1932

Abstract

Over the last two decades, there have been extensive efforts to develop small-molecule inhibitors of protein–protein interactions (PPIs) as novel therapeutics for cancer, including hematologic malignancies. Despite the numerous challenges associated with developing PPI inhibitors, a significant number of them have advanced to clinical studies in hematologic patients in recent years. The US Food and Drug Administration approval of the very first PPI inhibitor, venetoclax, demonstrated the real clinical value of blocking protein–protein interfaces. In this review, we discuss the most successful examples of PPI inhibitors that have reached clinical studies in patients with hematologic malignancies. We also describe the challenges of blocking PPIs with small molecules, clinical resistance to such compounds, and the lessons learned from the development of successful PPI inhibitors. Overall, this review highlights the remarkable success and substantial promise of blocking PPIs in hematologic malignancies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-033231
2025-01-24
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-031521-033231.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-033231&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tang L, Huang Z, Mei H, Hu Y. 2023.. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. . Signal Transduct. Target. Ther. 8::306
    [Crossref] [Google Scholar]
  2. 2.
    Sahasrabudhe KD, Albrethsen M, Mims AS. 2023.. Emerging small molecular inhibitors as targeted therapies for high-risk acute myeloid leukemias. . Expert. Rev. Hematol. 16::67184
    [Crossref] [Google Scholar]
  3. 3.
    Bewersdorf JP, Abdel-Wahab O. 2022.. Translating recent advances in the pathogenesis of acute myeloid leukemia to the clinic. . Genes Dev. 36::25977
    [Crossref] [Google Scholar]
  4. 4.
    Hoy SM. 2020.. Tazemetostat: first approval. . Drugs 80::51321
    [Crossref] [Google Scholar]
  5. 5.
    Vidal M, Cusick ME, Barabasi AL. 2011.. Interactome networks and human disease. . Cell 144::98698
    [Crossref] [Google Scholar]
  6. 6.
    Cierpicki T, Grembecka J. 2015.. Targeting protein–protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?. Immunol. Rev. 263::279301
    [Crossref] [Google Scholar]
  7. 7.
    Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, et al. 2002.. Functional organization of the yeast proteome by systematic analysis of protein complexes. . Nature 415::14147
    [Crossref] [Google Scholar]
  8. 8.
    Ryan DP, Matthews JM. 2005.. Protein–protein interactions in human disease. . Curr. Opin. Struct. Biol. 15::44146
    [Crossref] [Google Scholar]
  9. 9.
    Shin WH, Kumazawa K, Imai K, Hirokawa T, Kihara D. 2020.. Current challenges and opportunities in designing protein–protein interaction targeted drugs. . Adv. Appl. Bioinform. Chem. 13::1125
    [Google Scholar]
  10. 10.
    Lu H, Zhou Q, He J, Jiang Z, Peng C, et al. 2020.. Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. . Signal Transduct. Target. Ther. 5::213
    [Crossref] [Google Scholar]
  11. 11.
    Issa GC, Aldoss I, DiPersio J, Cuglievan B, Stone R, et al. 2023.. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. . Nature 615::92024
    [Crossref] [Google Scholar]
  12. 12.
    Erba H, Wang E, Issa G, Altman J, Montesinos P, et al. 2023.. AML-475 activity, tolerability, and resistance profile of the menin inhibitor ziftomenib in adults with relapsed/refractory NPM1-mutated AML. . Clin. Lymphoma Myeloma Leuk. 23::S3045
    [Crossref] [Google Scholar]
  13. 13.
    Arkin MR, Wells JA. 2004.. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. . Nat. Rev. Drug Discov. 3::30117
    [Crossref] [Google Scholar]
  14. 14.
    Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, et al. 2008.. Estimating the size of the human interactome. . PNAS 105::695964
    [Crossref] [Google Scholar]
  15. 15.
    Arkin MR, Whitty A. 2009.. The road less traveled: modulating signal transduction enzymes by inhibiting their protein–protein interactions. . Curr. Opin. Chem. Biol. 13::28490
    [Crossref] [Google Scholar]
  16. 16.
    Linhares BM, Grembecka J, Cierpicki T. 2020.. Targeting epigenetic protein–protein interactions with small-molecule inhibitors. . Future Med. Chem. 12::130526
    [Crossref] [Google Scholar]
  17. 17.
    DeLano WL. 2002.. Unraveling hot spots in binding interfaces: progress and challenges. . Curr. Opin. Struct. Biol. 12::1420
    [Crossref] [Google Scholar]
  18. 18.
    Goh CS, Milburn D, Gerstein M. 2004.. Conformational changes associated with protein–protein interactions. . Curr. Opin. Struct. Biol. 14::1049
    [Crossref] [Google Scholar]
  19. 19.
    Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, et al. 2023.. Targeting apoptosis dysregulation in myeloid malignancies—the promise of a therapeutic revolution. . Blood Rev. 62::101130
    [Crossref] [Google Scholar]
  20. 20.
    Yogarajah M, Stone RM. 2018.. A concise review of BCL-2 inhibition in acute myeloid leukemia. . Expert. Rev. Hematol. 11::14554
    [Crossref] [Google Scholar]
  21. 21.
    Roberts AW. 2020.. Therapeutic development and current uses of BCL-2 inhibition. . Hematol. Am. Soc. Hematol. Educ. Program 2020::19
    [Crossref] [Google Scholar]
  22. 22.
    Roberts AW, Wei AH, Huang DCS. 2021.. BCL2 and MCL1 inhibitors for hematologic malignancies. . Blood 138::112036
    [Crossref] [Google Scholar]
  23. 23.
    Klener P, Sovilj D, Renesova N, Andera L. 2021.. BH3 mimetics in hematologic malignancies. . Int. J. Mol. Sci. 22::10157
    [Crossref] [Google Scholar]
  24. 24.
    Letai AG. 2008.. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. . Nat. Rev. Cancer 8::12132
    [Crossref] [Google Scholar]
  25. 25.
    Schuetz JM, Johnson NA, Morin RD, Scott DW, Tan K, et al. 2012.. BCL2 mutations in diffuse large B-cell lymphoma. . Leukemia 26::138390
    [Crossref] [Google Scholar]
  26. 26.
    Zhou JD, Zhang TJ, Xu ZJ, Gu Y, Ma JC, et al. 2019.. BCL2 overexpression: clinical implication and biological insights in acute myeloid leukemia. . Diagn. Pathol. 14::68
    [Crossref] [Google Scholar]
  27. 27.
    Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, et al. 2016.. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. . Cancer Discov. 6::110617
    [Crossref] [Google Scholar]
  28. 28.
    Touzeau C, Dousset C, Le Gouill S, Sampath D, Leverson JD, et al. 2014.. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. . Leukemia 28::21012
    [Crossref] [Google Scholar]
  29. 29.
    Schieber M, Ma S. 2019.. The expanding role of venetoclax in chronic lymphocytic leukemia and small lymphocytic lymphoma. . Blood Lymphat. Cancer 9::917
    [Crossref] [Google Scholar]
  30. 30.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, et al. 2005.. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. . Nature 435::67781
    [Crossref] [Google Scholar]
  31. 31.
    Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, et al. 2008.. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. . Cancer Res. 68::342128
    [Crossref] [Google Scholar]
  32. 32.
    Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, et al. 2012.. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. . J. Clin. Oncol. 30::48896
    [Crossref] [Google Scholar]
  33. 33.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, et al. 2013.. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. . Nat. Med. 19::2028
    [Crossref] [Google Scholar]
  34. 34.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 2001.. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. . Adv. Drug Deliv. Rev. 46::326
    [Crossref] [Google Scholar]
  35. 35.
    Fletcher L, Nabrinsky E, Liu T, Danilov A. 2020.. Cell death pathways in lymphoid malignancies. . Curr. Oncol. Rep. 22::10
    [Crossref] [Google Scholar]
  36. 36.
    Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, et al. 2016.. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. . N. Engl. J. Med. 374::31122
    [Crossref] [Google Scholar]
  37. 37.
    Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D'Rozario J, et al. 2018.. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. . N. Engl. J. Med. 378::110720
    [Crossref] [Google Scholar]
  38. 38.
    Fischer K, Al-Sawaf O, Bahlo J, Fink AM, Tandon M, et al. 2019.. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. . N. Engl. J. Med. 380::222536
    [Crossref] [Google Scholar]
  39. 39.
    Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, et al. 2014.. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. . Cancer Discov. 4::36275
    [Crossref] [Google Scholar]
  40. 40.
    DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, et al. 2020.. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. . N. Engl. J. Med. 383::61729
    [Crossref] [Google Scholar]
  41. 41.
    Wei AH, Roberts AW, Spencer A, Rosenberg AS, Siegel D, et al. 2020.. Targeting MCL-1 in hematologic malignancies: rationale and progress. . Blood Rev. 44::100672
    [Crossref] [Google Scholar]
  42. 42.
    Wan Y, Dai N, Tang Z, Fang H. 2018.. Small-molecule Mcl-1 inhibitors: emerging anti-tumor agents. . Eur. J. Med. Chem. 146::47182
    [Crossref] [Google Scholar]
  43. 43.
    Caenepeel S, Brown SP, Belmontes B, Moody G, Keegan KS, et al. 2018.. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. . Cancer Discov. 8::158297
    [Crossref] [Google Scholar]
  44. 44.
    Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. 2023.. Targeting MCL-1 protein to treat cancer: opportunities and challenges. . Front. Oncol. 13::1226289
    [Crossref] [Google Scholar]
  45. 45.
    Xiang W, Yang CY, Bai L. 2018.. MCL-1 inhibition in cancer treatment. . OncoTargets Ther. 11::730114
    [Crossref] [Google Scholar]
  46. 46.
    Fulda S, Vucic D. 2012.. Targeting IAP proteins for therapeutic intervention in cancer. . Nat. Rev. Drug Discov. 11::10924
    [Crossref] [Google Scholar]
  47. 47.
    Fulda S. 2012.. Exploiting inhibitor of apoptosis proteins as therapeutic targets in hematological malignancies. . Leukemia 26::115565
    [Crossref] [Google Scholar]
  48. 48.
    Hussain AR, Uddin S, Ahmed M, Bu R, Ahmed SO, et al. 2010.. Prognostic significance of XIAP expression in DLBCL and effect of its inhibition on AKT signalling. . J. Pathol. 222::18090
    [Crossref] [Google Scholar]
  49. 49.
    Sung KW, Choi J, Hwang YK, Lee SJ, Kim HJ, et al. 2009.. Overexpression of X-linked inhibitor of apoptosis protein (XIAP) is an independent unfavorable prognostic factor in childhood de novo acute myeloid leukemia. . J. Korean Med. Sci. 24::60513
    [Crossref] [Google Scholar]
  50. 50.
    Du C, Fang M, Li Y, Li L, Wang X. 2000.. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. . Cell 102::3342
    [Crossref] [Google Scholar]
  51. 51.
    Wu G, Chai J, Suber TL, Wu JW, Du C, et al. 2000.. Structural basis of IAP recognition by Smac/DIABLO. . Nature 408::100812
    [Crossref] [Google Scholar]
  52. 52.
    Bai L, Smith DC, Wang S. 2014.. Small-molecule SMAC mimetics as new cancer therapeutics. . Pharmacol. Ther. 144::8295
    [Crossref] [Google Scholar]
  53. 53.
    Sun H, Nikolovska-Coleska Z, Yang CY, Xu L, Tomita Y, et al. 2004.. Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. . J. Med. Chem. 47::414750
    [Crossref] [Google Scholar]
  54. 54.
    Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, et al. 2004.. A small molecule Smac mimic potentiates TRAIL- and TNFα-mediated cell death. . Science 305::147174
    [Crossref] [Google Scholar]
  55. 55.
    Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, et al. 2011.. A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. . J. Med. Chem. 54::271426
    [Crossref] [Google Scholar]
  56. 56.
    DiPersio JF, Erba HP, Larson RA, Luger SM, Tallman MS, et al. 2015.. Oral Debio1143 (AT406), an antagonist of inhibitor of apoptosis proteins, combined with daunorubicin and cytarabine in patients with poor-risk acute myeloid leukemia—results of a phase I dose-escalation study. . Clin. Lymphoma Myeloma Leuk. 15::44349
    [Crossref] [Google Scholar]
  57. 57.
    Borthakur G, Foran JM, Wang ES, Rakkar A, Minderman H, et al. 2015.. A phase 1b study of birinapant in combination with 5-azacitadine in patients with myelodysplastic syndrome who are naïve, refractory or have relapsed to 5-azacitadine. . Blood 126::93
    [Crossref] [Google Scholar]
  58. 58.
    Tao Y, Sun XS, Pointreau Y, Tourneau CL, Sire C, et al. 2023.. Long-term results from a clinical study of xevinapant plus chemoradiotherapy in people with high-risk locally advanced squamous cell carcinoma of the head and neck: a plain language summary. . Future Oncol. 19::176976
    [Crossref] [Google Scholar]
  59. 59.
    Zhu H, Gao H, Ji Y, Zhou Q, Du Z, et al. 2022.. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. . J. Hematol. Oncol. 15::91
    [Crossref] [Google Scholar]
  60. 60.
    Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. 2018.. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?. Cell Death Differ. 25::10413
    [Crossref] [Google Scholar]
  61. 61.
    Haupt Y, Maya R, Kazaz A, Oren M. 1997.. Mdm2 promotes the rapid degradation of p53. . Nature 387::29699
    [Crossref] [Google Scholar]
  62. 62.
    Quintas-Cardama A, Hu C, Qutub A, Qiu YH, Zhang X, et al. 2017.. p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. . Leukemia 31::1296305
    [Crossref] [Google Scholar]
  63. 63.
    Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, et al. 1996.. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. . Science 274::94853
    [Crossref] [Google Scholar]
  64. 64.
    Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, et al. 2004.. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. . Science 303::84448
    [Crossref] [Google Scholar]
  65. 65.
    Andreeff M, Kelly KR, Yee K, Assouline S, Strair R, et al. 2016.. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. . Clin. Cancer Res. 22::86876
    [Crossref] [Google Scholar]
  66. 66.
    Meldi KM, Figueroa ME. 2015.. Epigenetic deregulation in myeloid malignancies. . Transl. Res. 165::10214
    [Crossref] [Google Scholar]
  67. 67.
    Chandhok NS, Prebet T. 2019.. Insights into novel emerging epigenetic drugs in myeloid malignancies. . Ther. Adv. Hematol. 10::2040620719866081
    [Crossref] [Google Scholar]
  68. 68.
    Ofran Y, Rowe JM. 2013.. Genetic profiling in acute myeloid leukaemia—where are we and what is its role in patient management. . Br. J. Haematol. 160::30320
    [Crossref] [Google Scholar]
  69. 69.
    Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, et al. 2016.. Genomic classification and prognosis in acute myeloid leukemia. . N. Engl. J. Med. 374::220921
    [Crossref] [Google Scholar]
  70. 70.
    Perner F, Armstrong SA. 2020.. Targeting chromatin complexes in myeloid malignancies and beyond: from basic mechanisms to clinical innovation. . Cells 9::2721
    [Crossref] [Google Scholar]
  71. 71.
    Sasca D, Guezguez B, Kuhn MWM. 2021.. Next generation epigenetic modulators to target myeloid neoplasms. . Curr. Opin. Hematol. 28::35663
    [Crossref] [Google Scholar]
  72. 72.
    Cierpicki T, Grembecka J. 2014.. Challenges and opportunities in targeting the menin-MLL interaction. . Future Med. Chem. 6::44762
    [Crossref] [Google Scholar]
  73. 73.
    Grembecka J, Belcher AM, Hartley T, Cierpicki T. 2010.. Molecular basis of the mixed lineage leukemia-menin interaction: implications for targeting mixed lineage leukemias. . J. Biol. Chem. 285::4069098
    [Crossref] [Google Scholar]
  74. 74.
    Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, et al. 2005.. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. . Cell 123::20718
    [Crossref] [Google Scholar]
  75. 75.
    Caslini C, Yang Z, El-Osta M, Milne TA, Slany RK, et al. 2007.. Interaction of MLL amino terminal sequences with menin is required for transformation. . Cancer Res. 67::727583
    [Crossref] [Google Scholar]
  76. 76.
    Murai MJ, Pollock J, He S, Miao H, Purohit T, et al. 2014.. The same site on the integrase-binding domain of lens epithelium-derived growth factor is a therapeutic target for MLL leukemia and HIV. . Blood 124::373037
    [Crossref] [Google Scholar]
  77. 77.
    Murai MJ, Chruszcz M, Reddy G, Grembecka J, Cierpicki T. 2011.. Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein. . J. Biol. Chem. 286::3174248
    [Crossref] [Google Scholar]
  78. 78.
    Shi A, Murai MJ, He S, Lund G, Hartley T, et al. 2012.. Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. . Blood 120::446169
    [Crossref] [Google Scholar]
  79. 79.
    Yokoyama A, Cleary ML. 2008.. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. . Cancer Cell 14::3646
    [Crossref] [Google Scholar]
  80. 80.
    Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, et al. 2002.. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. . Lancet 359::190915
    [Crossref] [Google Scholar]
  81. 81.
    Liu H, Cheng EH, Hsieh JJ. 2009.. MLL fusions: pathways to leukemia. . Cancer Biol. Ther. 8::120411
    [Crossref] [Google Scholar]
  82. 82.
    Slany RK. 2005.. When epigenetics kills: MLL fusion proteins in leukemia. . Hematol. Oncol. 23::19
    [Crossref] [Google Scholar]
  83. 83.
    Bullinger L, Dohner K, Dohner H. 2017.. Genomics of acute myeloid leukemia diagnosis and pathways. . J. Clin. Oncol. 35::93446
    [Crossref] [Google Scholar]
  84. 84.
    Chen YX, Yan J, Keeshan K, Tubbs AT, Wang H, et al. 2006.. The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. . PNAS 103::101823
    [Crossref] [Google Scholar]
  85. 85.
    Kuhn MW, Song E, Feng Z, Sinha A, Chen CW, et al. 2016.. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. . Cancer Discov. 6::116681
    [Crossref] [Google Scholar]
  86. 86.
    Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, et al. 2020.. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. . J. Clin. Investig. 130::98197
    [Crossref] [Google Scholar]
  87. 87.
    Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H, et al. 2020.. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. . Science 367::58690
    [Crossref] [Google Scholar]
  88. 88.
    Heikamp EB, Henrich JA, Perner F, Wong EM, Hatton C, et al. 2022.. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML. . Blood 139::894906
    [Crossref] [Google Scholar]
  89. 89.
    Michmerhuizen NL, Klco JM, Mullighan CG. 2020.. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. . Blood 136::227589
    [Crossref] [Google Scholar]
  90. 90.
    Rio-Machin A, Gomez-Lopez G, Munoz J, Garcia-Martinez F, Maiques-Diaz A, et al. 2017.. The molecular pathogenesis of the NUP98-HOXA9 fusion protein in acute myeloid leukemia. . Leukemia 31::20005
    [Crossref] [Google Scholar]
  91. 91.
    Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, et al. 2005.. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. . N. Engl. J. Med. 352::25466
    [Crossref] [Google Scholar]
  92. 92.
    Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, et al. 2007.. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. . Leukemia 21::20009
    [Crossref] [Google Scholar]
  93. 93.
    Bisio V, Zampini M, Tregnago C, Manara E, Salsi V, et al. 2017.. NUP98-fusion transcripts characterize different biological entities within acute myeloid leukemia: a report from the AIEOP-AML group. . Leukemia 31::97477
    [Crossref] [Google Scholar]
  94. 94.
    Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, Pratcorona M, Abbas S, et al. 2011.. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. . Blood 118::364556
    [Crossref] [Google Scholar]
  95. 95.
    Issa GC, Ravandi F, DiNardo CD, Jabbour E, Kantarjian HM, et al. 2021.. Therapeutic implications of menin inhibition in acute leukemias. . Leukemia 35::248295
    [Crossref] [Google Scholar]
  96. 96.
    Huang J, Gurung B, Wan B, Matkar S, Veniaminova NA, et al. 2012.. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. . Nature 482::54246
    [Crossref] [Google Scholar]
  97. 97.
    Grembecka J, He S, Shi A, Purohit T, Muntean AG, et al. 2012.. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. . Nat. Chem. Biol. 8::27784
    [Crossref] [Google Scholar]
  98. 98.
    Pollock J, Borkin D, Lund G, Purohit T, Dyguda-Kazimierowicz E, et al. 2015.. Rational design of orthogonal multipolar interactions with fluorine in protein-ligand complexes. . J. Med. Chem. 58::746574
    [Crossref] [Google Scholar]
  99. 99.
    Borkin D, He S, Miao H, Kempinska K, Pollock J, et al. 2015.. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo. . Cancer Cell 27::589602
    [Crossref] [Google Scholar]
  100. 100.
    Borkin D, Pollock J, Kempinska K, Purohit T, Li X, et al. 2016.. Property focused structure-based optimization of small molecule inhibitors of the protein–protein interaction between menin and mixed lineage leukemia (MLL). . J. Med. Chem. 59::892913
    [Crossref] [Google Scholar]
  101. 101.
    Miao H, Kim E, Chen D, Purohit T, Kempinska K, et al. 2020.. Combinatorial treatment with menin and FLT3 inhibitors induces complete remission in AML models with activating FLT3 mutations. . Blood 136::295863
    [Crossref] [Google Scholar]
  102. 102.
    Wu T, Kessler L, Li S, Purohit T, Li S, et al. 2017.. A novel small molecule menin-MLL inhibitor for potential treatment of MLL-rearranged leukemias. . Cancer Res. 77::5077 ( Abstr.)
    [Crossref] [Google Scholar]
  103. 103.
    Fiskus W, Daver N, Boettcher S, Mill CP, Sasaki K, et al. 2022.. Activity of menin inhibitor ziftomenib (KO-539) as monotherapy or in combinations against AML cells with MLL1 rearrangement or mutant NPM1. . Leukemia 36::272933
    [Crossref] [Google Scholar]
  104. 104.
    Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C, et al. 2019.. A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. . Cancer Cell 36::66073.e11
    [Crossref] [Google Scholar]
  105. 105.
    Numata M, Haginoya N, Shiroishi M, Hirata T, Sato-Otsubo A, et al. 2023.. A novel menin-MLL1 inhibitor, DS-1594a, prevents the progression of acute leukemia with rearranged MLL1 or mutated NPM1. . Cancer Cell Int. 23::36
    [Crossref] [Google Scholar]
  106. 106.
    Dempke WCM, Desole M, Chiusolo P, Sica S, Schmidt-Hieber M. 2023.. Targeting the undruggable: menin inhibitors ante portas. . J. Cancer Res. Clin. Oncol. 149::945159
    [Crossref] [Google Scholar]
  107. 107.
    Erba HP, Fathi AT, Issa GC, Altman JK, Montesinos P, et al. 2022.. Update on a phase 1/2 first-in-human study of the menin-KMT2A (MLL) inhibitor ziftomenib (KO-539) in patients with relapsed or refractory acute myeloid leukemia. . Blood 140::15356
    [Crossref] [Google Scholar]
  108. 108.
    Dzama MM, Steiner M, Rausch J, Sasca D, Schonfeld J, et al. 2020.. Synergistic targeting of FLT3 mutations in AML via combined menin-MLL and FLT3 inhibition. . Blood 136::244256
    [Crossref] [Google Scholar]
  109. 109.
    Thomas X. 2024.. Small molecule menin inhibitors: novel therapeutic agents targeting acute myeloid leukemia with KMT2A rearrangement or NPM1 mutation. . Oncol. Ther. 12::5772
    [Crossref] [Google Scholar]
  110. 110.
    Wenge DV, Armstrong SA. 2024.. The future of HOXA-expressing leukemias: menin inhibitor response and resistance. . Curr. Opin. Hematol. 31::6470
    [Google Scholar]
  111. 111.
    Kwon MC, Querolle O, Dai X, Thuring JW, Verhulst T, et al. 2022.. Pharmacological characterization of JNJ-75276617, a menin-KMT2A inhibitor, as targeted treatment for KMT2A-altered and NPM1-mutant acute leukemia. . Blood 140::592829
    [Crossref] [Google Scholar]
  112. 112.
    Daver N, Affinito J, Cai H, Dobrowolska H, Eguchi K, et al. 2022.. AML-391 phase 1/2, open-label, dose escalation, dose expansion study of menin inhibitor DSP-5336 in adult patients with acute leukemia with and without mixed-lineage leukemia (MLL)– rearrangement or nucleophosmin 1 (NPM1) mutation. . Clin. Lymphoma Myeloma Leuk. 22::S244
    [Crossref] [Google Scholar]
  113. 113.
    Ravandi F, Kishtagari A, Carraway HE, Schiller GJ, Morris S, et al. 2022.. COVALENT-101: a phase 1 study of BMF-219, a novel oral irreversible menin inhibitor, in patients with relapsed/refractory (R/R) acute leukemia (AL), diffuse large B-cell lymphoma (DLBCL), and multiple myeloma (MM). . J. Clin. Oncol. 40::TPS7064
    [Crossref] [Google Scholar]
  114. 114.
    Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, et al. 2012.. Histone recognition and large-scale structural analysis of the human bromodomain family. . Cell 149::21431
    [Crossref] [Google Scholar]
  115. 115.
    Filippakopoulos P, Knapp S. 2014.. Targeting bromodomains: epigenetic readers of lysine acetylation. . Nat. Rev. Drug Discov. 13::33756
    [Crossref] [Google Scholar]
  116. 116.
    Fujisawa T, Filippakopoulos P. 2017.. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. . Nat. Rev. Mol. Cell Biol. 18::24662
    [Crossref] [Google Scholar]
  117. 117.
    Chaidos A, Caputo V, Karadimitris A. 2015.. Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence. . Ther. Adv. Hematol. 6::12841
    [Crossref] [Google Scholar]
  118. 118.
    Abedin SM, Boddy CS, Munshi HG. 2016.. BET inhibitors in the treatment of hematologic malignancies: current insights and future prospects. . OncoTargets Ther. 9::594353
    [Crossref] [Google Scholar]
  119. 119.
    Altendorfer E, Mochalova Y, Mayer A. 2022.. BRD4: a general regulator of transcription elongation. . Transcription 13::7081
    [Crossref] [Google Scholar]
  120. 120.
    Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, et al. 2000.. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. . EMBO J. 19::614149
    [Crossref] [Google Scholar]
  121. 121.
    Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, et al. 2010.. Selective inhibition of BET bromodomains. . Nature 468::106773
    [Crossref] [Google Scholar]
  122. 122.
    Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, et al. 2011.. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. . Nature 478::52428
    [Crossref] [Google Scholar]
  123. 123.
    Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, et al. 2011.. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. . Cell 146::90417
    [Crossref] [Google Scholar]
  124. 124.
    Pan Z, Zhao Y, Wang X, Xie X, Liu M, et al. 2023.. Targeting bromodomain-containing proteins: research advances of drug discovery. . Mol. Biomed. 4::13
    [Crossref] [Google Scholar]
  125. 125.
    Dawson MA, Borthakur G, Huntly BJP, Karadimitris A, Alegre A, et al. 2023.. A phase I/II open-label study of molibresib for the treatment of relapsed/refractory hematologic malignancies. . Clin. Cancer Res. 29::71122
    [Crossref] [Google Scholar]
  126. 126.
    Senapati J, Fiskus WC, Daver N, Wilson NR, Ravandi F, et al. 2023.. Phase I results of bromodomain and extra-terminal inhibitor PLX51107 in combination with azacitidine in patients with relapsed/refractory myeloid malignancies. . Clin. Cancer Res. 29::435260
    [Crossref] [Google Scholar]
  127. 127.
    Goodman RH, Smolik S. 2000.. CBP/p300 in cell growth, transformation, and development. . Genes Dev. 14::155377
    [Crossref] [Google Scholar]
  128. 128.
    Nicosia L, Spencer GJ, Brooks N, Amaral FMR, Basma NJ, et al. 2023.. Therapeutic targeting of EP300/CBP by bromodomain inhibition in hematologic malignancies. . Cancer Cell 41::213653.e13
    [Crossref] [Google Scholar]
  129. 129.
    Sun Y, Han J, Wang Z, Li X, Sun Y, et al. 2021.. Safety and efficacy of bromodomain and extra-terminal inhibitors for the treatment of hematological malignancies and solid tumors: a systematic study of clinical trials. . Front. Pharmacol. 11::621093
    [Crossref] [Google Scholar]
  130. 130.
    Guo Y, Zhao S, Wang GG. 2021.. Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘readout’, and phase separation-based compaction. . Trends Genet. 37::54765
    [Crossref] [Google Scholar]
  131. 131.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, et al. 2002.. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. . Science 298::103943
    [Crossref] [Google Scholar]
  132. 132.
    Tremblay-LeMay R, Rastgoo N, Pourabdollah M, Chang H. 2018.. EZH2 as a therapeutic target for multiple myeloma and other haematological malignancies. . Biomark. Res. 6::34
    [Crossref] [Google Scholar]
  133. 133.
    Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T, et al. 2020.. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. . Lancet Oncol. 21::143342
    [Crossref] [Google Scholar]
  134. 134.
    Tomassi S, Romanelli A, Zwergel C, Valente S, Mai A. 2021.. Polycomb repressive complex 2 modulation through the development of EZH2-EED interaction inhibitors and EED binders. . J. Med. Chem. 64::1177497
    [Crossref] [Google Scholar]
  135. 135.
    Zhao Y, Guan YY, Zhao F, Yu T, Zhang SJ, et al. 2022.. Recent strategies targeting embryonic ectoderm development (EED) for cancer therapy: allosteric inhibitors, PPI inhibitors, and PROTACs. . Eur. J. Med. Chem. 231::114144
    [Crossref] [Google Scholar]
  136. 136.
    Han Z, Xing X, Hu M, Zhang Y, Liu P, et al. 2007.. Structural basis of EZH2 recognition by EED. . Structure 15::130615
    [Crossref] [Google Scholar]
  137. 137.
    Huang Y, Sendzik M, Zhang J, Gao Z, Sun Y, et al. 2022.. Discovery of the clinical candidate MAK683: an EED-directed, allosteric, and selective PRC2 inhibitor for the treatment of advanced malignancies. . J. Med. Chem. 65::531733
    [Crossref] [Google Scholar]
  138. 138.
    Guerois R, Nielsen JE, Serrano L. 2002.. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. . J. Mol. Biol. 320::36987
    [Crossref] [Google Scholar]
  139. 139.
    Perner F, Stein EM, Wenge DV, Singh S, Kim J, et al. 2023.. MEN1 mutations mediate clinical resistance to menin inhibition. . Nature 615::91319
    [Crossref] [Google Scholar]
  140. 140.
    Blombery P, Anderson MA, Gong JN, Thijssen R, Birkinshaw RW, et al. 2019.. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. . Cancer Discov. 9::34253
    [Crossref] [Google Scholar]
  141. 141.
    Birkinshaw RW, Gong JN, Luo CS, Lio D, White CA, et al. 2019.. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. . Nat. Commun. 10::2385
    [Crossref] [Google Scholar]
  142. 142.
    Guieze R, Liu VM, Rosebrock D, Jourdain AA, Hernandez-Sanchez M, et al. 2019.. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. . Cancer Cell 36::36984.e13
    [Crossref] [Google Scholar]
  143. 143.
    Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, et al. 2020.. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. . Cancer Discov. 10::53651
    [Crossref] [Google Scholar]
  144. 144.
    DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, et al. 2020.. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. . Blood 135::791803
    [Crossref] [Google Scholar]
  145. 145.
    Nechiporuk T, Kurtz SE, Nikolova O, Liu T, Jones CL, et al. 2019.. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. . Cancer Discov. 9::91025
    [Crossref] [Google Scholar]
  146. 146.
    Thijssen R, Diepstraten ST, Moujalled D, Chew E, Flensburg C, et al. 2021.. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. . Blood 137::272135
    [Crossref] [Google Scholar]
  147. 147.
    Murray CW, Rees DC. 2009.. The rise of fragment-based drug discovery. . Nat. Chem. 1::18792
    [Crossref] [Google Scholar]
  148. 148.
    Shukla S, Ying W, Gray F, Yao Y, Simes ML, et al. 2021.. Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. . Nat. Chem. Biol. 17::78493
    [Crossref] [Google Scholar]
  149. 149.
    He Y, Khan S, Huo Z, Lv D, Zhang X, et al. 2020.. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. . J. Hematol. Oncol. 13::103
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-033231
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-033231
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error