1932

Abstract

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-β, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-030421-112756
2022-01-24
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathmechdis-030421-112756.html?itemId=/content/journals/10.1146/annurev-pathmechdis-030421-112756&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Beason-Held LL, Goh JO, An Y, Kraut MA, O'Brien RJ et al. 2013. Changes in brain function occur years before the onset of cognitive impairment. J. Neurosci. 33:18008–14
    [Google Scholar]
  2. 2. 
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–23
    [Google Scholar]
  3. 3. 
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A et al. 2009. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41:1088–93
    [Google Scholar]
  4. 4. 
    Huang Y, Mahley RW. 2014. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol. Dis. 72:Part A3–12
    [Google Scholar]
  5. 5. 
    Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA et al. 1997. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 278:1349–56
    [Google Scholar]
  6. 6. 
    Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M et al. 2011. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16:903–7
    [Google Scholar]
  7. 7. 
    Huang Y, Mucke L. 2012. Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–22
    [Google Scholar]
  8. 8. 
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G et al. 2004. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 55:306–19
    [Google Scholar]
  9. 9. 
    Toledo JB, Habes M, Sotiras A, Bjerke M, Fan Y et al. 2019. APOE effect on amyloid-β PET spatial distribution, deposition date, and cut-points. J. Alzheimers Dis. 69:783–93
    [Google Scholar]
  10. 10. 
    Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM et al. 2016. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann. Neurol. 80:247–58
    [Google Scholar]
  11. 11. 
    Raslau FD, Mark IT, Klein AP, Ulmer JL, Mathews V, Mark LP. 2015. Memory part 2: the role of the medial temporal lobe. Am. J. Neuroradiol. 36:846–49
    [Google Scholar]
  12. 12. 
    Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J et al. 2019. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol 76:915–24
    [Google Scholar]
  13. 13. 
    Morris JC, Roe CM, Grant EA, Head D, Storandt M et al. 2009. Pittsburgh Compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch. Neurol. 66:1469–75
    [Google Scholar]
  14. 14. 
    Sperling RA, Donohue MC, Raman R, Sun C-K, Yaari R et al. 2020. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol 77:735–45
    [Google Scholar]
  15. 15. 
    Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE et al. 2010. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging 31:1275–83
    [Google Scholar]
  16. 16. 
    Soleimani-Meigooni DN, Iaccarino L, La Joie R, Baker S, Bourakova V et al. 2020. 18F-flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases. Brain 143:3477–94
    [Google Scholar]
  17. 17. 
    Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J et al. 2016. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139:1539–50
    [Google Scholar]
  18. 18. 
    Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N et al. 2016. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain 139:1551–67
    [Google Scholar]
  19. 19. 
    Schöll M, Lockhart SN, Schonhaut DR, O'Neil JP, Janabi M et al. 2016. PET imaging of tau deposition in the aging human brain. Neuron 89:971–82
    [Google Scholar]
  20. 20. 
    Chen X, Cassady KE, Adams JN, Harrison TM, Baker SL, Jagust WJ. 2021. Regional tau effects on prospective cognitive change in cognitively normal older adults. J. Neurosci. 41:366–75
    [Google Scholar]
  21. 21. 
    La Joie R, Visani AV, Baker SL, Brown JA, Bourakova V et al. 2020. Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET. Sci. Transl. Med. 12:eeau5732
    [Google Scholar]
  22. 22. 
    Hardy JA, Higgins GA. 1992. Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–85
    [Google Scholar]
  23. 23. 
    Buchhave P, Minthon L, Zetterberg H, Wallin ÅK, Blennow K, Hansson O. 2012. Cerebrospinal fluid levels of β-amyloid 1–42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch. Gen. Psychiatry 69:98–106
    [Google Scholar]
  24. 24. 
    Shoji M, Matsubara E, Kanai M, Watanabe M, Nakamura T et al. 1998. Combination assay of CSF tau, Aβ1–40 and Aβ1–42(43) as a biochemical marker of Alzheimer's disease. J. Neurol. Sci. 158:134–40
    [Google Scholar]
  25. 25. 
    Lewczuk P, Esselmann H, Otto M, Maler JM, Henkel AW et al. 2004. Neurochemical diagnosis of Alzheimer's dementia by CSF Aβ42, Aβ42/Aβ40 ratio and total tau. Neurobiol. Aging 25:273–81
    [Google Scholar]
  26. 26. 
    Morris M, Maeda S, Vossel K, Mucke L. 2011. The many faces of tau. Neuron 70:410–26
    [Google Scholar]
  27. 27. 
    Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I et al. 2002. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer's disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol. 160:1269–78
    [Google Scholar]
  28. 28. 
    Ishiguro K, Ohno H, Arai H, Yamaguchi H, Urakami K et al. 1999. Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer's disease. Neurosci. Lett. 270:91–94
    [Google Scholar]
  29. 29. 
    Kohnken R, Buerger K, Zinkowski R, Miller C, Kerkman D et al. 2000. Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer's disease patients. Neurosci. Lett. 287:187–90
    [Google Scholar]
  30. 30. 
    Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG et al. 2020. Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat. Med. 26:379–86
    [Google Scholar]
  31. 31. 
    Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P et al. 2018. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement 14:989–97
    [Google Scholar]
  32. 32. 
    Thijssen EH, La Joie R, Wolf A, Strom A, Wang P et al. 2020. Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration. Nat. Med. 26:387–97
    [Google Scholar]
  33. 33. 
    Barthélemy NR, Bateman RJ, Hirtz C, Marin P, Becher F et al. 2020. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer's disease and PET amyloid-positive patient identification. Alzheimers Res. Ther. 12:26
    [Google Scholar]
  34. 34. 
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–57
    [Google Scholar]
  35. 35. 
    Yassa MA, Mattfeld AT, Stark SM, Stark CEL. 2011. Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. PNAS 108:8873–78
    [Google Scholar]
  36. 36. 
    Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SARB, Maris E et al. 2010. Loss of “small-world” networks in Alzheimer's disease: graph analysis of fMRI resting-state functional connectivity. PLOS ONE 5:e13788
    [Google Scholar]
  37. 37. 
    Schultz AP, Chhatwal JP, Hedden T, Mormino EC, Hanseeuw BJ et al. 2017. Phases of hyperconnectivity and hypoconnectivity in the default mode and salience networks track with amyloid and tau in clinically normal individuals. J. Neurosci. 37:4323–31
    [Google Scholar]
  38. 38. 
    Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E et al. 2005. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404–11
    [Google Scholar]
  39. 39. 
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F et al. 2015. Neuroinflammation in Alzheimer's disease. Lancet Neurol 14:388–405
    [Google Scholar]
  40. 40. 
    Uchihara T, Akiyama H, Kondo H, Ikeda K. 1997. Activated microglial cells are colocalized with perivascular deposits of amyloid-β protein in Alzheimer's disease brain. Stroke 28:1948–50
    [Google Scholar]
  41. 41. 
    Beach TG, McGeer EG. 1988. Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer's disease visual cortex. Brain Res 463:357–61
    [Google Scholar]
  42. 42. 
    Sheng JG, Mrak RE, T. Griffin WS. 1997. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1α+ microglia and S100β+ astrocytes with neurofibrillary tangle stages. J. Neuropathol. Exp. Neurol. 56:285–90
    [Google Scholar]
  43. 43. 
    Edison P, Archer HA, Gerhard A, Hinz R, Pavese N et al. 2008. Microglia, amyloid, and cognition in Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol. Dis. 32:412–19
    [Google Scholar]
  44. 44. 
    Sun Y-X, Minthon L, Wallmark A, Warkentin S, Blennow K, Janciauskiene S. 2003. Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 16:136–44
    [Google Scholar]
  45. 45. 
    Mishra S, Blazey TM, Holtzman DM, Cruchaga C, Su Y et al. 2018. Longitudinal brain imaging in preclinical Alzheimer disease: impact of APOE ε4 genotype. Brain 141:1828–39
    [Google Scholar]
  46. 46. 
    Li B, Shi J, Gutman BA, Baxter LC, Thompson PM et al. 2016. Influence of APOE genotype on hippocampal atrophy over time – an N=1925 surface-based ADNI study. PLOS ONE 11:e0152901
    [Google Scholar]
  47. 47. 
    Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ et al. 2009. Longitudinal modeling of age-related memory decline and the APOE ε4 effect. N. Engl. J. Med. 361:255–63
    [Google Scholar]
  48. 48. 
    Chang L, Douet V, Bloss C, Lee K, Pritchett A et al. 2016. Gray matter maturation and cognition in children with different APOE ε genotypes. Neurology 87:585–94
    [Google Scholar]
  49. 49. 
    Lim YY, Mormino EC. 2017. APOE genotype and early β-amyloid accumulation in older adults without dementia. Neurology 89:1028–34
    [Google Scholar]
  50. 50. 
    Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Savard M et al. 2020. APOEε4 potentiates the relationship between amyloid-β and tau pathologies. Mol. Psychiatry. https://doi.org/10.1038/s41380-020-0688-6
    [Crossref] [Google Scholar]
  51. 51. 
    Bergeron D, Ossenkoppele R, Laforce R 2018. Evidence-based interpretation of amyloid-β PET results: a clinician's tool. Alzheimer Dis. Assoc. Disord. 32:28–34
    [Google Scholar]
  52. 52. 
    Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM et al. 2015. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 313:1939–49
    [Google Scholar]
  53. 53. 
    La Joie R, Visani AV, Lesman-Segev OH, Baker SL, Edwards L et al. 2020. Association of APOE4 and clinical variability in Alzheimer disease with the pattern of tau- and amyloid-PET. Neurology 96:e650–61
    [Google Scholar]
  54. 54. 
    Mattsson N, Ossenkoppele R, Smith R, Strandberg O, Ohlsson T et al. 2018. Greater tau load and reduced cortical thickness in APOE ε4-negative Alzheimer's disease: a cohort study. Alzheimers Res. Ther. 10:77
    [Google Scholar]
  55. 55. 
    Kaufman SK, Del Tredici K, Thomas TL, Braak H, Diamond MI. 2018. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer's disease and PART. Acta Neuropathol 136:57–67
    [Google Scholar]
  56. 56. 
    Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Chamoun M et al. 2020. Association of apolipoprotein E ϵ4 with medial temporal tau independent of amyloid-β. JAMA Neurol 77:470–79
    [Google Scholar]
  57. 57. 
    Baek MS, Cho H, Lee HS, Lee JH, Ryu YH, Lyoo CH. 2020. Effect of APOE ε4 genotype on amyloid-β and tau accumulation in Alzheimer's disease. Alzheimers Res. Ther. 12:140
    [Google Scholar]
  58. 58. 
    Pihlajamäki M, Sperling RA. 2009. Functional MRI assessment of task-induced deactivation of the default mode network in Alzheimer's disease and at-risk older individuals. Behav. Neurol. 21:77–91
    [Google Scholar]
  59. 59. 
    Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJS. 2009. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33:279–96
    [Google Scholar]
  60. 60. 
    Mevel K, Chételat G, Eustache F, Desgranges B 2011. The default mode network in healthy aging and Alzheimer's disease. Int. J. Alzheimers Dis. 2011:535816
    [Google Scholar]
  61. 61. 
    Sinha N, Berg CN, Tustison NJ, Shaw A, Hill D et al. 2018. APOE ε4 status in healthy older African Americans is associated with deficits in pattern separation and hippocampal hyperactivation. Neurobiol. Aging 69:221–29
    [Google Scholar]
  62. 62. 
    Gale SC, Gao L, Mikacenic C, Coyle SM, Rafaels N et al. 2014. APOε4 is associated with enhanced in vivo innate immune responses in human subjects. J. Allergy Clin. Immunol. 134:127–34
    [Google Scholar]
  63. 63. 
    Egensperger R, Kösel S, Von Eitzen U, Graeber MB. 1998. Microglial activation in Alzheimer disease: association with APOE genotype. Brain Pathol 8:439–47
    [Google Scholar]
  64. 64. 
    Overmyer M, Helisalmi S, Soininen H, Laakso M, Riekkinen P, Alafuzoff I 1999. Astrogliosis and the ApoE genotype: an immunohistochemical study of postmortem human brain tissue. Dement. Geriatr. Cogn. Disord. 10:252–57
    [Google Scholar]
  65. 65. 
    Minett T, Classey J, Matthews FE, Fahrenhold M, Taga M et al. 2016. Microglial immunophenotype in dementia with Alzheimer's pathology. J. Neuroinflamm. 13:135
    [Google Scholar]
  66. 66. 
    Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S, De Leon MJ. 2010. Pre-clinical detection of Alzheimer's disease using FDG-PET, with or without amyloid imaging. J. Alzheimers Dis. 20:843–54
    [Google Scholar]
  67. 67. 
    Carbonell F, Charil A, Zijdenbos AP, Evans AC, Bedell BJ. 2014. β-Amyloid is associated with aberrant metabolic connectivity in subjects with mild cognitive impairment. J. Cereb. Blood Flow Metab. 34:1169–79
    [Google Scholar]
  68. 68. 
    Chen K, Ayutyanont N, Langbaum JBS, Fleisher AS, Reschke C et al. 2012. Correlations between FDG PET glucose uptake-MRI gray matter volume scores and apolipoprotein E ε4 gene dose in cognitively normal adults: a cross-validation study using voxel-based multi-modal partial least squares. Neuroimage 60:2316–22
    [Google Scholar]
  69. 69. 
    Ossenkoppele R, van der Flier WM, Zwan MD, Adriaanse SF, Boellaard R et al. 2013. Differential effect of APOE genotype on amyloid load and glucose metabolism in AD dementia. Neurology 80:359–65
    [Google Scholar]
  70. 70. 
    Paranjpe MD, Chen X, Liu M, Paranjpe I, Leal JP et al. 2019. The effect of ApoE ε4 on longitudinal brain region-specific glucose metabolism in patients with mild cognitive impairment: a FDG-PET study. Neuroimage Clin 22:101795
    [Google Scholar]
  71. 71. 
    Protas HD, Chen K, Langbaum JBS, Fleisher AS, Alexander GE et al. 2013. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol 70:320–25
    [Google Scholar]
  72. 72. 
    Wetterau JR, Aggerbeck LP, Rall SC, Weisgraber KH. 1988. Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains. J. Biol. Chem. 263:6240–48
    [Google Scholar]
  73. 73. 
    Weisgraber KH. 1994. Apolipoprotein E: structure-function relationships. Adv. Protein Chem. 45:249–302
    [Google Scholar]
  74. 74. 
    Mahley RW, Weisgraber KH, Huang Y. 2006. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. PNAS 103:5644–51
    [Google Scholar]
  75. 75. 
    Rall SC, Weisgraber KH, Mahley RW. 1982. Human apolipoprotein E. The complete amino acid sequence. J. Biol. Chem. 257:4171–78
    [Google Scholar]
  76. 76. 
    Weisgraber KH, Rall SC, Mahley RW. 1981. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J. Biol. Chem. 256:9077–83
    [Google Scholar]
  77. 77. 
    Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW et al. 1994. Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J. Biol. Chem. 269:22358–65
    [Google Scholar]
  78. 78. 
    Hatters DM, Budamagunta MS, Voss JC, Weisgraber KH. 2005. Modulation of apolipoprotein E structure by domain interaction: differences in lipid-bound and lipid-free forms. J. Biol. Chem. 280:34288–95
    [Google Scholar]
  79. 79. 
    Chen J, Li Q, Wang J 2011. Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. PNAS 108:14813–18
    [Google Scholar]
  80. 80. 
    Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW. 1987. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim. Biophys. Acta Lipids Lipid Metab. 917:148–61
    [Google Scholar]
  81. 81. 
    Ignatius MJ, Shooter EM, Pitas RE, Mahley RW. 1987. Lipoprotein uptake by neuronal growth cones in vitro. Science 236:959–62
    [Google Scholar]
  82. 82. 
    Minagawa H, Gong JS, Jung CG, Watanabe A, Lund-Katz S et al. 2009. Mechanism underlying apolipoprotein E (ApoE) isoform-dependent lipid efflux from neural cells in culture. J. Neurosci. Res. 87:2498–508
    [Google Scholar]
  83. 83. 
    Deng J, Rudick V, Dory L 1995. Lysosomal degradation and sorting of apolipoprotein E in macrophages. J. Lipid Res. 36:2129–40
    [Google Scholar]
  84. 84. 
    Boyles JK, Zoellner CD, Anderson LJ, Kosik LM, Pitas RE et al. 1989. A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J. Clin. Investig. 83:1015–31
    [Google Scholar]
  85. 85. 
    Ignatius MJ, Gebicke-Harter PJ, Skene JHP, Schilling JW, Weisgraber KH et al. 1986. Expression of apolipoprotein E during nerve degeneration and regeneration. PNAS 83:1125–29
    [Google Scholar]
  86. 86. 
    Pfrieger FW. 2003. Cholesterol homeostasis and function in neurons of the central nervous system. Cell. Mol. Life Sci. 60:1158–71
    [Google Scholar]
  87. 87. 
    Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC et al. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–57
    [Google Scholar]
  88. 88. 
    Mahley RW. 1988. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–30
    [Google Scholar]
  89. 89. 
    Lane-Donovan C, Wong WM, Durakoglugil MS, Wasser CR, Jiang S et al. 2016. Genetic restoration of plasma ApoE improves cognition and partially restores synaptic defects in ApoE-deficient mice. J. Neurosci. 36:10141–50
    [Google Scholar]
  90. 90. 
    Yin C, Guo ZD, He ZZ, Wang ZY, Sun XC 2019. Apolipoprotein E affects in vitro axonal growth and regeneration via the MAPK signaling pathway. Cell Transplant 28:691–703
    [Google Scholar]
  91. 91. 
    Li G, Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A et al. 2009. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 5:634–45
    [Google Scholar]
  92. 92. 
    Tensaouti Y, Stephanz EP, Yu TS, Kernie SG 2018. ApoE regulates the development of adult newborn hippocampal neurons. eNeuro 5: ENEURO.0155-18.2018
    [Google Scholar]
  93. 93. 
    Buttini M, Orth M, Bellosta S, Akeefe H, Pitas RE et al. 1999. Expression of human apolipoprotein E3 or E4 in the brains of Apoe−/− mice: isoform-specific effects on neurodegeneration. J. Neurosci. 19:4867–80
    [Google Scholar]
  94. 94. 
    Buttini M, Masliah E, Yu G-Q, Palop JJ, Chang S et al. 2010. Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice. Am. J. Pathol. 177:563–69
    [Google Scholar]
  95. 95. 
    Boehm-Cagan A, Michaelson DM. 2014. Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. J. Neurosci. 34:7293–301
    [Google Scholar]
  96. 96. 
    Andrews-Zwilling Y, Bien-Ly N, Xu Q, Li G, Bernardo A et al. 2010. Apolipoprotein E4 causes age- and tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci. 30:13707–17
    [Google Scholar]
  97. 97. 
    Salomon-Zimri S, Boehm-Cagan A, Liraz O, Michaelson DM 2014. Hippocampus-related cognitive impairments in young apoE4 targeted replacement mice. Neurodegener. Dis. 13:86–92
    [Google Scholar]
  98. 98. 
    Knoferle J, Yoon SY, Walker D, Leung L, Gillespie AK et al. 2014. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice. J. Neurosci. 34:14069–78
    [Google Scholar]
  99. 99. 
    Wang C, Najm R, Xu Q, Jeong DE, Walker D et al. 2018. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med. 24:647–57
    [Google Scholar]
  100. 100. 
    Hashimoto Y, Jiang H, Niikura T, Ito Y, Hagiwara A et al. 2000. Neuronal apoptosis by apolipoprotein E4 through low-density lipoprotein receptor-related protein and heterotrimeric GTPases. J. Neurosci. 20:8401–9
    [Google Scholar]
  101. 101. 
    Rodriguez GA, Burns MP, Weeber EJ, Rebeck GW. 2013. Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex. Learn. Mem. 20:256–66
    [Google Scholar]
  102. 102. 
    Jain S, Yoon SY, Leung L, Knoferle J, Huang Y 2013. Cellular source-specific effects of apolipoprotein (Apo) E4 on dendrite arborization and dendritic spine development. PLOS ONE 8:e59478
    [Google Scholar]
  103. 103. 
    Zhao J, Fu Y, Yamazaki Y, Ren Y, Davis MD et al. 2020. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat. Commun. 11:5540
    [Google Scholar]
  104. 104. 
    Lin Y-T, Seo J, Gao F, Feldman HM, Wen H-L et al. 2018. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron 98:1141–54.e7
    [Google Scholar]
  105. 105. 
    Najm R, Zalocusky KA, Zilberter M, Yoon SY, Hao Y et al. 2020. In vivo chimeric Alzheimer's disease modeling of apolipoprotein E4 toxicity in human neurons. Cell Rep 32:107962
    [Google Scholar]
  106. 106. 
    Chen Y, Durakoglugil MS, Xian X, Herz J 2010. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. PNAS 107:12011–16
    [Google Scholar]
  107. 107. 
    Hu YB, Dammer EB, Ren RJ, Wang G. 2015. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 4:18
    [Google Scholar]
  108. 108. 
    Van Acker ZP, Bretou M, Annaert W. 2019. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol. Neurodegener. 14:20
    [Google Scholar]
  109. 109. 
    Morrow JA, Hatters DM, Lu B, Höchtl P, Oberg KA et al. 2002. Apolipoprotein E4 forms a molten globule: a potential basis for its association with disease. J. Biol. Chem. 277:50380–85
    [Google Scholar]
  110. 110. 
    Yamauchi K, Tozuka M, Hidaka H, Nakabayashi T, Sugano M, Katsuyama T. 2002. Isoform-specific effect of apolipoprotein E on endocytosis of β-amyloid in cultures of neuroblastoma cells. Ann. Clin. Lab. Sci. 32:65–74
    [Google Scholar]
  111. 111. 
    Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ et al. 2012. Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J. Biol. Chem. 287:5344593–601
    [Google Scholar]
  112. 112. 
    Nuriel T, Peng KY, Ashok A, Dillman AA, Figueroa HY et al. 2017. The endosomal-lysosomal pathway is dysregulated by APOE4 expression in vivo. Front. Neurosci. 11:702
    [Google Scholar]
  113. 113. 
    Selkoe DJ, Hardy J. 2016. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8:595–608
    [Google Scholar]
  114. 114. 
    Kanekiyo T, Xu H, Bu G. 2014. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners?. Neuron 81:740–54
    [Google Scholar]
  115. 115. 
    Huynh TPV, Davis AA, Ulrich JD, Holtzman DM 2017. Apolipoprotein E and Alzheimer's disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J. Lipid Res. 58:824–36
    [Google Scholar]
  116. 116. 
    Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M et al. 2000. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. PNAS 97:2892–97
    [Google Scholar]
  117. 117. 
    Koffie RM, Hashimoto T, Tai H-C, Kay KR, Serrano-Pozo A et al. 2012. Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-β. Brain 135:2155–68
    [Google Scholar]
  118. 118. 
    Bilousova T, Melnik M, Miyoshi E, Gonzalez BL, Poon WW et al. 2019. Apolipoprotein E/amyloid-β complex accumulates in Alzheimer disease cortical synapses via apolipoprotein E receptors and is enhanced by APOE4. Am. J. Pathol. 189:1621–36
    [Google Scholar]
  119. 119. 
    Bien-Ly N, Gillespie AK, Walker D, Yoon SY, Huang Y. 2012. Reducing human apolipoprotein E levels attenuates age-dependent Aβ accumulation in mutant human amyloid precursor protein transgenic mice. J. Neurosci. 32:4803–11
    [Google Scholar]
  120. 120. 
    Bales KR, Verina T, Dodel RC, Du Y, Altstiel L et al. 1997. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Natl. Genet. 17:263–64
    [Google Scholar]
  121. 121. 
    Kim J, Jiang H, Park S, Eltorai AEM, Stewart FR et al. 2011. Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J. Neurosci. 31:18007–12
    [Google Scholar]
  122. 122. 
    Thal DR, Capetillo-Zarate E, Schultz C, Rüb U, Saido TC et al. 2005. Apolipoprotein E co-localizes with newly formed amyloid β-protein (Aβ) deposits lacking immunoreactivity against N-terminal epitopes of Aβ in a genotype-dependent manner. Acta Neuropathol 110:459–71
    [Google Scholar]
  123. 123. 
    Liu CC, Zhao N, Fu Y, Wang N, Linares C et al. 2017. ApoE4 accelerates early seeding of amyloid pathology. Neuron 96:1024–32.e3
    [Google Scholar]
  124. 124. 
    Castano EM, Prelli F, Wisniewski T, Golabek A, Kumar RA et al. 1995. Fibrillogenesis in Alzheimer's disease of amyloid β peptides and apolipoprotein E. Biochem. J. 306:599–604
    [Google Scholar]
  125. 125. 
    Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ et al. 2012. Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J. Biol. Chem. 287:44593–601
    [Google Scholar]
  126. 126. 
    Ye S, Huang Y, Müllendorff K, Dong L, Giedt G et al. 2005. Apolipoprotein (apo) E4 enhances amyloid peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. PNAS 102:18700–5
    [Google Scholar]
  127. 127. 
    Dafnis I, Raftopoulou C, Mountaki C, Megalou E, Zannis VI, Chroni A. 2018. ApoE isoforms and carboxyl-terminal-truncated apoE4 forms affect neuronal BACE1 levels and Aβ production independently of their cholesterol efflux capacity. Biochem. J. 475:1839–59
    [Google Scholar]
  128. 128. 
    Huang Y-WA, Zhou B, Wernig M, Südhof TC 2017. ApoE2, apoE3, and apoE4 differentially stimulate APP transcription and Aβ secretion. Cell 168:427–41.e21
    [Google Scholar]
  129. 129. 
    Lee VMY, Goedert M, Trojanowski JQ. 2001. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24:1121–59
    [Google Scholar]
  130. 130. 
    Chang C-W, Shao E, Mucke L 2021. Tau: enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 371:eabb8255
    [Google Scholar]
  131. 131. 
    Spillantini MG, Goedert M. 2013. Tau pathology and neurodegeneration. Lancet Neurol 12:609–22
    [Google Scholar]
  132. 132. 
    Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW. 2001. Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. PNAS 98:8838–43
    [Google Scholar]
  133. 133. 
    Brecht WJ, Harris FM, Chang S, Tesseur I, Yu G-Q et al. 2004. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24:2527–34
    [Google Scholar]
  134. 134. 
    Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L et al. 2003. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer's disease-like neurodegeneration and behavioral deficits in transgenic mice. PNAS 100:10966–71
    [Google Scholar]
  135. 135. 
    Chang S, Ma TR, Miranda RD, Balestra ME, Mahley RW, Huang Y. 2005. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. PNAS 102:18694–99
    [Google Scholar]
  136. 136. 
    Shi Y, Yamada K, Antony Liddelow S, Smith ST, Zhao L et al. 2017. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–27
    [Google Scholar]
  137. 137. 
    Frost B, Jacks RL, Diamond MI. 2009. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284:12845–52
    [Google Scholar]
  138. 138. 
    Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S et al. 2009. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11:909–13
    [Google Scholar]
  139. 139. 
    Goedert M, Eisenberg DS, Crowther RA. 2017. Propagation of tau aggregates and neurodegeneration. Annu. Rev. Neurosci. 40:189–210
    [Google Scholar]
  140. 140. 
    Richey PL, Siedlak SL, Smith MA, Perry G 1995. Apolipoprotein E interaction with the neurofibrillary tangles and senile plaques in Alzheimer disease: implications for disease pathogenesis. Biochem. Biophys. Res. Commun. 208:657–63
    [Google Scholar]
  141. 141. 
    Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y. 2004. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: modulation by zinc. J. Biol. Chem. 279:44795–801
    [Google Scholar]
  142. 142. 
    Hoe H-S, Harris DC, Rebeck GW 2005. Multiple pathways of apolipoprotein E signaling in primary neurons. J. Neurochem. 93:145–55
    [Google Scholar]
  143. 143. 
    Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC. 2012. Protein phosphatases and Alzheimer's disease. Prog. Mol. Biol. Transl. Sci. 106:343–79
    [Google Scholar]
  144. 144. 
    Theendakara V, Bredesen DE, Rao RV. 2017. Downregulation of protein phosphatase 2A by apolipoprotein E: implications for Alzheimer's disease. Mol. Cell. Neurosci. 83:83–91
    [Google Scholar]
  145. 145. 
    Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R et al. 2013. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. PNAS 110:E3138–47
    [Google Scholar]
  146. 146. 
    Rauch JN, Chen JJ, Sorum AW, Miller GM, Sharf T et al. 2018. Tau internalization is regulated by 6-O sulfation on heparan sulfate proteoglycans (HSPGs). Sci. Rep. 8:6382
    [Google Scholar]
  147. 147. 
    Jablonski AM, Warren L, Usenovic M, Zhou H, Sugam J et al. 2021. Astrocytic expression of the Alzheimer's disease risk allele, ApoE ε4, potentiates neuronal tau pathology in multiple preclinical models. Sci. Rep. 11:3438
    [Google Scholar]
  148. 148. 
    Rauch JN, Luna G, Guzman E, Audouard M, Challis C et al. 2020. LRP1 is a master regulator of tau uptake and spread. Nature 580:381–85
    [Google Scholar]
  149. 149. 
    Arboleda-Velasquez JF, Lopera F, O'Hare M, Delgado-Tirado S, Marino C et al. 2019. Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nat. Med. 25:1680–83
    [Google Scholar]
  150. 150. 
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ et al. 2014. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17:131–43
    [Google Scholar]
  151. 151. 
    Kloske CM, Wilcock DM. 2020. The important interface between apolipoprotein E and neuroinflammation in Alzheimer's disease. Front. Immunol. 11:754
    [Google Scholar]
  152. 152. 
    Shi Y, Holtzman DM. 2018. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18:759–72
    [Google Scholar]
  153. 153. 
    LaDu MJ, Shah JA, Reardon CA, Getz GS, Bu G et al. 2001. Apolipoprotein E and apolipoprotein E receptors modulate Aβ-induced glial neuroinflammatory responses. Neurochem. Int. 39:427–34
    [Google Scholar]
  154. 154. 
    Zhu Y, Nwabuisi-Heath E, Dumanis SB, Tai LM, Yu C et al. 2012. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 60:559–69
    [Google Scholar]
  155. 155. 
    Rodriguez GA, Tai LM, LaDu MJ, Rebeck GW. 2014. Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. J. Neuroinflamm. 11:111
    [Google Scholar]
  156. 156. 
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78
    [Google Scholar]
  157. 157. 
    Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M et al. 2007. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci. 10:331–39
    [Google Scholar]
  158. 158. 
    Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS. 2006. Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J. Cereb. Blood Flow Metab. 26:1285–97
    [Google Scholar]
  159. 159. 
    Sofroniew MV, Vinters HV. 2010. Astrocytes: biology and pathology. Acta Neuropathol 119:7–35
    [Google Scholar]
  160. 160. 
    Chung WS, Verghese PB, Chakraborty C, Joung J, Hyman BT et al. 2016. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. PNAS 113:10186–91
    [Google Scholar]
  161. 161. 
    Zhao J, Davis MD, Martens YA, Shinohara M, Graff-Radford NR et al. 2017. APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum. Mol. Genet. 26:2690–700
    [Google Scholar]
  162. 162. 
    Simonovitch S, Schmukler E, Bespalko A, Iram T, Frenkel D et al. 2016. Impaired autophagy in APOE4 astrocytes. J. Alzheimers Dis. 51:915–27
    [Google Scholar]
  163. 163. 
    Colonna M, Butovsky O. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35:441–68
    [Google Scholar]
  164. 164. 
    Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F et al. 2009. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–52
    [Google Scholar]
  165. 165. 
    Ransohoff RM, Cardona AE. 2010. The myeloid cells of the central nervous system parenchyma. Nature 468:253–62
    [Google Scholar]
  166. 166. 
    Reier PJ, Houle JD. 1988. The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv. Neurol. 47:87–138
    [Google Scholar]
  167. 167. 
    Sarlus H, Heneka MT. 2017. Microglia in Alzheimer's disease. J. Clin. Investig. 127:3240–49
    [Google Scholar]
  168. 168. 
    Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM 2012. Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer's disease mouse model. Glia 60:615–29
    [Google Scholar]
  169. 169. 
    Vitek MP, Brown CM, Colton CA. 2009. APOE genotype-specific differences in the innate immune response. Neurobiol. Aging 30:1350–60
    [Google Scholar]
  170. 170. 
    Muth C, Hartmann A, Sepulveda-Falla D, Glatzel M, Krasemann S 2019. Phagocytosis of apoptotic cells is specifically upregulated in ApoE4 expressing microglia in vitro. Front. Cell. Neurosci. 13:181
    [Google Scholar]
  171. 171. 
    Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N et al. 2017. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–81.e9
    [Google Scholar]
  172. 172. 
    Friedberg JS, Aytan N, Cherry JD, Xia W, Standring OJ et al. 2020. Associations between brain inflammatory profiles and human neuropathology are altered based on apolipoprotein E ε4 genotype. Sci. Rep. 10:2924
    [Google Scholar]
  173. 173. 
    Boyles JK, Pitas RE, Wilson E, Mahley RW, Taylor JM 1985. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. Clin. Investig. 76:1501–13
    [Google Scholar]
  174. 174. 
    Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y. 2006. Profile and regulation of apolipoprotein E (apoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the apoE locus. J. Neurosci. 26:4985–94
    [Google Scholar]
  175. 175. 
    Mahley RW, Huang Y. 2012. Apolipoprotein E sets the stage: response to injury triggers neuropathology. Neuron 76:871–85
    [Google Scholar]
  176. 176. 
    Mahley RW, Rall SC. 2000. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genom. Hum. Genet. 1:507–37
    [Google Scholar]
  177. 177. 
    Nakamura T, Watanabe A, Fujino T, Hosono T, Michikawa M. 2009. Apolipoprotein E4 (1–272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells. Mol. Neurodegener. 4:35
    [Google Scholar]
  178. 178. 
    Leung L, Andrews-Zwilling Y, Yoon SY, Jain S, Ring K et al. 2012. Apolipoprotein E4 causes age- and sex-dependent impairments of hilar GABAergic interneurons and learning and memory deficits in mice. PLOS ONE 7:e53569
    [Google Scholar]
  179. 179. 
    Tong LM, Djukic B, Arnold C, Gillespie AK, Yoon SY et al. 2014. Inhibitory interneuron progenitor transplantation restores normal learning and memory in apoE4 knock-in mice without or with Aβ accumulation. J. Neurosci. 34:9506–15
    [Google Scholar]
  180. 180. 
    Leal SL, Landau SM, Bell RK, Jagust WJ. 2017. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. eLife 6:e22978
    [Google Scholar]
  181. 181. 
    Dennis NA, Browndyke JN, Stokes J, Need A, Burke JR et al. 2010. Temporal lobe functional activity and connectivity in young adult APOE ε4 carriers. Alzheimers Dement 6:303–11
    [Google Scholar]
  182. 182. 
    Nuriel T, Angulo SL, Khan U, Ashok A, Chen Q et al. 2017. Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer's disease-like pathology. Nat. Commun. 8:1464
    [Google Scholar]
  183. 183. 
    Gillespie AK, Jones EA, Lin YH, Karlsson MP, Kay K et al. 2016. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90:740–51
    [Google Scholar]
  184. 184. 
    Jones EA, Gillespie AK, SY Yoon, Frank LM, Huang Y. 2019. Early hippocampal sharp-wave ripple deficits predict later learning and memory impairments in an Alzheimer's disease mouse model. Cell Rep 29:2123–33.e4
    [Google Scholar]
  185. 185. 
    Najm R, Jones EA, Huang Y. 2019. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease. Mol. Neurodegener. 14:24
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-030421-112756
Loading
/content/journals/10.1146/annurev-pathmechdis-030421-112756
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error