Borzì RM, Pulsatelli L 2019. Biomaterials: foreign bodies or tuners for the immune response. ? Int. J. Mol. Sci. 20:E636
    [Google Scholar]
  123. 123. 
    Cobb WS, Kercher KW, Heniford BT 2005. Laparoscopic repair of incisional hernias. Surg. Clin. North Am. 85:91–103
    [Google Scholar]
  124. 124. 
    Matzinger P. 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045
    [Google Scholar]
  125. 125. 
    Pagán AJ, Ramakrishnan L. 2018. The formation and function of granulomas. Annu. Rev. Immunol. 36:639–65
    [Google Scholar]
  126. 126. 
    Natl. Cancer Inst 2019. SEER training module: Membranes. National Cancer Institute, US NIH (Natl. Inst. Health) https://training.seer.cancer.gov/anatomy/cells_tissues_membranes/membranes.html
    [Google Scholar]
  127. 127. 
    Rua R, McGavern DB. 2018. Advances in meningeal immunity. Trends Mol. Med. 24:542–59
    [Google Scholar]
  128. 128. 
    Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR 2004. Toll-like receptor 9–dependent and –independent dendritic cell activation by chromatin–immunoglobulin G complexes. J. Exp. Med. 199:1631–40
    [Google Scholar]
  129. 129. 
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–13
    [Google Scholar]
  130. 130. 
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–18
    [Google Scholar]
  131. 131. 
    Kubes P, Mehal WZ. 2012. Sterile inflammation in the liver. Gastroenterology 143:1158–72
    [Google Scholar]
  132. 132. 
    Chen GY, Nuñez G. 2010. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10:826–37
    [Google Scholar]
  133. 133. 
    Andersson U, Tracey KJ. 2011. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 29:139–62
    [Google Scholar]
  134. 134. 
    Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT 2011. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 187:2626–31
    [Google Scholar]
  135. 135. 
    Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T 2008. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat. Immunol. 9:1179–88
    [Google Scholar]
  136. 136. 
    West AP, Shadel GS. 2017. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17:363–75
    [Google Scholar]
  137. 137. 
    Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–14
    [Google Scholar]
  138. 138. 
    Liu F-C, Yu H-P, Syu Y-T, Fang J-Y, Lin C-F et al. 2017. Honokiol suppresses formyl peptide–induced human neutrophil activation by blocking formyl peptide receptor 1. Sci. Rep. 7:6718
    [Google Scholar]
  139. 139. 
    Eleftheriadis T, Pissas G, Liakopoulos V, Stefanidis I 2016. Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Front. Immunol. 7:279
    [Google Scholar]
  140. 140. 
    Romagnoli R, Baraldi PG, Cruz-Lopez O, Lopez-Cara C, Preti D et al. 2008. The P2X7 receptor as a therapeutic target. Expert Opin. Ther. Targets 12:647–61
    [Google Scholar]
  141. 141. 
    Hofmann MA, Drury S, Fu C, Qu W, Taguchi A et al. 1999. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901
    [Google Scholar]
  142. 142. 
    Qiang X, Yang WL, Wu R, Zhou M, Jacob A et al. 2013. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat. Med. 19:1489–95
    [Google Scholar]
  143. 143. 
    Sukkurwala AQ, Martins I, Wang Y, Schlemmer F, Ruckenstuhl C et al. 2014. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 21:59–68
    [Google Scholar]
  144. 144. 
    Ohashi K, Burkart V, Flohe S, Kolb H 2000. Heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J. Immunol. 164:558–61
    [Google Scholar]
  145. 145. 
    Basu S, Binder RJ, Ramalingam T, Srivastava PK 2001. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–13
    [Google Scholar]
  146. 146. 
    Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB et al. 2000. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6:435–42
    [Google Scholar]
  147. 147. 
    Feng H, Zeng Y, Graner MW, Likhacheva A, Katsanis E 2003. Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate antitumor immunity. Blood 101:245–52
    [Google Scholar]
  148. 148. 
    Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ 2004. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22:181–215
    [Google Scholar]
  149. 149. 
    Taylor KR, Yamasaki K, Radek KA, Di Nardo A, Goodarzi H et al. 2007. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J. Biol. Chem. 282:18265–75
    [Google Scholar]
  150. 150. 
    Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR 2006. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol. 177:1272–81
    [Google Scholar]
  151. 151. 
    Jiang D, Liang J, Fan J, Yu S, Chen S et al. 2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11:1173–79
    [Google Scholar]
  152. 152. 
    Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M et al. 2005. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Investig. 115:2223–33
    [Google Scholar]
  153. 153. 
    Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S et al. 2009. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–6
    [Google Scholar]
  154. 154. 
    Szaba FM, Smiley ST. 2002. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99:1053–59
    [Google Scholar]
  155. 155. 
    Andersson J, Ekdahl KN, Lambris JD, Nilsson B 2005. Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials 26:1477–85
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032847
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032847
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error