1932

Abstract

Disrupted circadian or 24-h rhythms are among the most common early findings in a wide range of neurodegenerative disorders. Once thought to be a mere consequence of the disease process, increasing evidence points toward a causal or contributory role of the circadian clock in neurodegenerative disease. Circadian clocks control many aspects of cellular biochemistry, including stress pathways implicated in neuronal survival and death. Given the dearth of disease-modifying therapies for these increasingly prevalent disorders, this understanding may lead to breakthroughs in the development of new treatments. In this review, we provide a background on circadian clocks and focus on some potential mechanisms that may be pivotal in neurodegeneration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-033828
2025-01-24
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-031521-033828.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-033828&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Jabbur ML, Johnson CH. 2021.. Spectres of clock evolution: past, present, and yet to come. . Front. Physiol. 12::815847
    [Crossref] [Google Scholar]
  2. 2.
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. 2014.. A circadian gene expression atlas in mammals: implications for biology and medicine. . PNAS 111:(45):1621924
    [Crossref] [Google Scholar]
  3. 3.
    Rosensweig C, Green CB. 2020.. Periodicity, repression, and the molecular architecture of the mammalian circadian clock. . Eur. J. Neurosci. 51:(1):13965
    [Crossref] [Google Scholar]
  4. 4.
    Philpott JM, Torgrimson MR, Harold RL, Partch CL. 2022.. Biochemical mechanisms of period control within the mammalian circadian clock. . Semin. Cell Dev. Biol. 126::7178
    [Crossref] [Google Scholar]
  5. 5.
    Konopka RJ, Benzer S. 1971.. Clock mutants of Drosophila melanogaster. . PNAS 68:(9):211216
    [Crossref] [Google Scholar]
  6. 6.
    Allada R, Chung BY. 2010.. Circadian organization of behavior and physiology in Drosophila. . Annu. Rev. Physiol. 72::60524
    [Crossref] [Google Scholar]
  7. 7.
    Patke A, Young MW, Axelrod S. 2020.. Molecular mechanisms and physiological importance of circadian rhythms. . Nat. Rev. Mol. Cell Biol. 21:(2):6784
    [Crossref] [Google Scholar]
  8. 8.
    Yoshii T, Hermann-Luibl C, Helfrich-Forster C. 2016.. Circadian light-input pathways in Drosophila. . Commun. Integr. Biol. 9:(1):e1102805
    [Crossref] [Google Scholar]
  9. 9.
    Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, et al. 2003.. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. . Cell 112:(3):32941
    [Crossref] [Google Scholar]
  10. 10.
    Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. 2024.. The suprachiasmatic nucleus at 50: looking back, then looking forward. . J. Biol. Rhythms 39::13565
    [Crossref] [Google Scholar]
  11. 11.
    Miller JD, Morin LP, Schwartz WJ, Moore RY. 1996.. New insights into the mammalian circadian clock. . Sleep 19:(8):64167
    [Crossref] [Google Scholar]
  12. 12.
    Moore RY, Speh JC, Leak RK. 2002.. Suprachiasmatic nucleus organization. . Cell Tissue Res. 309:(1):8998
    [Crossref] [Google Scholar]
  13. 13.
    Morris EL, Patton AP, Chesham JE, Crisp A, Adamson A, Hastings MH. 2021.. Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. . EMBO J. 40:(20):e108614
    [Crossref] [Google Scholar]
  14. 14.
    Todd WD, Venner A, Anaclet C, Broadhurst RY, De Luca R, et al. 2020.. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. . Nat. Commun. 11:(1):4410
    [Crossref] [Google Scholar]
  15. 15.
    Wen S, Ma D, Zhao M, Xie L, Wu Q, et al. 2020.. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. . Nat. Neurosci. 23:(3):45667
    [Crossref] [Google Scholar]
  16. 16.
    Card JP, Moore RY. 1984.. The suprachiasmatic nucleus of the golden hamster: immunohistochemical analysis of cell and fiber distribution. . Neuroscience 13:(2):41531
    [Crossref] [Google Scholar]
  17. 17.
    Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ. 2013.. Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. . Neuron 80:(4):97383
    [Crossref] [Google Scholar]
  18. 18.
    Mrosovsky N, Salmon PA. 1987.. A behavioural method for accelerating re-entrainment of rhythms to new light-dark cycles. . Nature 330:(6146):37273
    [Crossref] [Google Scholar]
  19. 19.
    Mohawk JA, Green CB, Takahashi JS. 2012.. Central and peripheral circadian clocks in mammals. . Annu. Rev. Neurosci. 35::44562
    [Crossref] [Google Scholar]
  20. 20.
    Schmidt TM, Chen SK, Hattar S. 2011.. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. . Trends Neurosci. 34:(11):57280
    [Crossref] [Google Scholar]
  21. 21.
    Card JP, Moore RY. 1991.. The organization of visual circuits influencing the circadian activity of the suprachiasmatic nucleus. . In Suprachiasmatic Nucleus: The Mind's Clock, ed. DC Klein, RY Moore, SM Reppert , pp. 5176. New York:: Oxford Univ. Press
    [Google Scholar]
  22. 22.
    Yao Y, Taub AB, LeSauter J, Silver R. 2021.. Identification of the suprachiasmatic nucleus venous portal system in the mammalian brain. . Nat. Commun. 12:(1):5643
    [Crossref] [Google Scholar]
  23. 23.
    Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, et al. 2000.. Melatonin sees the light: Blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. . Eur. J. Neurosci. 12:(9):314654
    [Crossref] [Google Scholar]
  24. 24.
    Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, et al. 1997.. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. . Neuron 19:(1):91102
    [Crossref] [Google Scholar]
  25. 25.
    Bering T, Carstensen MB, Rath MF. 2017.. Deleting the Arntl clock gene in the granular layer of the mouse cerebellum: impact on the molecular circadian clockwork. . J. Neurochem. 142:(6):84156
    [Crossref] [Google Scholar]
  26. 26.
    Smies CW, Bodinayake KK, Kwapis JL. 2022.. Time to learn: the role of the molecular circadian clock in learning and memory. . Neurobiol. Learn. Mem. 193::107651
    [Crossref] [Google Scholar]
  27. 27.
    Eckel-Mahan KL, Phan T, Han S, Wang H, Chan GC, et al. 2008.. Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. . Nat. Neurosci. 11:(9):107482
    [Crossref] [Google Scholar]
  28. 28.
    Bellfy L, Smies CW, Bernhardt AR, Bodinayake KK, Sebastian A, et al. 2023.. The clock gene Per1 may exert diurnal control over hippocampal memory consolidation. . Neuropsychopharmacology 48:(12):178997
    [Crossref] [Google Scholar]
  29. 29.
    Hasegawa S, Fukushima H, Hosoda H, Serita T, Ishikawa R, et al. 2019.. Hippocampal clock regulates memory retrieval via Dopamine and PKA-induced GluA1 phosphorylation. . Nat. Commun. 10:(1):5766
    [Crossref] [Google Scholar]
  30. 30.
    Ketchesin KD, Zong W, Hildebrand MA, Seney ML, Cahill KM, et al. 2021.. Diurnal rhythms across the human dorsal and ventral striatum. . PNAS 118:(2):e2016150118
    [Crossref] [Google Scholar]
  31. 31.
    Zhou H, Zhang J, Shi H, Li P, Sui X, et al. 2022.. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. . Mol. Brain 15:(1):53
    [Crossref] [Google Scholar]
  32. 32.
    Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, et al. 2005.. Circadian rhythms from multiple oscillators: lessons from diverse organisms. . Nat. Rev. Genet. 6:(7):54456
    [Crossref] [Google Scholar]
  33. 33.
    Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. 2000.. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. . Genes Dev. 14:(23):295061
    [Crossref] [Google Scholar]
  34. 34.
    Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. 2003.. Circadian clock genes oscillate in human peripheral blood mononuclear cells. . Blood 102:(12):414345
    [Crossref] [Google Scholar]
  35. 35.
    Chakradhar S. 2018.. About time. . Nat. Med. 24:(6):69698
    [Crossref] [Google Scholar]
  36. 36.
    Cheng P, Walch O, Huang Y, Mayer C, Sagong C, et al. 2021.. Predicting circadian misalignment with wearable technology: validation of wrist-worn actigraphy and photometry in night shift workers. . Sleep 44:(2):zsaa180
    [Crossref] [Google Scholar]
  37. 37.
    Phillips AJK, Clerx WM, O'Brien CS, Sano A, Barger LK, et al. 2017.. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. . Sci. Rep. 7:(1):3216
    [Crossref] [Google Scholar]
  38. 38.
    Woelders T, Beersma DGM, Gordijn MCM, Hut RA, Wams EJ. 2017.. Daily light exposure patterns reveal phase and period of the human circadian clock. . J. Biol. Rhythms 32:(3):27486
    [Crossref] [Google Scholar]
  39. 39.
    Klerman EB, Gershengorn HB, Duffy JF, Kronauer RE. 2002.. Comparisons of the variability of three markers of the human circadian pacemaker. . J. Biol. Rhythms 17:(2):18193
    [Crossref] [Google Scholar]
  40. 40.
    Anafi RC, Francey LJ, Hogenesch JB, Kim J. 2017.. CYCLOPS reveals human transcriptional rhythms in health and disease. . PNAS 114:(20):531217
    [Crossref] [Google Scholar]
  41. 41.
    Ueda HR, Chen W, Minami Y, Honma S, Honma K, et al. 2004.. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles. . PNAS 101:(31):1122732
    [Crossref] [Google Scholar]
  42. 42.
    Hughey JJ. 2017.. Machine learning identifies a compact gene set for monitoring the circadian clock in human blood. . Genome Med. 9:(1):19
    [Crossref] [Google Scholar]
  43. 43.
    Laing EE, Moller-Levet CS, Poh N, Santhi N, Archer SN, Dijk DJ. 2017.. Blood transcriptome based biomarkers for human circadian phase. . eLife 6::e20214
    [Crossref] [Google Scholar]
  44. 44.
    Agostinelli F, Ceglia N, Shahbaba B, Sassone-Corsi P, Baldi P. 2016.. What time is it? Deep learning approaches for circadian rhythms. . Bioinformatics 32:(19):3051
    [Crossref] [Google Scholar]
  45. 45.
    Hughey JJ, Hastie T, Butte AJ. 2016.. ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system. . Nucleic Acids Res. 44:(8):e80
    [Crossref] [Google Scholar]
  46. 46.
    Braun R, Kath WL, Iwanaszko M, Kula-Eversole E, Abbott SM, et al. 2018.. Universal method for robust detection of circadian state from gene expression. . PNAS 115:(39):E924756
    [Crossref] [Google Scholar]
  47. 47.
    Huang Y, Braun R. 2024.. Platform-independent estimation of human physiological time from single blood samples. . PNAS 121:(3):e2308114120
    [Crossref] [Google Scholar]
  48. 48.
    Reinke H, Saini C, Fleury-Olela F, Dibner C, Benjamin IJ, Schibler U. 2008.. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. . Genes Dev. 22:(3):33145
    [Crossref] [Google Scholar]
  49. 49.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017.. Biomolecular condensates: organizers of cellular biochemistry. . Nat. Rev. Mol. Cell Biol. 18:(5):28598
    [Crossref] [Google Scholar]
  50. 50.
    Lin Y, Protter DS, Rosen MK, Parker R. 2015.. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. . Mol. Cell 60:(2):20819
    [Crossref] [Google Scholar]
  51. 51.
    Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A, et al. 2016.. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. . Mol. Cell 63:(1):7285
    [Crossref] [Google Scholar]
  52. 52.
    Putnam A, Thomas L, Seydoux G. 2023.. RNA granules: functional compartments or incidental condensates?. Genes Dev. 37:(9–10):35476
    [Crossref] [Google Scholar]
  53. 53.
    Anderson P, Kedersha N. 2002.. Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. . Cell Stress Chaperones 7:(2):21321
    [Crossref] [Google Scholar]
  54. 54.
    Wang R, Jiang X, Bao P, Qin M, Xu J. 2019.. Circadian control of stress granules by oscillating EIF2α. . Cell Death Dis. 10:(3):215
    [Crossref] [Google Scholar]
  55. 55.
    Castillo KD, Wu C, Ding Z, Lopez-Garcia OK, Rowlinson E, et al. 2022.. A circadian clock translational control mechanism targets specific mRNAs to cytoplasmic messenger ribonucleoprotein granules. . Cell Rep. 41:(13):111879
    [Crossref] [Google Scholar]
  56. 56.
    Zhuang Y, Li Z, Xiong S, Sun C, Li B, et al. 2023.. Circadian clocks are modulated by compartmentalized oscillating translation. . Cell 186:(15):324560.e23
    [Crossref] [Google Scholar]
  57. 57.
    Lim C, Allada R. 2013.. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. . Science 340:(6134):87579
    [Crossref] [Google Scholar]
  58. 58.
    Zhang Y, Ling J, Yuan C, Dubruille R, Emery P. 2013.. A role for Drosophila ATX2 in activation of PER translation and circadian behavior. . Science 340:(6134):87982
    [Crossref] [Google Scholar]
  59. 59.
    Xu F, Kula-Eversole E, Iwanaszko M, Lim C, Allada R. 2019.. Ataxin2 functions via CrebA to mediate Huntingtin toxicity in circadian clock neurons. . PLOS Genet. 15:(10):e1008356
    [Crossref] [Google Scholar]
  60. 60.
    Perlegos AE, Durkin J, Belfer SJ, Rodriguez A, Shcherbakova O, et al. 2024.. TDP-43 impairs sleep in Drosophila through Ataxin-2-dependent metabolic disturbance. . Sci. Adv. 10:(2):eadj4457
    [Crossref] [Google Scholar]
  61. 61.
    Xie P, Xie X, Ye C, Dean KM, Laothamatas I, et al. 2023.. Mammalian circadian clock proteins form dynamic interacting microbodies distinct from phase separation. . PNAS 120:(52):e2318274120
    [Crossref] [Google Scholar]
  62. 62.
    Xiao Y, Yuan Y, Jimenez M, Soni N, Yadlapalli S. 2021.. Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. . PNAS 118:(28):e2019756118
    [Crossref] [Google Scholar]
  63. 63.
    Soto C, Pritzkow S. 2018.. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. . Nat. Neurosci. 21:(10):133240
    [Crossref] [Google Scholar]
  64. 64.
    Kress GJ, Liao F, Dimitry J, Cedeno MR, FitzGerald GA, et al. 2018.. Regulation of amyloid-β dynamics and pathology by the circadian clock. . J. Exp. Med. 215:(4):105968
    [Crossref] [Google Scholar]
  65. 65.
    Verma AK, Singh S, Rizvi SI. 2023.. Aging, circadian disruption and neurodegeneration: interesting interplay. . Exp. Gerontol. 172::112076
    [Crossref] [Google Scholar]
  66. 66.
    Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. 2015.. Alzheimer's disease. . Nat. Rev. Dis. Primers 1::15056
    [Crossref] [Google Scholar]
  67. 67.
    De Strooper B, Karran E. 2016.. The cellular phase of Alzheimer's disease. . Cell 164:(4):60315
    [Crossref] [Google Scholar]
  68. 68.
    Selkoe DJ. 2001.. Alzheimer's disease: genes, proteins, and therapy. . Physiol. Rev. 81:(2):74166
    [Crossref] [Google Scholar]
  69. 69.
    Karran E, De Strooper B. 2022.. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. . Nat. Rev. Drug Discov. 21:(4):30618
    [Crossref] [Google Scholar]
  70. 70.
    Musiek ES, Holtzman DM. 2015.. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen. ’. Nat. Neurosci. 18:(6):8006
    [Crossref] [Google Scholar]
  71. 71.
    Chen KF, Possidente B, Lomas DA, Crowther DC. 2014.. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer's disease. . Dis. Model. Mech. 7:(4):44558
    [Google Scholar]
  72. 72.
    Chahine LM, Amara AW, Videnovic A. 2017.. A systematic review of the literature on disorders of sleep and wakefulness in Parkinson's disease from 2005 to 2015. . Sleep Med. Rev. 35::3350
    [Crossref] [Google Scholar]
  73. 73.
    Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, et al. 2019.. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. . Science 363:(6429):88084
    [Crossref] [Google Scholar]
  74. 74.
    Ortiz-Tudela E, Martinez-Nicolas A, Diaz-Mardomingo C, Garcia-Herranz S, Pereda-Perez I, et al. 2014.. The characterization of biological rhythms in mild cognitive impairment. . Biomed. Res. Int. 2014::524971
    [Crossref] [Google Scholar]
  75. 75.
    Mishima K, Okawa M, Hishikawa Y, Hozumi S, Hori H, Takahashi K. 1994.. Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. . Acta Psychiatr. Scand. 89:(1):17
    [Crossref] [Google Scholar]
  76. 76.
    Most EI, Scheltens P, Van Someren EJ. 2012.. Increased skin temperature in Alzheimer's disease is associated with sleepiness. . J. Neural Transm. 119:(10):118594
    [Crossref] [Google Scholar]
  77. 77.
    Sack RL, Blood ML, Lewy AJ. 1992.. Melatonin rhythms in night shift workers. . Sleep 15:(5):43441
    [Crossref] [Google Scholar]
  78. 78.
    Skene DJ, Swaab DF. 2003.. Melatonin rhythmicity: effect of age and Alzheimer's disease. . Exp. Gerontol. 38:(1–2):199206
    [Crossref] [Google Scholar]
  79. 79.
    Manni R, Cremascoli R, Perretti C, De Icco R, Picascia M, Ghezzi C, et al. 2019.. Evening melatonin timing secretion in real life conditions in patients with Alzheimer disease of mild to moderate severity. . Sleep Med. 63::12226
    [Crossref] [Google Scholar]
  80. 80.
    Pan D, Wang Z, Chen Y, Cao J. 2023.. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. . Commun. Biol. 6:(1):1054
    [Crossref] [Google Scholar]
  81. 81.
    La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, et al. 2016.. Melanopsin retinal ganglion cell loss in Alzheimer disease. . Ann. Neurol. 79:(1):90109
    [Crossref] [Google Scholar]
  82. 82.
    Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, et al. 2019.. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. . Nat. Neurosci. 22:(3):40112
    [Crossref] [Google Scholar]
  83. 83.
    Hulme B, Didikoglu A, Bradburn S, Robinson A, Canal M, et al. 2020.. Epigenetic regulation of BMAL1 with sleep disturbances and Alzheimer's disease. . J. Alzheimers Dis. 77:(4):178392
    [Crossref] [Google Scholar]
  84. 84.
    Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YS. 2018.. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. . JAMA Neurol. 75:(5):58290
    [Crossref] [Google Scholar]
  85. 85.
    Bokenberger K, Sjolander A, Dahl Aslan AK, Karlsson IK, Akerstedt T, Pedersen NL. 2018.. Shift work and risk of incident dementia: a study of two population-based cohorts. . Eur. J. Epidemiol. 33:(10):97787
    [Crossref] [Google Scholar]
  86. 86.
    Chen ZY, Zhang Y. 2022.. Animal models of Alzheimer's disease: applications, evaluation, and perspectives. . Zool. Res. 43:(6):102640
    [Crossref] [Google Scholar]
  87. 87.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, et al. 2003.. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. . Neuron 39:(3):40921
    [Crossref] [Google Scholar]
  88. 88.
    Wu M, Zhou F, Cao X, Yang J, Bai Y, et al. 2018.. Abnormal circadian locomotor rhythms and Per gene expression in six-month-old triple transgenic mice model of Alzheimer's disease. . Neurosci. Lett. 676::1318
    [Crossref] [Google Scholar]
  89. 89.
    Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, et al. 2012.. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer's disease pathology. . Sci. Transl. Med. 4:(150):150ra22
    [Crossref] [Google Scholar]
  90. 90.
    Xie L, Kang H, Xu Q, Chen MJ, Liao Y, et al. 2013.. Sleep drives metabolite clearance from the adult brain. . Science 342:(6156):37377
    [Crossref] [Google Scholar]
  91. 91.
    Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, et al. 2001.. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. . Science 293:(5530):71114
    [Crossref] [Google Scholar]
  92. 92.
    Iijima-Ando K, Iijima K. 2010.. Transgenic Drosophila models of Alzheimer's disease and tauopathies. . Brain Struct. Funct. 214:(2–3):24562
    [Crossref] [Google Scholar]
  93. 93.
    Tabuchi M, Lone SR, Liu S, Liu Q, Zhang J, et al. 2015.. Sleep interacts with Aβ to modulate intrinsic neuronal excitability. . Curr. Biol. 25:(6):70212
    [Crossref] [Google Scholar]
  94. 94.
    Zhang MY, Lear BC, Allada R. 2022.. The microtubule-associated protein Tau suppresses the axonal distribution of PDF neuropeptide and mitochondria in circadian clock neurons. . Hum. Mol. Genet. 31:(7):114150
    [Crossref] [Google Scholar]
  95. 95.
    Bloem BR, Okun MS, Klein C. 2021.. Parkinson's disease. . Lancet 397:(10291):2284303
    [Crossref] [Google Scholar]
  96. 96.
    Weintraub D, Aarsland D, Chaudhuri KR, Dobkin RD, Leentjens AF, et al. 2022.. The neuropsychiatry of Parkinson's disease: advances and challenges. . Lancet Neurol. 21:(1):89102
    [Crossref] [Google Scholar]
  97. 97.
    Stefani A, Hogl B. 2020.. Sleep in Parkinson's disease. . Neuropsychopharmacology 45:(1):12128
    [Crossref] [Google Scholar]
  98. 98.
    Videnovic A, Lazar AS, Barker RA, Overeem S. 2014.. ‘ The clocks that time us’—circadian rhythms in neurodegenerative disorders. . Nat. Rev. Neurol. 10:(12):68393
    [Crossref] [Google Scholar]
  99. 99.
    Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P. 2006.. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. . PNAS 103:(16):638691
    [Crossref] [Google Scholar]
  100. 100.
    Nihei Y, Takahashi K, Koto A, Mihara B, Morita Y, et al. 2012.. REM sleep behavior disorder in Japanese patients with Parkinson's disease: a multicenter study using the REM sleep behavior disorder screening questionnaire. . J. Neurol. 259:(8):160612
    [Crossref] [Google Scholar]
  101. 101.
    Schenck CH, Boeve BF, Mahowald MW. 2013.. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. . Sleep Med. 14:(8):74448
    [Crossref] [Google Scholar]
  102. 102.
    Postuma RB, Iranzo A, Hu M, Hogl B, Boeve BF, et al. 2019.. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. . Brain 142:(3):74459
    [Crossref] [Google Scholar]
  103. 103.
    Iranzo A. 2013.. Parkinson disease and sleep: sleep-wake changes in the premotor stage of Parkinson disease; impaired olfaction and other prodromal features. . Curr. Neurol. Neurosci. Rep. 13:(9):373
    [Crossref] [Google Scholar]
  104. 104.
    Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. 2022.. Sleep and circadian rhythms in Parkinson's disease and preclinical models. . Mol. Neurodegener. 17:(1):2
    [Crossref] [Google Scholar]
  105. 105.
    Fifel K, Cooper HM. 2014.. Loss of dopamine disrupts circadian rhythms in a mouse model of Parkinson's disease. . Neurobiol. Dis. 71::35969
    [Crossref] [Google Scholar]
  106. 106.
    Pont-Sunyer C, Iranzo A, Gaig C, Fernandez-Arcos A, Vilas D, et al. 2015.. Sleep disorders in parkinsonian and nonparkinsonian LRRK2 mutation carriers. . PLOS ONE 10:(7):e0132368
    [Crossref] [Google Scholar]
  107. 107.
    Gilliam TC, Bucan M, MacDonald ME, Zimmer M, Haines JL, et al. 1987.. A DNA segment encoding two genes very tightly linked to Huntington's disease. . Science 238:(4829):95052
    [Crossref] [Google Scholar]
  108. 108.
    Heinsen H, Rub U, Gangnus D, Jungkunz G, Bauer M, et al. 1996.. Nerve cell loss in the thalamic centromedian-parafascicular complex in patients with Huntington's disease. . Acta Neuropathol. 91:(2):16168
    [Crossref] [Google Scholar]
  109. 109.
    Macdonald V, Halliday G. 2002.. Pyramidal cell loss in motor cortices in Huntington's disease. . Neurobiol. Dis. 10:(3):37886
    [Crossref] [Google Scholar]
  110. 110.
    Macdonald V, Halliday GM, Trent RJ, McCusker EA. 1997.. Significant loss of pyramidal neurons in the angular gyrus of patients with Huntington's disease. . Neuropathol. Appl. Neurobiol. 23:(6):49295
    [Crossref] [Google Scholar]
  111. 111.
    Goodman AO, Morton AJ, Barker RA. 2010.. Identifying sleep disturbances in Huntington's disease using a simple disease-focused questionnaire. . PLOS Curr. 2::RRN1189
    [Crossref] [Google Scholar]
  112. 112.
    Aziz NA, Anguelova GV, Marinus J, van Dijk JG, Roos RA. 2010.. Autonomic symptoms in patients and pre-manifest mutation carriers of Huntington's disease. . Eur. J. Neurol. 17:(8):106874
    [Crossref] [Google Scholar]
  113. 113.
    Hurelbrink CB, Lewis SJ, Barker RA. 2005.. The use of the Actiwatch-Neurologica system to objectively assess the involuntary movements and sleep-wake activity in patients with mild-moderate Huntington's disease. . J. Neurol. 252:(6):64247
    [Crossref] [Google Scholar]
  114. 114.
    Hansotia P, Wall R, Berendes J. 1985.. Sleep disturbances and severity of Huntington's disease. . Neurology 35:(11):167274
    [Crossref] [Google Scholar]
  115. 115.
    Musiek ES, Xiong DD, Holtzman DM. 2015.. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. . Exp. Mol. Med. 47:(3):e148
    [Crossref] [Google Scholar]
  116. 116.
    Diago EB, Martinez-Horta S, Lasaosa SS, Alebesque AV, Perez-Perez J, et al. 2018.. Circadian rhythm, cognition, and mood disorders in Huntington's disease. . J. Huntingtons Dis. 7:(2):19398
    [Crossref] [Google Scholar]
  117. 117.
    Videnovic A, Leurgans S, Fan W, Jaglin J, Shannon KM. 2009.. Daytime somnolence and nocturnal sleep disturbances in Huntington disease. . Parkinsonism Relat. Disord. 15:(6):47174
    [Crossref] [Google Scholar]
  118. 118.
    Arnulf I, Nielsen J, Lohmann E, Schiefer J, Wild E, et al. 2008.. Rapid eye movement sleep disturbances in Huntington disease. . Arch. Neurol. 65:(4):48288
    [Crossref] [Google Scholar]
  119. 119.
    Pouladi MA, Morton AJ, Hayden MR. 2013.. Choosing an animal model for the study of Huntington's disease. . Nat. Rev. Neurosci. 14:(10):70821
    [Crossref] [Google Scholar]
  120. 120.
    Loh DH, Kudo T, Truong D, Wu Y, Colwell CS. 2013.. The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep. . PLOS ONE 8:(7):e69993
    [Crossref] [Google Scholar]
  121. 121.
    Kantor S, Szabo L, Varga J, Cuesta M, Morton AJ. 2013.. Progressive sleep and electroencephalogram changes in mice carrying the Huntington's disease mutation. . Brain 136:(Part 7):214758
    [Crossref] [Google Scholar]
  122. 122.
    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, et al. 1996.. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. . Cell 87:(3):493506
    [Crossref] [Google Scholar]
  123. 123.
    Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES. 2005.. Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease. . J. Neurosci. 25:(1):15763
    [Crossref] [Google Scholar]
  124. 124.
    Kudo T, Schroeder A, Loh DH, Kuljis D, Jordan MC, et al. 2011.. Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease. . Exp. Neurol. 228:(1):8090
    [Crossref] [Google Scholar]
  125. 125.
    Pallier PN, Maywood ES, Zheng Z, Chesham JE, Inyushkin AN, et al. 2007.. Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington's disease. . J. Neurosci. 27:(29):786978
    [Crossref] [Google Scholar]
  126. 126.
    Black N, D'Souza A, Wang Y, Piggins H, Dobrzynski H, et al. 2019.. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. . Heart Rhythm. 16:(2):298307
    [Crossref] [Google Scholar]
  127. 127.
    Gonzales ED, Tanenhaus AK, Zhang J, Chaffee RP, Yin JC. 2016.. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling. . Hum. Mol. Genet. 25:(5):83752
    [Crossref] [Google Scholar]
  128. 128.
    Farago A, Zsindely N, Bodai L. 2019.. Mutant huntingtin disturbs circadian clock gene expression and sleep patterns in Drosophila. . Sci. Rep. 9:(1):7174
    [Crossref] [Google Scholar]
  129. 129.
    Xu F, Kula-Eversole E, Iwanaszko M, Hutchison AL, Dinner A, Allada R. 2019.. Circadian clocks function in concert with heat shock organizing protein to modulate mutant Huntingtin aggregation and toxicity. . Cell Rep. 27:(1):5970.e4
    [Crossref] [Google Scholar]
  130. 130.
    Feng D, Lazar MA. 2012.. Clocks, metabolism, and the epigenome. . Mol. Cell 47:(2):15867
    [Crossref] [Google Scholar]
  131. 131.
    Orozco-Solis R, Aguilar-Arnal L. 2020.. Circadian regulation of immunity through epigenetic mechanisms. . Front. Cell. Infect. Microbiol. 10::96
    [Crossref] [Google Scholar]
  132. 132.
    Hetz C, Saxena S. 2017.. ER stress and the unfolded protein response in neurodegeneration. . Nat. Rev. Neurol. 13:(8):47791
    [Crossref] [Google Scholar]
  133. 133.
    Hetz C. 2012.. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. . Nat. Rev. Mol. Cell Biol. 13:(2):89102
    [Crossref] [Google Scholar]
  134. 134.
    Ma D, Panda S, Lin JD. 2011.. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. . EMBO J. 30:(22):464251
    [Crossref] [Google Scholar]
  135. 135.
    Desvergne A, Ugarte N, Radjei S, Gareil M, Petropoulos I, Friguet B. 2016.. Circadian modulation of proteasome activity and accumulation of oxidized protein in human embryonic kidney HEK 293 cells and primary dermal fibroblasts. . Free Radic. Biol. Med. 94::195207
    [Crossref] [Google Scholar]
  136. 136.
    Gerakis Y, Hetz C. 2018.. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer's disease. . FEBS J. 285:(6):9951011
    [Crossref] [Google Scholar]
  137. 137.
    Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, et al. 2014.. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. . Cell Rep. 9:(3):113550
    [Crossref] [Google Scholar]
  138. 138.
    Kaushik S, Cuervo AM. 2018.. The coming of age of chaperone-mediated autophagy. . Nat. Rev. Mol. Cell Biol. 19:(6):36581
    [Crossref] [Google Scholar]
  139. 139.
    Bourdenx M, Gavathiotis E, Cuervo AM. 2021.. Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis. . Autophagy 17:(8):204042
    [Crossref] [Google Scholar]
  140. 140.
    Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, et al. 2021.. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. . Nat. Cell Biol. 23:(12):125570
    [Crossref] [Google Scholar]
  141. 141.
    Lananna BV, Musiek ES. 2020.. The wrinkling of time: aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. . Neurobiol. Dis. 139::104832
    [Crossref] [Google Scholar]
  142. 142.
    Man K, Loudon A, Chawla A. 2016.. Immunity around the clock. . Science 354:(6315):9991003
    [Crossref] [Google Scholar]
  143. 143.
    Irwin MR, Vitiello MV. 2019.. Implications of sleep disturbance and inflammation for Alzheimer's disease dementia. . Lancet Neurol. 18:(3):296306
    [Crossref] [Google Scholar]
  144. 144.
    Lananna BV, Nadarajah CJ, Izumo M, Cedeno MR, Xiong DD, et al. 2018.. Cell-autonomous regulation of astrocyte activation by the circadian clock protein BMAL1. . Cell Rep. 25:(1):19.e5
    [Crossref] [Google Scholar]
  145. 145.
    Griffin P, Sheehan PW, Dimitry JM, Guo C, Kanan MF, et al. 2020.. REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. . eLife 9::e58765
    [Crossref] [Google Scholar]
  146. 146.
    Lee J, Kim DE, Griffin P, Sheehan PW, Kim DH, et al. 2020.. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer's disease. . Aging Cell 19:(2):e13078
    [Crossref] [Google Scholar]
  147. 147.
    Wardlaw SM, Phan TX, Saraf A, Chen X, Storm DR. 2014.. Genetic disruption of the core circadian clock impairs hippocampus-dependent memory. . Learn Mem. 21:(8):41723
    [Crossref] [Google Scholar]
  148. 148.
    Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, et al. 2013.. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. . J. Clin. Investig. 123:(12):5389400
    [Crossref] [Google Scholar]
  149. 149.
    Liu WW, Wei SZ, Huang GD, Liu LB, Gu C, et al. 2020.. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson's disease mouse model. . FASEB J. 34:(5):657081
    [Crossref] [Google Scholar]
  150. 150.
    Palmer CS, Anderson AJ, Stojanovski D. 2021.. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. . FEBS Lett. 595:(8):110731
    [Crossref] [Google Scholar]
  151. 151.
    Peek CB, Affinati AH, Ramsey KM, Kuo HY, Yu W, et al. 2013.. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. . Science 342:(6158):1243417
    [Crossref] [Google Scholar]
  152. 152.
    Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, et al. 2018.. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. . Cell Metab. 27:(3):65766.e5
    [Crossref] [Google Scholar]
  153. 153.
    Rutter J, Reick M, Wu LC, McKnight SL. 2001.. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. . Science 293:(5529):51014
    [Crossref] [Google Scholar]
  154. 154.
    Laothamatas I, Gao P, Wickramaratne A, Quintanilla CG, Dino A, et al. 2020.. Spatiotemporal regulation of NADP(H) phosphatase Nocturnin and its role in oxidative stress response. . PNAS 117:(2):99399
    [Crossref] [Google Scholar]
  155. 155.
    Wang TA, Yu YV, Govindaiah G, Ye X, Artinian L, et al. 2012.. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. . Science 337:(6096):83942
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-033828
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-033828
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error