1932

Abstract

The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity—a state characterized by chronic inflammation and systemic dyshomeostasis—there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state. We summarize key seminal and recent findings that elucidate how obesity influences immune function, spanning its classical role in microbial defense, its contribution to maladaptive inflammatory diseases such as asthma, and its impact on antitumor immunity. We also explore how obesity modulates immune function within tissue parenchyma, with a particular focus on the role of T cells in adipose tissue. Finally, we consider areas for future research, including investigation of the durable aspects of obesity on immunological function even after weight loss, such as those observed with glucagon-like peptide-1 (GLP-1) receptor agonist treatment. Altogether, this review emphasizes the critical role of systemic metabolism in shaping immune cell functions, with profound implications for tissue homeostasis across various physiological contexts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051222-015350
2025-01-24
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-051222-015350.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051222-015350&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Yoo S-K, Chowell D, Valero C, Morris LGT, Chan TA. 2022.. Outcomes among patients with or without obesity and with cancer following treatment with immune checkpoint blockade. . JAMA Netw. Open 5:(2):e220448
    [Crossref] [Google Scholar]
  2. 2.
    Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, et al. 2019.. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. . Nat. Med. 25:(1):14151
    [Crossref] [Google Scholar]
  3. 3.
    Dixon JB. 2010.. The effect of obesity on health outcomes. . Mol. Cell. Endocrinol. 316:(2):1048
    [Crossref] [Google Scholar]
  4. 4.
    Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. 2014.. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. . Lancet 384:(9945):75565
    [Crossref] [Google Scholar]
  5. 5.
    Mitchinson W, Schulkin J. 2009.. The Evolution of Obesity. Baltimore, MD:: Johns Hopkins Univ. Press. , 1st ed..
    [Google Scholar]
  6. 6.
    Medzhitov R. 2008.. Origin and physiological roles of inflammation. . Nature 454:(7203):42835
    [Crossref] [Google Scholar]
  7. 7.
    Meizlish ML, Franklin RA, Zhou X, Medzhitov R. 2021.. Tissue homeostasis and inflammation. . Annu. Rev. Immunol. 39::55781
    [Crossref] [Google Scholar]
  8. 8.
    Kotas ME, Medzhitov R. 2015.. Homeostasis, inflammation, and disease susceptibility. . Cell 160:(5):81627
    [Crossref] [Google Scholar]
  9. 9.
    Nguyen KD, Qiu Y, Cui X, Goh YPS, Mwangi J, et al. 2011.. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. . Nature 480:(7375):1048
    [Crossref] [Google Scholar]
  10. 10.
    Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, et al. 2014.. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. . Cell 157:(6):1292308
    [Crossref] [Google Scholar]
  11. 11.
    Lee M-W, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, et al. 2014.. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. . Cell 160::7487
    [Crossref] [Google Scholar]
  12. 12.
    Kohlgruber AC, Gal-Oz ST, LaMarche NM, Shimazaki M, Duquette D, et al. 2018.. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. . Nat. Immunol. 19:(5):46474
    [Crossref] [Google Scholar]
  13. 13.
    Hu B, Jin C, Zeng X, Resch JM, Jedrychowski MP, et al. 2020.. γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. . Nature 578:(7796):61014
    [Crossref] [Google Scholar]
  14. 14.
    Rao RR, Long JZ, White JP, Svensson KJ, Lou J, et al. 2014.. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. . Cell 157:(6):127991
    [Crossref] [Google Scholar]
  15. 15.
    Sullivan ZA, Khoury-Hanold W, Lim J, Smillie C, Biton M, et al. 2021.. γδ T cells regulate the intestinal response to nutrient sensing. . Science 371:(6535):eaba8310
    [Crossref] [Google Scholar]
  16. 16.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009.. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. . Sci. Transl. Med. 1:(6):6ra14
    [Crossref] [Google Scholar]
  17. 17.
    Kundu P, Blacher E, Elinav E, Pettersson S. 2017.. Our gut microbiome: the evolving inner self. . Cell 171:(7):148193
    [Crossref] [Google Scholar]
  18. 18.
    Christ A, Lauterbach M, Latz E. 2019.. Western diet and the immune system: an inflammatory connection. . Immunity 51:(5):794811
    [Crossref] [Google Scholar]
  19. 19.
    Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. 2008.. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. . Cell Host Microbe 3:(4):21323
    [Crossref] [Google Scholar]
  20. 20.
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005.. Obesity alters gut microbial ecology. . PNAS 102:(31):1107075
    [Crossref] [Google Scholar]
  21. 21.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, et al. 2013.. Gut microbiota from twins discordant for obesity modulate metabolism in mice. . Science 341:(6150):1241214
    [Crossref] [Google Scholar]
  22. 22.
    Kawano Y, Edwards M, Huang Y, Bilate AM, Araujo LP, et al. 2022.. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. . Cell 185:(19):350119.e20
    [Crossref] [Google Scholar]
  23. 23.
    Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, et al. 2015.. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. . Science 347:(6217):6771
    [Crossref] [Google Scholar]
  24. 24.
    Zhang LJ, Guerrero-Juarez CF, Chen SX, Zhang X, Yin M, et al. 2021.. Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense function of dermal adipocyte progenitors. . Sci. Transl. Med. 13:(577):eabb5280
    [Crossref] [Google Scholar]
  25. 25.
    Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, et al. 2016.. Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-invasive E. coli infection and intestinal inflammation. . Sci. Rep. 6::19032
    [Crossref] [Google Scholar]
  26. 26.
    Chew W, Lim YP, Lim WS, Chambers ES, Frost G, . 2023.. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. . Front. Med. 9::1065365
    [Crossref] [Google Scholar]
  27. 27.
    Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, . 2022.. Microbiota in health and diseases. . Signal Transduct. Target. Ther. 7::135
    [Crossref] [Google Scholar]
  28. 28.
    Zheng D, Liwinski T, Elinav E. 2020.. Interaction between microbiota and immunity in health and disease. . Cell Res. 30:(6):492506
    [Crossref] [Google Scholar]
  29. 29.
    Belkaid Y, Harrison OJ. 2017.. Homeostatic immunity and the microbiota. . Immunity 46:(4):56276
    [Crossref] [Google Scholar]
  30. 30.
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS. 2016.. How colonization by microbiota in early life shapes the immune system. . Science 352:(6285):53944
    [Crossref] [Google Scholar]
  31. 31.
    Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. 2017.. Dysbiosis and the immune system. . Nat. Rev. Immunol. 17:(4):21932
    [Crossref] [Google Scholar]
  32. 32.
    Hooper LV, Littman DR, Macpherson AJ. 2012.. Interactions between the microbiota and the immune system. . Science 336:(6086):126873
    [Crossref] [Google Scholar]
  33. 33.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, et al. 2009.. Induction of intestinal Th17 cells by segmented filamentous bacteria. . Cell 139:(3):48598
    [Crossref] [Google Scholar]
  34. 34.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, et al. 2011.. Induction of colonic regulatory T cells by indigenous Clostridium species. . Science 331:(6015):33741
    [Crossref] [Google Scholar]
  35. 35.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, et al. 2013.. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. . Nature 504:(7480):45155
    [Crossref] [Google Scholar]
  36. 36.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, et al. 2013.. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. . Science 341:(6145):56973
    [Crossref] [Google Scholar]
  37. 37.
    von Moltke J, Ji M, Liang H-E, Locksley RM. 2016.. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. . Nature 529:(7585):22125
    [Crossref] [Google Scholar]
  38. 38.
    Schneider C, O'Leary CE, von Moltke J, Liang H-E, Ang QY, et al. 2018.. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. . Cell 174::27184.e14
    [Crossref] [Google Scholar]
  39. 39.
    Galván-Peña S, Zhu Y, Hanna BS, Mathis D, Benoist C. 2024.. A dynamic atlas of immunocyte migration from the gut. . Sci. Immunol. 9:(91):eadi0672
    [Crossref] [Google Scholar]
  40. 40.
    Hanna BS, Wang G, Galván-Peña S, Mann AO, Ramirez RN, et al. 2023.. The gut microbiota promotes distal tissue regeneration via RORγ+ regulatory T cell emissaries. . Immunity 56:(4):82946.e8
    [Crossref] [Google Scholar]
  41. 41.
    Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. 2019.. Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. . Adv. Nutr. 10:(Suppl. 1):S1730
    [Crossref] [Google Scholar]
  42. 42.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, et al. 2012.. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. . Nature 482:(7384):17985
    [Crossref] [Google Scholar]
  43. 43.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, et al. 2007.. Metabolic endotoxemia initiates obesity and insulin resistance. . Diabetes 56:(7):176172
    [Crossref] [Google Scholar]
  44. 44.
    Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, et al. 2018.. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. . Science 359:(6382):137683
    [Crossref] [Google Scholar]
  45. 45.
    Falagas ME, Kompoti M. 2006.. Obesity and infection. . Lancet Infect. Dis. 6:(7):43846
    [Crossref] [Google Scholar]
  46. 46.
    Huttunen R, Syrjänen J. 2013.. Obesity and the risk and outcome of infection. . Int. J. Obes. 37:(3):33340
    [Crossref] [Google Scholar]
  47. 47.
    Milner JJ, Beck MA. 2012.. The impact of obesity on the immune response to infection. . Proc. Nutr. Soc. 71:(2):298306
    [Crossref] [Google Scholar]
  48. 48.
    Wang A, Huen SC, Luan HH, Yu S, Zhang C, et al. 2016.. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. . Cell 166:(6):151225.e12
    [Crossref] [Google Scholar]
  49. 49.
    Nobs SP, Kolodziejczyk AA, Adler L, Horesh N, Botscharnikow C, et al. 2023.. Lung dendritic-cell metabolism underlies susceptibility to viral infection in diabetes. . Nature 624:(7992):64552
    [Crossref] [Google Scholar]
  50. 50.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 1994.. Positional cloning of the mouse obese gene and its human homologue. . Nature 372:(6505):42532
    [Crossref] [Google Scholar]
  51. 51.
    Bjørbæk C, Uotani S, da Silva B, Flier JS. 1997.. Divergent signaling capacities of the long and short isoforms of the leptin receptor. . J. Biol. Chem. 272:(51):3268695
    [Crossref] [Google Scholar]
  52. 52.
    Hileman SM, Pierroz DD, Masuzaki H, Bjørbæk C, El-Haschimi K, et al. 2002.. Characterizaton of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. . Endocrinology 143:(3):77583
    [Crossref] [Google Scholar]
  53. 53.
    Gorska E, Popko K, Stelmaszczyk-Emmel A, Ciepiela O, Kucharska A, Wasik M. 2010.. Leptin receptors. . Eur. J. Med. Res. 15:(Suppl. 2):5054
    [Crossref] [Google Scholar]
  54. 54.
    Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, et al. 1998.. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. . Nature 392:(6674):398401
    [Crossref] [Google Scholar]
  55. 55.
    Reis BS, Lee K, Fanok MH, Mascaraque C, Amoury M, et al. 2015.. Leptin receptor signaling in T cells is required for Th17 differentiation. . J. Immunol. 194:(11):525360
    [Crossref] [Google Scholar]
  56. 56.
    Gerriets VA, Danzaki K, Kishton RJ, Eisner W, Nichols AG, et al. 2016.. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. . Eur. J. Immunol. 46:(8):197083
    [Crossref] [Google Scholar]
  57. 57.
    Deng J, Liu Y, Yang M, Wang S, Zhang M, et al. 2012.. Leptin exacerbates collagen-induced arthritis via enhancement of Th17 cell response. . Arthritis Rheum. 64:(11):356473
    [Crossref] [Google Scholar]
  58. 58.
    Wang Y, Chen J, Zhao Y, Geng L, Song F, Chen H. 2008.. Psoriasis is associated with increased levels of serum leptin. . Br. J. Dermatol. 158:(5):113435
    [Crossref] [Google Scholar]
  59. 59.
    Çerman AA, Bozkurt S, Sav A, Tulunay A, Elbaşı MO, Ergun T. 2008.. Serum leptin levels, skin leptin and leptin receptor expression in psoriasis. . Br. J. Dermatol. 159:(4):82026
    [Crossref] [Google Scholar]
  60. 60.
    Górska E, Tylicka M, Hermanowicz A, Matuszczak E, Sankiewicz A, et al. 2023.. UCHL1, besides leptin and fibronectin, also could be a sensitive marker of the relapsing-remitting type of multiple sclerosis. . Sci. Rep. 13:(1):3423
    [Crossref] [Google Scholar]
  61. 61.
    Rosen ED, Spiegelman BM. 2001.. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. . J. Biol. Chem. 276:(41):3773134
    [Crossref] [Google Scholar]
  62. 62.
    Agarwal AK, Garg A. 2002.. A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy. . J. Clin. Endocrinol. Metab. 87:(1):40811
    [Google Scholar]
  63. 63.
    Dyment DA, Gibson WT, Huang L, Bassyouni H, Hegele RA, Innes AM. 2014.. Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli-Seip syndrome. . Eur. J. Med. Genet. 57:(9):52426
    [Crossref] [Google Scholar]
  64. 64.
    Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, et al. 2013.. PPARγ signaling and metabolism: the good, the bad and the future. . Nat. Med. 19::55766
    [Crossref] [Google Scholar]
  65. 65.
    Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, et al. 2012.. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. . Nature 486:(7404):54953
    [Crossref] [Google Scholar]
  66. 66.
    Bapat SP, Suh JM, Fang S, Liu S, Zhang Y, et al. 2015.. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. . Nature 528:(7580):13741
    [Crossref] [Google Scholar]
  67. 67.
    Chen T, Tibbitt CA, Feng X, Stark JM, Rohrbeck L, et al. 2017.. PPAR-γ promotes type 2 immune responses in allergy and nematode infection. . Sci. Immunol. 2:(9):eaal5196
    [Crossref] [Google Scholar]
  68. 68.
    Nobs SP, Natali S, Pohlmeier L, Okreglicka K, Schneider C, et al. 2017.. PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. . J. Exp. Med. 214:(10):301535
    [Crossref] [Google Scholar]
  69. 69.
    Bapat SP, Whitty C, Mowery CT, Liang Y, Yoo A, et al. 2022.. Obesity alters pathology and treatment response in inflammatory disease. . Nature 604:(7905):33742
    [Crossref] [Google Scholar]
  70. 70.
    Sivasami P, Elkins C, Diaz-Saldana PP, Goss K, Peng A, et al. 2023.. Obesity-induced dysregulation of skin-resident PPARγ+ Treg cells promotes IL-17A-mediated psoriatic inflammation. . Immunity 56:(8):184461.e6
    [Crossref] [Google Scholar]
  71. 71.
    Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L, Padula SJ. 2000.. The nuclear receptor PPARγ and immunoregulation: PPARγ mediates inhibition of helper T cell responses. . J. Immunol. 164:(3):136471
    [Crossref] [Google Scholar]
  72. 72.
    Yang XY, Wang LH, Chen T, Hodge DR, Resau JH, et al. 2000.. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor γ (PPARγ) agonists. PPARγ co-association with transcription factor NFAT. . J. Biol. Chem. 275:(7):454144
    [Crossref] [Google Scholar]
  73. 73.
    Hontecillas R, Bassaganya-Riera J. 2007.. Peroxisome proliferator-activated receptor γ is required for regulatory CD4+ T cell-mediated protection against colitis. . J. Immunol. 178:(5):294049
    [Crossref] [Google Scholar]
  74. 74.
    Guri AJ, Mohapatra SK, Horne WT, Hontecillas R, Bassaganya-Riera J. 2010.. The role of T cell PPAR γ in mice with experimental inflammatory bowel disease. . BMC Gastroenterol. 10::60
    [Crossref] [Google Scholar]
  75. 75.
    Henriksson J, Chen X, Gomes T, Ullah U, Meyer KB, et al. 2019.. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. . Cell 176:(4):88296.e18
    [Crossref] [Google Scholar]
  76. 76.
    Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, et al. 2009.. The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. . J. Exp. Med. 206:(10):207989
    [Crossref] [Google Scholar]
  77. 77.
    Peters U, Dixon AE, Forno E. 2018.. Obesity and asthma. . J. Allergy Clin. Immunol. 141:(4):116979
    [Crossref] [Google Scholar]
  78. 78.
    Marck CH, Neate SL, Taylor KL, Weiland TJ, Jelinek GA. 2016.. Prevalence of comorbidities, overweight and obesity in an international sample of people with multiple sclerosis and associations with modifiable lifestyle factors. . PLOS ONE 11:(2):e0148573
    [Crossref] [Google Scholar]
  79. 79.
    Ajeganova S, Andersson ML, Hafström I. 2013.. Association of obesity with worse disease severity in rheumatoid arthritis as well as with comorbidities: a long-term followup from disease onset. . Arthritis Care Res. 65:(1):7887
    [Crossref] [Google Scholar]
  80. 80.
    Jensen P, Skov L. 2017.. Psoriasis and obesity. . Dermatology 232:(6):63339
    [Crossref] [Google Scholar]
  81. 81.
    Jensen P, Zachariae C, Christensen R, Geiker NRW, Schaadt BK, et al. 2013.. Effect of weight loss on the severity of psoriasis: a randomized clinical study. . JAMA Dermatol. 149:(7):795801
    [Crossref] [Google Scholar]
  82. 82.
    Michalovich D, Rodriguez-Perez N, Smolinska S, Pirozynski M, Mayhew D, et al. 2019.. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. . Nat. Commun. 10:(1):5711
    [Crossref] [Google Scholar]
  83. 83.
    Svenningsen S, Nair P. 2017.. Asthma endotypes and an overview of targeted therapy for asthma. . Front. Med. 4::158
    [Crossref] [Google Scholar]
  84. 84.
    Peters MC, McGrath KW, Hawkins GA, Hastie AT, Levy BD, et al. 2016.. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. . Lancet Respir. Med. 4:(7):57484
    [Crossref] [Google Scholar]
  85. 85.
    Al-Sharif FM, El-Kader SMA, Neamatallah ZA, AlKhateeb AM. 2020.. Weight reduction improves immune system and inflammatory cytokines in obese asthmatic patients. . Afr. Health Sci. 20:(2):897902
    [Crossref] [Google Scholar]
  86. 86.
    Buck MD, Sowell RT, Kaech SM, Pearce EL. 2017.. Metabolic instruction of immunity. . Cell 169:(4):57086
    [Crossref] [Google Scholar]
  87. 87.
    Bacigalupa ZA, Landis MD, Rathmell JC. 2024.. Nutrient inputs and social metabolic control of T cell fate. . Cell Metab. 36:(1):1020
    [Crossref] [Google Scholar]
  88. 88.
    Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, et al. 2017.. Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. . Cancer Metab. 5:(1):1
    [Crossref] [Google Scholar]
  89. 89.
    Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, et al. 2020.. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. . Cell 183:(7):184866.e26
    [Crossref] [Google Scholar]
  90. 90.
    Dyck L, Prendeville H, Raverdeau M, Wilk MM, Loftus RM, et al. 2022.. Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function. . J. Exp. Med. 219:(3):e20210042
    [Crossref] [Google Scholar]
  91. 91.
    Chen I-C, Awasthi D, Hsu C-L, Song M, Chae C-S, et al. 2022.. High-fat diet-induced obesity alters dendritic cell homeostasis by enhancing mitochondrial fatty acid oxidation. . J. Immunol. 209:(1):6976
    [Crossref] [Google Scholar]
  92. 92.
    Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, et al. 2018.. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. . Nat. Immunol. 19:(12):133040
    [Crossref] [Google Scholar]
  93. 93.
    Bader JE, Wolf MM, Lupica-Tondo GL, Madden MZ, Reinfeld BI, et al. 2024.. Obesity induces PD-1 on macrophages to suppress anti-tumour immunity. . Nature 630:(8018):96875
    [Crossref] [Google Scholar]
  94. 94.
    St. Paul M, Ohashi PS. 2020.. The roles of CD8+ T cell subsets in antitumor immunity. . Trends Cell Biol. 30:(9):695704
    [Crossref] [Google Scholar]
  95. 95.
    Ma X, Xiao L, Liu L, Ye L, Su P, et al. 2021.. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. . Cell Metab. 33:(5):100112.e5
    [Crossref] [Google Scholar]
  96. 96.
    Xu S, Chaudhary O, Rodríguez-Morales P, Sun X, Chen D, et al. 2021.. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. . Immunity 54:(7):156177.e7
    [Crossref] [Google Scholar]
  97. 97.
    Manzo T, Prentice BM, Anderson KG, Raman A, Schalck A, et al. 2020.. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. . J. Exp. Med. 217:(8):e20191920
    [Crossref] [Google Scholar]
  98. 98.
    Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, et al. 2017.. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. . Nat. Commun. 8:(1):2122
    [Crossref] [Google Scholar]
  99. 99.
    Cao W, Ramakrishnan R, Tuyrin VA, Veglia F, Condamine T, et al. 2014.. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. . J. Immunol. 192:(6):292031
    [Crossref] [Google Scholar]
  100. 100.
    Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, et al. 2010.. Lipid accumulation and dendritic cell dysfunction in cancer. . Nat. Med. 16:(8):88086
    [Crossref] [Google Scholar]
  101. 101.
    James BR, Tomanek-Chalkley A, Askeland EJ, Kucaba T, Griffith TS, Norian LA. 2012.. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. . J. Immunol. 189:(3):131121
    [Crossref] [Google Scholar]
  102. 102.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. 2003.. Obesity is associated with macrophage accumulation in adipose tissue. . J. Clin. Investig. 112:(12):1796808
    [Crossref] [Google Scholar]
  103. 103.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, et al. 2003.. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. . J. Clin. Investig. 112:(12):182130
    [Crossref] [Google Scholar]
  104. 104.
    Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, et al. 2020.. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. . Cell 182:(4):886900.e17
    [Crossref] [Google Scholar]
  105. 105.
    Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, et al. 2017.. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. . Nature 545:(7655):49599
    [Crossref] [Google Scholar]
  106. 106.
    Qian B-Z, Pollard JW. 2010.. Macrophage diversity enhances tumor progression and metastasis. . Cell 141:(1):3951
    [Crossref] [Google Scholar]
  107. 107.
    Remmerie A, Scott CL. 2018.. Macrophages and lipid metabolism. . Cell Immunol. 330::2742
    [Crossref] [Google Scholar]
  108. 108.
    Luo Q, Zheng N, Jiang L, Wang T, Zhang P, et al. 2020.. Lipid accumulation in macrophages confers protumorigenic polarization and immunity in gastric cancer. . Cancer Sci. 111:(11):400011
    [Crossref] [Google Scholar]
  109. 109.
    Masetti M, Carriero R, Portale F, Marelli G, Morina N, et al. 2021.. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. . J. Exp. Med. 219:(2):e20210564
    [Crossref] [Google Scholar]
  110. 110.
    Fain JN. 2006.. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. . Vitam. Horm. 74::44377
    [Crossref] [Google Scholar]
  111. 111.
    Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, et al. 1998.. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. . J. Clin. Investig. 101:(2):31120
    [Crossref] [Google Scholar]
  112. 112.
    Bastard J-P, Maachi M, van Nhieu JT, Jardel C, Bruckert E, et al. 2002.. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. . J. Clin. Endocrinol. Metab. 87:(5):208489
    [Crossref] [Google Scholar]
  113. 113.
    Wunderlich CM, Ackermann PJ, Ostermann AL, Adams-Quack P, Vogt MC, et al. 2018.. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. . Nat. Commun. 9:(1):1646
    [Crossref] [Google Scholar]
  114. 114.
    Hayashi T, Fujita K, Nojima S, Hayashi Y, Nakano K, et al. 2018.. High-fat diet-induced inflammation accelerates prostate cancer growth via IL6 signaling. . Clin. Cancer Res. 24:(17):430918
    [Crossref] [Google Scholar]
  115. 115.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, et al. 1996.. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. . N. Engl. J. Med. 334:(5):29295
    [Crossref] [Google Scholar]
  116. 116.
    Fernández-Riejos P, Najib S, Santos-Alvarez J, Martín-Romero C, Pérez-Pérez A, et al. 2010.. Role of leptin in the activation of immune cells. . Mediat. Inflamm. 2010::568343
    [Crossref] [Google Scholar]
  117. 117.
    Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, et al. 2016.. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. . Cell Metab. 23:(3):55462
    [Crossref] [Google Scholar]
  118. 118.
    Zhang C, Yue C, Herrmann A, Song J, Egelston C, et al. 2020.. STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. . Cell Metab. 31:(1):14861.e5
    [Crossref] [Google Scholar]
  119. 119.
    Rivadeneira DB, DePeaux K, Wang Y, Kulkarni A, Tabib T, et al. 2019.. Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating T cell metabolism and promote tumor clearance. . Immunity 51:(3):54860.e4
    [Crossref] [Google Scholar]
  120. 120.
    Dudzinski SO, Bader JE, Beckermann KE, Young KL, Hongo R, et al. 2021.. Leptin augments antitumor immunity in obesity by repolarizing tumor-associated macrophages. . J. Immunol. 207:(12):312230
    [Crossref] [Google Scholar]
  121. 121.
    Takahashi JS. 2017.. Transcriptional architecture of the mammalian circadian clock. . Nat. Rev. Genet. 18:(3):16479
    [Crossref] [Google Scholar]
  122. 122.
    Scheiermann C, Kunisaki Y, Frenette PS. 2013.. Circadian control of the immune system. . Nat. Rev. Immunol. 13:(3):19098
    [Crossref] [Google Scholar]
  123. 123.
    Zhang Z, Zeng P, Gao W, Zhou Q, Feng T, Tian X. 2021.. Circadian clock: a regulator of the immunity in cancer. . Cell Commun. Signal. 19:(1):37
    [Crossref] [Google Scholar]
  124. 124.
    Arjona A, Sarkar DK. 2006.. Evidence supporting a circadian control of natural killer cell function. . Brain Behav. Immun. 20:(5):46976
    [Crossref] [Google Scholar]
  125. 125.
    Logan RW, Zhang C, Murugan S, O'Connell S, Levitt D, et al. 2012.. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. . J. Immunol. 188:(6):258391
    [Crossref] [Google Scholar]
  126. 126.
    Wang C, Barnoud C, Cenerenti M, Sun M, Caffa I, et al. 2022.. Dendritic cells direct circadian anti-tumour immune responses. . Nature 614:(7946):13643
    [Crossref] [Google Scholar]
  127. 127.
    Kaneko K, Yamada T, Tsukita S, Takahashi K, Ishigaki Y, et al. 2009.. Obesity alters circadian expressions of molecular clock genes in the brainstem. . Brain Res. 1263::5868
    [Crossref] [Google Scholar]
  128. 128.
    Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, et al. 2007.. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. . Cell Metab. 6:(5):41421
    [Crossref] [Google Scholar]
  129. 129.
    Maury E, Navez B, Brichard SM. 2021.. Circadian clock dysfunction in human omental fat links obesity to metabolic inflammation. . Nat. Commun. 12:(1):2388
    [Crossref] [Google Scholar]
  130. 130.
    Panduro M, Benoist C, Mathis D. 2016.. Tissue Tregs. . Annu. Rev. Immunol. 34::60933
    [Crossref] [Google Scholar]
  131. 131.
    Campbell C, Rudensky A. 2020.. Roles of regulatory T cells in tissue pathophysiology and metabolism. . Cell Metab. 31:(1):1825
    [Crossref] [Google Scholar]
  132. 132.
    Han RT, Kim RD, Molofsky AV, Liddelow SA. 2021.. Astrocyte-immune cell interactions in physiology and pathology. . Immunity 54:(2):21124
    [Crossref] [Google Scholar]
  133. 133.
    Boothby IC, Cohen JN, Rosenblum MD. 2020.. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. . Sci. Immunol. 5:(47):eaaz9631
    [Crossref] [Google Scholar]
  134. 134.
    Mamuladze T, Kipnis J. 2023.. Type 2 immunity in the brain and brain borders. . Cell. Mol. Immunol. 20:(11):129099
    [Crossref] [Google Scholar]
  135. 135.
    Hotamisligil GS, Shargill NS, Spiegelman BM. 1993.. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. . Science 259:(5091):8791
    [Crossref] [Google Scholar]
  136. 136.
    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. 2015.. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. . Nature 389:(6651):61014
    [Crossref] [Google Scholar]
  137. 137.
    Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, et al. 2015.. A central role for JNK in obesity and insulin resistance. . Nature 420:(6913):33336
    [Crossref] [Google Scholar]
  138. 138.
    Lumeng CN, Bodzin JL, Saltiel AR. 2007.. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. . J. Clin. Investig. 117:(1):17584
    [Crossref] [Google Scholar]
  139. 139.
    Olefsky JM, Glass CK. 2010.. Macrophages, inflammation, and insulin resistance. . Annu. Rev. Physiol. 72::21946
    [Crossref] [Google Scholar]
  140. 140.
    Vandanmagsar B, Youm Y-H, Ravussin A, Galgani JE, Stadler K, et al. 2011.. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. . Nat. Med. 17:(2):17988
    [Crossref] [Google Scholar]
  141. 141.
    Wen H, Gris D, Lei Y, Jha S, Zhang L, et al. 2011.. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. . Nat. Immunol. 12::40815
    [Crossref] [Google Scholar]
  142. 142.
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, et al. 2009.. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. . Nat. Med. 15:(8):93039
    [Crossref] [Google Scholar]
  143. 143.
    Winer S, Chan Y, Paltser G, Truong D, Tsui H, et al. 2009.. Normalization of obesity-associated insulin resistance through immunotherapy. . Nat. Med. 15:(8):92129
    [Crossref] [Google Scholar]
  144. 144.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, et al. 2009.. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. . Nat. Med. 15:(8):91420
    [Crossref] [Google Scholar]
  145. 145.
    Sugii S, Olson P, Sears DD, Saberi M, Atkins AR, et al. 2009.. PPARγ activation in adipocytes is sufficient for systemic insulin sensitization. . PNAS 106:(52):225049
    [Crossref] [Google Scholar]
  146. 146.
    Rajbhandari P, Thomas BJ, Feng A-C, Hong C, Wang J, et al. 2017.. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. . Cell 172::21833.e17
    [Crossref] [Google Scholar]
  147. 147.
    Beppu LY, Mooli R, Qu X, Marrero GJ, Finley CA, et al. 2020.. Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. . JCI Insight 6:(3):e140644
    [Crossref] [Google Scholar]
  148. 148.
    Ballesteros-Pomar M, Calleja S, Díez-Rodríguez R, Calleja-Fernández A, Vidal-Casariego A, et al. 2014.. Inflammatory status is different in relationship to insulin resistance in severely obese people and changes after bariatric surgery or diet-induced weight loss. . Exp. Clin. Endocrinol. Diabetes 122:(10):59296
    [Crossref] [Google Scholar]
  149. 149.
    Villarreal-Calderón JR, Cuéllar RX, Ramos-González MR, Rubio-Infante N, Castillo EC, et al. 2019.. Interplay between the adaptive immune system and insulin resistance in weight loss induced by bariatric surgery. . Oxidative Med. Cell. Longev. 2019::3940739
    [Crossref] [Google Scholar]
  150. 150.
    Rao SR. 2012.. Inflammatory markers and bariatric surgery: a meta-analysis. . Inflamm. Res. 61:(8):789807
    [Crossref] [Google Scholar]
  151. 151.
    Yusta B, Baggio LL, Koehler J, Holland D, Cao X, et al. 2015.. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. . Diabetes 64:(7):253749
    [Crossref] [Google Scholar]
  152. 152.
    Wong CK, Yusta B, Koehler JA, Baggio LL, McLean BA, et al. 2022.. Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation. . Cell Metab. 34:(10):151431.e7
    [Crossref] [Google Scholar]
  153. 153.
    Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, et al. 2024.. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. . Cell Metab. 36:(1):130143.e5
    [Crossref] [Google Scholar]
  154. 154.
    Misumi I, Starmer J, Uchimura T, Beck MA, Magnuson T, Whitmire JK. 2019.. Obesity expands a distinct population of T cells in adipose tissue and increases vulnerability to infection. . Cell Rep. 27:(2):51424.e5
    [Crossref] [Google Scholar]
  155. 155.
    Han S-J, Zaretsky AG, Andrade-Oliveira V, Collins N, Dzutsev A, et al. 2017.. White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. . Immunity 47:(6):115468.e6
    [Crossref] [Google Scholar]
  156. 156.
    Caslin HL, Cottam MA, Piñon JM, Boney LY, Hasty AH. 2023.. Weight cycling induces innate immune memory in adipose tissue macrophages. . Front. Immunol. 13::984859
    [Crossref] [Google Scholar]
  157. 157.
    Cottam MA, Caslin HL, Winn NC, Hasty AH. 2022.. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. . Nat. Commun. 13:(1):2950
    [Crossref] [Google Scholar]
  158. 158.
    Hata M, Andriessen EMMA, Hata M, Diaz-Marin R, Fournier F, et al. 2023.. Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. . Science 379:(6627):4562
    [Crossref] [Google Scholar]
  159. 159.
    Liu X, Jiang X, Hu J, Ding M, Lee SK, et al. 2024.. Exercise attenuates high-fat diet-induced PVAT dysfunction through improved inflammatory response and BMP4-regulated adipose tissue browning. . Front. Nutr. 11::1393343
    [Crossref] [Google Scholar]
  160. 160.
    Feng L, Huang F, Ma Y, Tang J. 2021.. The effect of high-fat diet and exercise intervention on the TNF-α level in rat spleen. . Front. Immunol. 12::671167
    [Crossref] [Google Scholar]
  161. 161.
    Baltgalvis KA, Berger FG, Peña MMO, Davis JM, Carson JA. 2009.. The interaction of a high-fat diet and regular moderate intensity exercise on intestinal polyp development in ApcMin/+ mice. . Cancer Prev. Res. 2:(7):64149
    [Crossref] [Google Scholar]
  162. 162.
    Smith GI, Mittendorfer B, Klein S. 2019.. Metabolically healthy obesity: facts and fantasies. . J. Clin. Investig. 129:(10):397889
    [Crossref] [Google Scholar]
  163. 163.
    Tian XY, Ganeshan K, Hong C, Nguyen KD, Qiu Y, et al. 2016.. Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. . Cell Metab. 23:(1):16578
    [Crossref] [Google Scholar]
  164. 164.
    Hildreth AD, Ma F, Wong YY, Sun R, Pellegrini M, O'Sullivan TE. 2021.. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. . Nat. Immunol. 22:(5):63953
    [Crossref] [Google Scholar]
  165. 165.
    Poon MML, Caron DP, Wang Z, Wells SB, Chen D, et al. 2023.. Tissue adaptation and clonal segregation of human memory T cells in barrier sites. . Nat. Immunol. 24:(2):30919
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051222-015350
Loading
/content/journals/10.1146/annurev-pathmechdis-051222-015350
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error