1932

Abstract

This review examines the roles of the choroid plexus (ChP) in central nervous system (CNS) pathology, emphasizing its involvement in disease mechanisms and therapeutic potential. Structural changes in the human ChP have been reported across various diseases in case reports and descriptive work, but studies have yet to pin down the physiological relevance of these changes. We highlight primary pathologies of the ChP, as well as their significance in neurologic disorders, including stroke, hydrocephalus, infectious diseases, and neurodegeneration. Synthesizing recent research, this review positions the ChP as a critical player in CNS homeostasis and pathology, advocating for enhanced focus on its mechanisms to unlock new diagnostic and treatment strategies and ultimately improve patient outcomes in CNS diseases. Whether acting as a principal driver of disease, a gateway for pathogens into the CNS, or an orchestrator of neuroimmune processes, the ChP holds tremendous promise as a therapeutic target to attenuate a multitude of CNS conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051222-114051
2025-01-24
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-051222-114051.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051222-114051&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cushing H. 1914.. Studies on the cerebro-spinal fluid: I. Introduction. . J. Med. Res. 31:(1):119
    [Google Scholar]
  2. 2.
    Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. 2023.. The choroid plexus: a missing link in our understanding of brain development and function. . Physiol. Rev. 103:(1):91956
    [Crossref] [Google Scholar]
  3. 3.
    Johansson PA. 2014.. The choroid plexuses and their impact on developmental neurogenesis. . Front. Neurosci. 8::340
    [Crossref] [Google Scholar]
  4. 4.
    Damkier HH, Brown PD, Praetorius J. 2013.. Cerebrospinal fluid secretion by the choroid plexus. . Physiol. Rev. 93:(4):184792
    [Crossref] [Google Scholar]
  5. 5.
    Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. 2018.. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. . J. Physiol. 596:(23):572356
    [Crossref] [Google Scholar]
  6. 6.
    Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. 2018.. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. . Acta Neuropathol. 135:(3):33761
    [Crossref] [Google Scholar]
  7. 7.
    Hablitz LM, Nedergaard M. 2021.. The glymphatic system: a novel component of fundamental neurobiology. . J. Neurosci. 41:(37):7698711
    [Crossref] [Google Scholar]
  8. 8.
    Gaetani L, Paolini Paoletti F, Bellomo G, Mancini A, Simoni S, et al. 2020.. CSF and blood biomarkers in neuroinflammatory and neurodegenerative diseases: implications for treatment. . Trends Pharmacol. Sci. 41:(12):102337
    [Crossref] [Google Scholar]
  9. 9.
    Fame RM, Lehtinen MK. 2020.. Emergence and developmental roles of the cerebrospinal fluid system. . Dev. Cell 52:(3):26175
    [Crossref] [Google Scholar]
  10. 10.
    Nutter CA, Kidd BM, Carter HA, Hamel JI, Mackie PM, et al. 2023.. Choroid plexus mis-splicing and altered cerebrospinal fluid composition in myotonic dystrophy type 1. . Brain J. Neurol. 146:(10):421732
    [Crossref] [Google Scholar]
  11. 11.
    Lun MP, Monuki ES, Lehtinen MK. 2015.. Development and functions of the choroid plexus–cerebrospinal fluid system. . Nat. Rev. Neurosci. 16:(8):44557
    [Crossref] [Google Scholar]
  12. 12.
    Chheda M, Wen P. 2024.. Uncommon brain tumors. . In UpToDate, ed. H Shih, J de Groot, G Tung, A Eichler . Philadelphia:: Wolters Kluwer. https://www.uptodate.com/contents/uncommon-brain-tumors
    [Google Scholar]
  13. 13.
    Yang R, Yan H, Dewan MC, Tailor JK, Santisukwongchote S, et al. 2021.. Giant choroid plexus cysts with calvarial erosion: a case report and literature review. . Childs Nerv. Syst. 37:(7):238185
    [Crossref] [Google Scholar]
  14. 14.
    Anei R, Hayashi Y, Hiroshima S, Mitsui N, Orimoto R, et al. 2011.. Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. . Neurol. Med. Chir. 51:(6):43741
    [Crossref] [Google Scholar]
  15. 15.
    Takaoka K, Cioffi G, Waite KA, Finlay JL, Landi D, et al. 2023.. Incidence and survival of choroid plexus tumors in the United States. . Neurooncol. Pract. 10:(1):4149
    [Google Scholar]
  16. 16.
    Sun MZ, Oh MC, Ivan ME, Kaur G, Safaee M, et al. 2014.. Current management of choroid plexus carcinomas. . Neurosurg. Rev. 37:(2):17992
    [Crossref] [Google Scholar]
  17. 17.
    Prayson R, Cohen M. 2000.. Choroid plexus tumors. . In Practical Differential Diagnosis in Surgical Neuropathology, pp. 8587. Totowa, NJ:: Humana Press
    [Google Scholar]
  18. 18.
    Ruiz-Garcia H, Huayllani MT, Incontri D, Whaley JJ, Marenco-Hillembrand L, et al. 2020.. Intraventricular choroid plexus tumors: clinical characteristics and impact of current management on survival. . J. Neurooncol. 149:(2):28392
    [Crossref] [Google Scholar]
  19. 19.
    Berger C, Thiesse P, Lellouch-Tubiana A, Kalifa C, Pierre-Kahn A, Bouffet E. 1998.. Choroid plexus carcinomas in childhood: clinical features and prognostic factors. . Neurosurgery 42:(3):47075
    [Crossref] [Google Scholar]
  20. 20.
    Tabori U, Shlien A, Baskin B, Levitt S, Ray P, et al. 2010.. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. . J. Clin. Oncol. 28:(12):19952001
    [Crossref] [Google Scholar]
  21. 21.
    Tong Y, Merino D, Nimmervoll B, Gupta K, Wang Y-D, et al. 2015.. Cross-species genomics identifies TAF12, NFYC, and RAD54L as choroid plexus carcinoma oncogenes. . Cancer Cell 27:(5):71227
    [Crossref] [Google Scholar]
  22. 22.
    Wang J, Merino DM, Light N, Murphy BL, Wang Y-D, et al. 2019.. Myc and loss of p53 cooperate to drive formation of choroid plexus carcinoma. . Cancer Res. 79:(9):220819
    [Crossref] [Google Scholar]
  23. 23.
    Abedalthagafi MS, Wu MP, Merrill PH, Du Z, Woo T, et al. 2016.. Decreased FOXJ1 expression and its ciliogenesis programme in aggressive ependymoma and choroid plexus tumours. . J. Pathol. 238:(4):58497
    [Crossref] [Google Scholar]
  24. 24.
    Li L, Grausam KB, Wang J, Lun MP, Ohli J, et al. 2016.. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. . Nat. Cell Biol. 18:(4):41830
    [Crossref] [Google Scholar]
  25. 25.
    Li Q, Han Z, Singh N, Terré B, Fame RM, et al. 2022.. Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. . Cell Death Differ. 29:(8):1596610
    [Crossref] [Google Scholar]
  26. 26.
    Warf BC. 2013.. The impact of combined endoscopic third ventriculostomy and choroid plexus cauterization on the management of pediatric hydrocephalus in developing countries. . World Neurosurg. 79:(2):S23.e1315
    [Crossref] [Google Scholar]
  27. 27.
    Sakata-Haga H, Sawada K, Ohnishi T, Fukui Y. 2004.. Hydrocephalus following prenatal exposure to ethanol. . Acta Neuropathol. 108:(5):39398
    [Crossref] [Google Scholar]
  28. 28.
    Karimy JK, Reeves BC, Damisah E, Duy PQ, Antwi P, et al. 2020.. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. . Nat. Rev. Neurol. 16:(5):28596
    [Crossref] [Google Scholar]
  29. 29.
    Ferrand-Drake M. 2001.. Cell death in the choroid plexus following transient forebrain global ischemia in the rat. . Microsc. Res. Tech. 52:(1):13036
    [Crossref] [Google Scholar]
  30. 30.
    Ramagiri S, Pan S, DeFreitas D, Yang PH, Raval DK, et al. 2022.. Deferoxamine prevents neonatal posthemorrhagic hydrocephalus through choroid plexus-mediated iron clearance. . Transl. Stroke Res. 14::70422
    [Crossref] [Google Scholar]
  31. 31.
    Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, et al. 2005.. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. . Dev. Camb. Engl. 132:(23):532939
    [Google Scholar]
  32. 32.
    Banizs B, Komlosi P, Bevensee MO, Schwiebert EM, Bell PD, Yoder BK. 2007.. Altered pHi regulation and Na+/HCO3 transporter activity in choroid plexus of cilia-defective Tg737orpk mutant mouse. . Am. J. Physiol. Cell Physiol. 292:(4):C140916
    [Crossref] [Google Scholar]
  33. 33.
    Swiderski RE, Agassandian K, Ross JL, Bugge K, Cassell MD, Yeaman C. 2012.. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. . Fluids Barriers CNS 9:(1):22
    [Crossref] [Google Scholar]
  34. 34.
    Zhao X, Sun G, Zhang H, Ting S-M, Song S, et al. 2014.. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. . Transl. Stroke Res. 5:(5):55461
    [Crossref] [Google Scholar]
  35. 35.
    Shim JW, Territo PR, Simpson S, Watson JC, Jiang L, et al. 2019.. Hydrocephalus in a rat model of Meckel Gruber syndrome with a TMEM67 mutation. . Sci. Rep. 9:(1):1069
    [Crossref] [Google Scholar]
  36. 36.
    Hochstetler AE, Smith HM, Preston DC, Reed MM, Territo PR, et al. 2020.. TRPV4 antagonists ameliorate ventriculomegaly in a rat model of hydrocephalus. . JCI Insight 5:(18):e137646
    [Crossref] [Google Scholar]
  37. 37.
    Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, et al. 2017.. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. . Nat. Med. 23:(8):9971003
    [Crossref] [Google Scholar]
  38. 38.
    Shen D, Ye X, Li J, Hao X, Jin L, et al. 2022.. Metformin preserves VE-cadherin in choroid plexus and attenuates hydrocephalus via VEGF/VEGFR2/p-Src in an intraventricular hemorrhage rat model. . Int. J. Mol. Sci. 23:(15):8552
    [Crossref] [Google Scholar]
  39. 39.
    Robert SM, Reeves BC, Kiziltug E, Duy PQ, Karimy JK, et al. 2023.. The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus. . Cell 186:(4):76485.e21
    [Crossref] [Google Scholar]
  40. 40.
    Sadegh C, Xu H, Sutin J, Fatou B, Gupta S, et al. 2023.. Choroid plexus-targeted NKCC1 overexpression to treat post-hemorrhagic hydrocephalus. . Neuron 111:(10):1591608.e4
    [Crossref] [Google Scholar]
  41. 41.
    Wang C, Wang X, Tan C, Wang Y, Tang Z, et al. 2021.. Novel therapeutics for hydrocephalus: insights from animal models. . CNS Neurosci. Ther. 27:(9):101222
    [Crossref] [Google Scholar]
  42. 42.
    Desmond ME, Jacobson AG. 1977.. Embryonic brain enlargement requires cerebrospinal fluid pressure. . Dev. Biol. 57:(1):18898
    [Crossref] [Google Scholar]
  43. 43.
    Shen MD. 2018.. Cerebrospinal fluid and the early brain development of autism. . J. Neurodev. Disord. 10:(1):39
    [Crossref] [Google Scholar]
  44. 44.
    Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, et al. 2017.. Early brain development in infants at high risk for autism spectrum disorder. . Nature 542:(7641):34851
    [Crossref] [Google Scholar]
  45. 45.
    Gato Á, Moro JA, Alonso MI, Bueno D, De La Mano A, Martín C. 2005.. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. . Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 284A:(1):47584
    [Crossref] [Google Scholar]
  46. 46.
    Kaiser K, Gyllborg D, Procházka J, Sala A, Kompaníková P, et al. 2019.. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. . Nat. Commun. 10::1498
    [Crossref] [Google Scholar]
  47. 47.
    Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, et al. 2011.. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. . Neuron 69:(5):893905
    [Crossref] [Google Scholar]
  48. 48.
    Bitanihirwe BKY, Lizano P, Woo T-UW. 2022.. Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders. . Mol. Psychiatry 27:(9):357382
    [Crossref] [Google Scholar]
  49. 49.
    Cui J, Shipley FB, Shannon ML, Alturkistani O, Dani N, et al. 2020.. Inflammation of the embryonic choroid plexus barrier following maternal immune activation. . Dev. Cell 55:(5):61728.e6
    [Crossref] [Google Scholar]
  50. 50.
    Toll SJ, Qiu F, Huang Y, Habgood MD, Dziegielewska KM, et al. 2021.. Entry of antiepileptic drugs (valproate and lamotrigine) into the developing rat brain. . F1000Research 10::384
    [Crossref] [Google Scholar]
  51. 51.
    Huang Y, Qiu F, Habgood M, Nie S, Dziegielewska K, Saunders N. 2022.. Entry of the antipsychotic drug, olanzapine, into the developing rat brain in mono- and combination therapies. . F1000Research 11::1417
    [Crossref] [Google Scholar]
  52. 52.
    Chiou SY-S, Kysenius K, Huang Y, Habgood MD, Koehn LM, et al. 2021.. Lithium administered to pregnant, lactating and neonatal rats: entry into developing brain. . Fluids Barriers CNS 18:(1):57
    [Crossref] [Google Scholar]
  53. 53.
    Courtney Y, Head JP, Yimer ED, Dani N, Shipley FB, et al. 2024.. A choroid plexus apocrine secretion mechanism shapes CSF proteome and embryonic brain development. . bioRxiv 2024.01.08.574486. https://doi.org/10.1101/2024.01.08.574486
  54. 54.
    Crăciun C, Checiu I, Crăciun V. 1989.. Ultrastructural changes in the mouse fetal choroid plexuses following chronic maternal alcoholization. . Morphol. Embryol. 35:(3):22125
    [Google Scholar]
  55. 55.
    Tirapelli LF, Tamega OJ, Petroni S. 2000.. Ultrastructural alterations of choroid plexuses of lateral ventricles of rats (Rattus norvegicus) submitted to experimental chronic alcoholism. . Arq. Neuropsiquiatr. 58:(1):2531
    [Crossref] [Google Scholar]
  56. 56.
    Nixon PF, Jordan L, Zimitat C, Rose SE, Zelaya F. 2008.. Choroid plexus dysfunction: the initial event in the pathogenesis of Wernicke's encephalopathy and ethanol intoxication. . Alcohol. Clin. Exp. Res. 32:(8):151323
    [Crossref] [Google Scholar]
  57. 57.
    Gillardon F, Lenz C, Kuschinsky W, Zimmermann M. 1996.. Evidence for apoptotic cell death in the choroid plexus following focal cerebral ischemia. . Neurosci. Lett. 207:(2):11316
    [Crossref] [Google Scholar]
  58. 58.
    Johanson CE, Palm DE, Primiano MJ, McMillan PN, Chan P, et al. 2000.. Choroid plexus recovery after transient forebrain ischemia: role of growth factors and other repair mechanisms. . Cell. Mol. Neurobiol. 20:(2):197216
    [Crossref] [Google Scholar]
  59. 59.
    Akdemir G, Kaymaz F, Gursoy-Özdemir Y, Akalan N, Akdemir ES. 2016.. The time course changes in expression of aquaporin 4 and aquaporin 1 following global cerebral ischemic edema in rat. . Surg. Neurol. Int. 7::4
    [Crossref] [Google Scholar]
  60. 60.
    Ge R, Tornero D, Hirota M, Monni E, Laterza C, et al. 2017.. Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. . J. Neuroinflamm. 14:(1):153
    [Crossref] [Google Scholar]
  61. 61.
    Matsumoto N, Taguchi A, Kitayama H, Watanabe Y, Ohta M, et al. 2010.. Transplantation of cultured choroid plexus epithelial cells via cerebrospinal fluid shows prominent neuroprotective effects against acute ischemic brain injury in the rat. . Neurosci. Lett. 469:(3):28388
    [Crossref] [Google Scholar]
  62. 62.
    Johanson CE, Vío K, Guerra M, Salazar P, Jara MC, et al. 2020.. Organ culture and grafting of choroid plexus into the ventricular CSF of normal and hydrocephalic HTx rats. . J. Neuropathol. Exp. Neurol. 79:(6):62640
    [Crossref] [Google Scholar]
  63. 63.
    Ballabh P. 2010.. Intraventricular hemorrhage in premature infants: mechanism of disease. . Pediatr. Res. 67:(1):18
    [Crossref] [Google Scholar]
  64. 64.
    Atienza-Navarro I, Alves-Martinez P, Lubian-Lopez S, Garcia-Alloza M. 2020.. Germinal matrix-intraventricular hemorrhage of the preterm newborn and preclinical models: inflammatory considerations. . Int. J. Mol. Sci. 21:(21):8343
    [Crossref] [Google Scholar]
  65. 65.
    Solár P, Klusáková I, Jančálek R, Dubový P, Joukal M. 2020.. Subarachnoid hemorrhage induces dynamic immune cell reactions in the choroid plexus. . Front. Cell. Neurosci. 14::18
    [Crossref] [Google Scholar]
  66. 66.
    Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G. 2019.. Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. . CNS Neurosci. Ther. 25:(10):113441
    [Crossref] [Google Scholar]
  67. 67.
    Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. 2020.. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. . Fluids Barriers CNS 17::35
    [Crossref] [Google Scholar]
  68. 68.
    Gram M, Sveinsdottir S, Cinthio M, Sveinsdottir K, Hansson SR, et al. 2014.. Extracellular hemoglobin—mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. . J. Neuroinflamm. 11::200
    [Crossref] [Google Scholar]
  69. 69.
    Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, et al. 2024.. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. . Front. Neurol. 14::1287559
    [Crossref] [Google Scholar]
  70. 70.
    Washington-Hughes CL, Roy S, Seneviratne HK, Karuppagounder SS, Morel Y, et al. 2023.. Atp7b-dependent choroid plexus dysfunction causes transient copper deficit and metabolic changes in the developing mouse brain. . PLOS Genet. 19:(1):e1010558
    [Crossref] [Google Scholar]
  71. 71.
    Rouault TA, Zhang D-L, Jeong SY. 2009.. Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. . Metab. Brain Dis. 24:(4):67384
    [Crossref] [Google Scholar]
  72. 72.
    Schmitt C, Strazielle N, Richaud P, Bouron A, Ghersi-Egea J-F. 2011.. Active transport at the blood-CSF barrier contributes to manganese influx into the brain. . J. Neurochem. 117:(4):74756
    [Google Scholar]
  73. 73.
    Song H, Zheng G, Liu Y, Shen X-F, Zhao Z-H, et al. 2016.. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation. . Toxicol. Appl. Pharmacol. 297::111
    [Crossref] [Google Scholar]
  74. 74.
    He B, Wang L, Li S, Cao F, Wu L, et al. 2022.. Brain copper clearance by the blood-cerebrospinal fluid-barrier: effects of lead exposure. . Neurosci. Lett. 768::136365
    [Crossref] [Google Scholar]
  75. 75.
    Bates CA, Fu S, Ysselstein D, Rochet J-C, Zheng W. 2015.. Expression and transport of α-synuclein at the blood-cerebrospinal fluid barrier and effects of manganese exposure. . ADMET DMPK 3:(1):1533
    [Crossref] [Google Scholar]
  76. 76.
    Li GJ, Choi B-S, Wang X, Liu J, Waalkes MP, Zheng W. 2006.. Molecular mechanism of distorted iron regulation in the blood-CSF barrier and regional blood-brain barrier following in vivo subchronic manganese exposure. . Neurotoxicology 27:(5):73744
    [Crossref] [Google Scholar]
  77. 77.
    Francis Stuart SD, Villalobos AR. 2021.. GSH and zinc supplementation attenuate cadmium-induced cellular stress and stimulation of choline uptake in cultured neonatal rat choroid plexus epithelia. . Int. J. Mol. Sci. 22:(16):8857
    [Crossref] [Google Scholar]
  78. 78.
    Gómez-Arnaiz S, Tate RJ, Grant MH. 2022.. Cobalt neurotoxicity: transcriptional effect of elevated cobalt blood levels in the rodent brain. . Toxics 10:(2):59
    [Crossref] [Google Scholar]
  79. 79.
    Lauer AN, Scholtysik R, Beineke A, Baums CG, Klose K, et al. 2021.. A comparative transcriptome analysis of human and porcine choroid plexus cells in response to Streptococcus suis serotype 2 infection points to a role of hypoxia. . Front. Cell. Infect. Microbiol. 11::639620
    [Crossref] [Google Scholar]
  80. 80.
    Schwerk C, Rybarczyk K, Essmann F, Seibt A, Mölleken M-L, et al. 2010.. TNFα induces choroid plexus epithelial cell barrier alterations by apoptotic and nonapoptotic mechanisms. . J. Biomed. Biotechnol. 2010::307231
    [Crossref] [Google Scholar]
  81. 81.
    Iovino F, Orihuela CJ, Moorlag HE, Molema G, Bijlsma JJE. 2013.. Interactions between blood-borne Streptococcus pneumoniae and the blood-brain barrier preceding meningitis. . PLOS ONE 8:(7):e68408
    [Crossref] [Google Scholar]
  82. 82.
    Wegele C, Stump-Guthier C, Moroniak S, Weiss C, Rohde M, et al. 2020.. Non-typeable Haemophilus influenzae invade choroid plexus epithelial cells in a polar fashion. . Int. J. Mol. Sci. 21:(16):E5739
    [Crossref] [Google Scholar]
  83. 83.
    Herold R, Sünwoldt G, Stump-Guthier C, Weiss C, Ishikawa H, et al. 2021.. Invasion of the choroid plexus epithelium by Neisseria meningitidis is differently mediated by Arp2/3 signaling and possibly by dynamin dependent on the presence of the capsule. . Pathog. Dis. 79:(7):ftab042
    [Crossref] [Google Scholar]
  84. 84.
    Banovic F, Schulze S, Abu Mraheil M, Hain T, Chakraborty T, et al. 2022.. Different involvement of vimentin during invasion by Listeria monocytogenes at the blood-brain and the blood-cerebrospinal fluid barriers in vitro. . Int. J. Mol. Sci. 23:(21):12908
    [Crossref] [Google Scholar]
  85. 85.
    Sánchez-Garibay C, Salinas-Lara C, Gómez-López MA, Soto-Rojas LO, Castillón-Benavides NK, et al. 2022.. Mycobacterium tuberculosis infection induces BCSFB disruption but no BBB disruption in vivo: implications in the pathophysiology of tuberculous meningitis. . Int. J. Mol. Sci. 23:(12):6436
    [Crossref] [Google Scholar]
  86. 86.
    Nogueira BMF, Krishnan S, Barreto-Duarte B, Araújo-Pereira M, Queiroz ATL, et al. 2022.. Diagnostic biomarkers for active tuberculosis: progress and challenges. . EMBO Mol. Med. 14:(12):e14088
    [Crossref] [Google Scholar]
  87. 87.
    Casselli T, Divan A, Vomhof-DeKrey EE, Tourand Y, Pecoraro HL, Brissette CA. 2021.. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. . PLOS Pathog. 17:(2):e1009256
    [Crossref] [Google Scholar]
  88. 88.
    Thompson D, Sorenson J, Greenmyer J, Brissette CA, Watt JA. 2020.. The Lyme disease bacterium, Borrelia burgdorferi, stimulates an inflammatory response in human choroid plexus epithelial cells. . PLOS ONE 15:(7):e0234993
    [Crossref] [Google Scholar]
  89. 89.
    Thompson D, Brissette CA, Watt JA. 2022.. The choroid plexus and its role in the pathogenesis of neurological infections. . Fluids Barriers CNS 19::75
    [Crossref] [Google Scholar]
  90. 90.
    Corbridge SM, Rice RC, Bean LA, Wüthrich C, Dang X, et al. 2019.. JC virus infection of meningeal and choroid plexus cells in patients with progressive multifocal leukoencephalopathy. . J. Neurovirol. 25:(4):52024
    [Crossref] [Google Scholar]
  91. 91.
    O'Hara BA, Morris-Love J, Gee GV, Haley SA, Atwood WJ. 2020.. JC virus infected choroid plexus epithelial cells produce extracellular vesicles that infect glial cells independently of the virus attachment receptor. . PLOS Pathog. 16:(3):e1008371
    [Crossref] [Google Scholar]
  92. 92.
    Peron JPS. 2023.. Direct and indirect impact of SARS-CoV-2 on the brain. . Hum. Genet. 142::131726
    [Crossref] [Google Scholar]
  93. 93.
    Fuchs V, Kutza M, Wischnewski S, Deigendesch N, Lutz L, et al. 2021.. Presence of SARS-CoV-2 transcripts in the choroid plexus of MS and non-MS patients with COVID-19. . Neurol. Neuroimmunol. Neuroinflamm. 8:(2):e957
    [Crossref] [Google Scholar]
  94. 94.
    Massimo M, Barelli C, Moreno C, Collesi C, Holloway RK, et al. 2023.. Haemorrhage of human foetal cortex associated with SARS-CoV-2 infection. . Brain 146::117585
    [Crossref] [Google Scholar]
  95. 95.
    Chen R, Wang K, Yu J, Howard D, French L, et al. 2020.. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. . Front. Neurol. 11::573095
    [Crossref] [Google Scholar]
  96. 96.
    Yang AC, Kern F, Losada PM, Agam MR, Maat CA, et al. 2021.. Dysregulation of brain and choroid plexus cell types in severe COVID-19. . Nature 595:(7868):56571
    [Crossref] [Google Scholar]
  97. 97.
    Fullard JF, Lee H-C, Voloudakis G, Suo S, Javidfar B, et al. 2021.. Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19. . Genome Med. 13:(1):118
    [Crossref] [Google Scholar]
  98. 98.
    Pellegrini L, Albecka A, Mallery DL, Kellner MJ, Paul D, et al. 2020.. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. . Cell Stem Cell 27:(6):95161.e5
    [Crossref] [Google Scholar]
  99. 99.
    McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, et al. 2023.. Fetal brain vulnerability to SARS-CoV-2 infection. . Brain Behav. Immun. 112::188205
    [Crossref] [Google Scholar]
  100. 100.
    Das D, Podder S. 2022.. Deregulation of ceRNA networks in frontal cortex and choroid plexus of brain during SARS-CoV-2 infection aggravates neurological manifestations: an insight from bulk and single-cell transcriptomic analyses. . Adv. Biol. 6:(8):e2101310
    [Crossref] [Google Scholar]
  101. 101.
    Castanares-Zapatero D, Chalon P, Kohn L, Dauvrin M, Detollenaere J, et al. 2022.. Pathophysiology and mechanism of long COVID: a comprehensive review. . Ann. Med. 54:(1):147387
    [Crossref] [Google Scholar]
  102. 102.
    Suzzi S, Tsitsou-Kampeli A, Schwartz M. 2023.. The type I interferon antiviral response in the choroid plexus and the cognitive risk in COVID-19. . Nat. Immunol. 24:(2):22024
    [Crossref] [Google Scholar]
  103. 103.
    Narayan V, Shivapurkar N, Baraniuk JN. 2020.. Informatics inference of exercise-induced modulation of brain pathways based on cerebrospinal fluid micro-RNAs in myalgic encephalomyelitis/chronic fatigue syndrome. . Netw. Syst. Med. 3:(1):14258
    [Crossref] [Google Scholar]
  104. 104.
    Wolburg H, Mogk S, Acker S, Frey C, Meinert M, et al. 2012.. Late stage infection in sleeping sickness. . PLOS ONE 7:(3):e34304
    [Crossref] [Google Scholar]
  105. 105.
    Speidel A, Theile M, Pfeiffer L, Herrmann A, Figarella K, et al. 2022.. Transmigration of Trypanosoma brucei across an in vitro blood-cerebrospinal fluid barrier. . iScience 25:(4):104014
    [Crossref] [Google Scholar]
  106. 106.
    Falangola MF, Petito CK. 1993.. Choroid plexus infection in cerebral toxoplasmosis in AIDS patients. . Neurology 43:(10):203540
    [Crossref] [Google Scholar]
  107. 107.
    Figueiredo CA, Steffen J, Morton L, Arumugam S, Liesenfeld O, et al. 2022.. Immune response and pathogen invasion at the choroid plexus in the onset of cerebral toxoplasmosis. . J. Neuroinflamm. 19:(1):17
    [Crossref] [Google Scholar]
  108. 108.
    Grano FG, Silva JES, Melo GD, Machado GF. 2019.. Leishmania hide-and-seek: parasite amastigotes in the choroid plexus of a dog with neurological signs in an endemic municipality in Brazil. . Vet. Parasitol. Reg. Stud. Rep. 17::100291
    [Google Scholar]
  109. 109.
    Melo GD, Silva JES, Grano FG, Souza MS, Machado GF. 2015.. Leishmania infection and neuroinflammation: specific chemokine profile and absence of parasites in the brain of naturally-infected dogs. . J. Neuroimmunol. 289::2129
    [Crossref] [Google Scholar]
  110. 110.
    Graciela Agar CH, Orozco Rosalba V, Macias Ivan C, Agnes F, Juan Luis GA, José Luis SH. 2009.. Cryptococcal choroid plexitis an uncommon fungal disease. Case report and review. . Can. J. Neurol. Sci. 36:(1):11722
    [Crossref] [Google Scholar]
  111. 111.
    O'Connor KP, Pelargos PE, Milton CK, Peterson JEG, Bohnstedt B. 2020.. Cryptococcal choroid plexitis and non-communicating hydrocephalus. . Cureus 12:(6):e8512
    [Google Scholar]
  112. 112.
    Pisa D, Alonso R, Rábano A, Rodal I, Carrasco L. 2015.. Different brain regions are infected with fungi in Alzheimer's disease. . Sci. Rep. 5::15015
    [Crossref] [Google Scholar]
  113. 113.
    Quan N, Stern EL, Whiteside MB, Herkenham M. 1999.. Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. . J. Neuroimmunol. 93:(1):7280
    [Crossref] [Google Scholar]
  114. 114.
    Baruch K, Schwartz M. 2013.. CNS-specific T cells shape brain function via the choroid plexus. . Brain Behav. Immun. 34::1116
    [Crossref] [Google Scholar]
  115. 115.
    Xu H, Lotfy P, Gelb S, Pragana A, Hehnly C, et al. 2024.. The choroid plexus synergizes with immune cells during neuroinflammation. . Cell 187::494663
    [Crossref] [Google Scholar]
  116. 116.
    Brezova V, Moen KG, Skandsen T, Vik A, Brewer JB, et al. 2014.. Prospective longitudinal MRI study of brain volumes and diffusion changes during the first year after moderate to severe traumatic brain injury. . NeuroImage Clin. 5::12840
    [Crossref] [Google Scholar]
  117. 117.
    Yasmin A, Pitkänen A, Andrade P, Paananen T, Gröhn O, Immonen R. 2022.. Post-injury ventricular enlargement associates with iron in choroid plexus but not with seizure susceptibility nor lesion atrophy—6-month MRI follow-up after experimental traumatic brain injury. . Brain Struct. Funct. 227:(1):14558
    [Crossref] [Google Scholar]
  118. 118.
    Makinde HM, Just TB, Cuda CM, Bertolino N, Procissi D, Schwulst SJ. 2018.. Monocyte depletion attenuates the development of posttraumatic hydrocephalus and preserves white matter integrity after traumatic brain injury. . PLOS ONE 13:(11):e0202722
    [Crossref] [Google Scholar]
  119. 119.
    Szmydynger-Chodobska J, Gandy JR, Varone A, Shan R, Chodobski A. 2013.. Synergistic interactions between cytokines and AVP at the blood-CSF barrier result in increased chemokine production and augmented influx of leukocytes after brain injury. . PLOS ONE 8:(11):e79328
    [Crossref] [Google Scholar]
  120. 120.
    Özevren H, Deveci E, Tuncer MC. 2018.. Histopathological changes in the choroid plexus after traumatic brain injury in the rats: a histologic and immunohistochemical study. . Folia Morphol. 77:(4):64248
    [Google Scholar]
  121. 121.
    Bodnar CN, Watson JB, Higgins EK, Quan N, Bachstetter AD. 2021.. Inflammatory regulation of CNS barriers after traumatic brain injury: a tale directed by interleukin-1. . Front. Immunol. 12::688254
    [Crossref] [Google Scholar]
  122. 122.
    Ahluwalia M, Mcmichael H, Kumar M, Espinosa MP, Bosomtwi A, et al. 2023.. Altered endocannabinoid metabolism compromises the brain-CSF barrier and exacerbates chronic deficits after traumatic brain injury in mice. . Exp. Neurol. 361::114320
    [Crossref] [Google Scholar]
  123. 123.
    Egertová M, Michael GJ, Cravatt BF, Elphick MR. 2004.. Fatty acid amide hydrolase in brain ventricular epithelium: mutually exclusive patterns of expression in mouse and rat. . J. Chem. Neuroanat. 28:(3):17181
    [Crossref] [Google Scholar]
  124. 124.
    Kooij G, Kopplin K, Blasig R, Stuiver M, Koning N, et al. 2014.. Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation. . Acta Neuropathol. 128:(2):26777
    [Crossref] [Google Scholar]
  125. 125.
    Klistorner S, Barnett MH, Parratt J, Yiannikas C, Graham SL, Klistorner A. 2022.. Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. . Ann. Clin. Transl. Neurol. 9:(10):152837
    [Crossref] [Google Scholar]
  126. 126.
    Mainero C, Louapre C, Govindarajan ST, Giannì C, Nielsen AS, et al. 2015.. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. . Brain J. Neurol. 138:(Part 4):93245
    [Crossref] [Google Scholar]
  127. 127.
    Hochstetler AE, Lehtinen MK. 2024.. Choroid plexus as a mediator of CNS inflammation in multiple sclerosis. . Mult. Scler. J. 30:(5 Suppl.):1923
    [Crossref] [Google Scholar]
  128. 128.
    Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, et al. 2019.. Animal models of multiple sclerosis: from rodents to zebrafish. . Mult. Scler. J. 25:(3):30624
    [Crossref] [Google Scholar]
  129. 129.
    Reboldi A, Coisne C, Baumjohann D, Benvenuto D, Bottinelli D, et al. 2009.. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. . Nat. Immunol. 10:(5):51423
    [Crossref] [Google Scholar]
  130. 130.
    Engelhardt B, Wolburg-Buchholz K, Wolburg H. 2001.. Involvement of the choroid plexus in central nervous system inflammation. . Microsc. Res. Tech. 52:(1):11229
    [Crossref] [Google Scholar]
  131. 131.
    Rodríguez-Lorenzo S, Ferreira Francisco DM, Vos R, van Het Hof B, Rijnsburger M, et al. 2020.. Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis. . Acta Neuropathol. Commun. 8:(1):35
    [Crossref] [Google Scholar]
  132. 132.
    Zheng W, Feng Y, Zeng Z, Ye M, Wang M, et al. 2022.. Choroid plexus-selective inactivation of adenosine A2A receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis. . J. Neuroinflamm. 19:(1):52
    [Crossref] [Google Scholar]
  133. 133.
    Zhan J, Mann T, Joost S, Behrangi N, Frank M, Kipp M. 2020.. The cuprizone model: dos and do nots. . Cells 9:(4):843
    [Crossref] [Google Scholar]
  134. 134.
    Fleischer V, Gonzalez-Escamilla G, Ciolac D, Albrecht P, Küry P, et al. 2021.. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. . PNAS 118:(36):e2025000118
    [Crossref] [Google Scholar]
  135. 135.
    Pagnin M, Dekiwadia C, Petratos S, Richardson SJ. 2022.. Enhanced re-myelination in transthyretin null mice following cuprizone mediated demyelination. . Neurosci. Lett. 766::136287
    [Crossref] [Google Scholar]
  136. 136.
    Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. 2016.. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. . Cell Stem Cell 19:(5):64352
    [Crossref] [Google Scholar]
  137. 137.
    Baruch K, Deczkowska A, David E, Castellano JM, Miller O, et al. 2014.. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. . Science 346:(6205):911
    [Crossref] [Google Scholar]
  138. 138.
    Modic MT, Weinstein MA, Rothner AD, Erenberg G, Duchesneau PM, Kaufman B. 1980.. Calcification of the choroid plexus visualized by computed tomography. . Radiology 135:(2):36972
    [Crossref] [Google Scholar]
  139. 139.
    Serot J-M, Béné M-C, Faure GC. 2003.. Choroid plexus, aging of the brain, and Alzheimer's disease. . Front. Biosci. J. Virtual Libr. 8::s51521
    [Crossref] [Google Scholar]
  140. 140.
    Wakamatsu K, Chiba Y, Murakami R, Matsumoto K, Miyai Y, et al. 2022.. Immunohistochemical expression of osteopontin and collagens in choroid plexus of human brains. . Neuropathology 42:(2):11725
    [Crossref] [Google Scholar]
  141. 141.
    Chen RL, Kassem NA, Redzic ZB, Chen CPC, Segal MB, Preston JE. 2009.. Age-related changes in choroid plexus and blood-cerebrospinal fluid barrier function in the sheep. . Exp. Gerontol. 44:(4):28996
    [Crossref] [Google Scholar]
  142. 142.
    Liu LL, Du D, Zheng W, Zhang Y. 2022.. Age-dependent decline of copper clearance at the blood-cerebrospinal fluid barrier. . Neurotoxicology 88::4456
    [Crossref] [Google Scholar]
  143. 143.
    Zhu L, Stein LR, Kim D, Ho K, Yu G-Q, et al. 2018.. Klotho controls the brain-immune system interface in the choroid plexus. . PNAS 115:(48):E1138896
    [Crossref] [Google Scholar]
  144. 144.
    Shaker MR, Aguado J, Chaggar HK, Wolvetang EJ. 2021.. Klotho inhibits neuronal senescence in human brain organoids. . NPJ Aging Mech. Dis. 7:(1):18
    [Crossref] [Google Scholar]
  145. 145.
    Zhao Y, Zeng C-Y, Li X-H, Yang T-T, Kuang X, Du J-R. 2020.. Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer's disease. . Aging Cell 19:(10):e13239
    [Crossref] [Google Scholar]
  146. 146.
    Castner SA, Gupta S, Wang D, Moreno AJ, Park C, et al. 2023.. Longevity factor klotho enhances cognition in aged nonhuman primates. . Nat. Aging 3:(8):93137
    [Crossref] [Google Scholar]
  147. 147.
    Iram T, Kern F, Kaur A, Myneni S, Morningstar AR, et al. 2022.. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. . Nature 605:(7910):50915
    [Crossref] [Google Scholar]
  148. 148.
    Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, et al. 2009.. Prognostic factors in ALS: a critical review. . Amyotroph. Lateral Scler. 10:(5–6):31023
    [Crossref] [Google Scholar]
  149. 149.
    Blasco H, Corcia P, Pradat P-F, Bocca C, Gordon PH, et al. 2013.. Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. . J. Proteome Res. 12:(8):374654
    [Crossref] [Google Scholar]
  150. 150.
    Kunis G, Baruch K, Miller O, Schwartz M. 2015.. Immunization with a myelin-derived antigen activates the brain's choroid plexus for recruitment of immunoregulatory cells to the CNS and attenuates disease progression in a mouse model of ALS. . J. Neurosci. 35:(16):638193
    [Crossref] [Google Scholar]
  151. 151.
    Liu J, Gao L, Zang D. 2015.. Elevated levels of IFN-γ in CSF and serum of patients with amyotrophic lateral sclerosis. . PLOS ONE 10:(9):e0136937
    [Crossref] [Google Scholar]
  152. 152.
    Saul J, Hutchins E, Reiman R, Saul M, Ostrow LW, et al. 2020.. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. . Acta Neuropathol. Commun. 8:(1):92
    [Crossref] [Google Scholar]
  153. 153.
    Young-Pearse TL, Lee H, Hsieh Y-C, Chou V, Selkoe DJ. 2023.. Moving beyond amyloid and tau to capture the biological heterogeneity of Alzheimer's disease. . Trends Neurosci. 46:(6):42644
    [Crossref] [Google Scholar]
  154. 154.
    Choi JD, Moon Y, Kim H-J, Yim Y, Lee S, Moon W-J. 2022.. Choroid plexus volume and permeability at brain MRI within the Alzheimer disease clinical spectrum. . Radiology 304:(3):63545
    [Crossref] [Google Scholar]
  155. 155.
    Gião T, Teixeira T, Almeida MR, Cardoso I. 2022.. Choroid plexus in Alzheimer's disease—the current state of knowledge. . Biomedicines 10:(2):224
    [Crossref] [Google Scholar]
  156. 156.
    Raha-Chowdhury R, Henderson JW, Raha AA, Vuono R, Bickerton A, et al. 2019.. Choroid plexus acts as gatekeeper for TREM2, abnormal accumulation of ApoE, and fibrillary tau in Alzheimer's disease and in Down syndrome dementia. . J. Alzheimers Dis. 69:(1):91109
    [Crossref] [Google Scholar]
  157. 157.
    Crossgrove JS, Li GJ, Zheng W. 2005.. The choroid plexus removes β-amyloid from brain cerebrospinal fluid. . Exp. Biol. Med. 230:(10):77176
    [Crossref] [Google Scholar]
  158. 158.
    Masters H, Wang S, Tu C, Nguyen Q, Sha Y, et al. 2024.. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. . bioRxiv 2024.06.12.598747. https://doi.org/10.1101/2024.06.12.598747
  159. 159.
    Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, et al. 2015.. Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases. . J. Neurosci. 35:(37):1276678
    [Crossref] [Google Scholar]
  160. 160.
    Bergsland N, Dwyer MG, Jakimovski D, Tavazzi E, Benedict RHB, et al. 2023.. Association of choroid plexus inflammation on MRI with clinical disability progression over 5 years in patients with multiple sclerosis. . Neurology 100:(9):e91120
    [Crossref] [Google Scholar]
  161. 161.
    Gueye M, Preziosa P, Ramirez GA, Bozzolo EP, Canti V, et al. 2023.. Choroid plexus and perivascular space enlargement in neuropsychiatric systemic lupus erythematosus. . Mol. Psychiatry 29::35968
    [Crossref] [Google Scholar]
  162. 162.
    Assogna M, Premi E, Gazzina S, Benussi A, Ashton NJ, et al. 2023.. Association of choroid plexus volume with serum biomarkers, clinical features, and disease severity in patients with frontotemporal lobar degeneration spectrum. . Neurology 101:(12):e121830
    [Crossref] [Google Scholar]
  163. 163.
    Prineas JW, Parratt JDE, Kirwan PD. 2016.. Fibrosis of the choroid plexus filtration membrane. . J. Neuropathol. Exp. Neurol. 75:(9):85567
    [Crossref] [Google Scholar]
  164. 164.
    Kovac V, Shapiro EG, Rudser KD, Mueller BA, Eisengart JB, et al. 2022.. Quantitative brain MRI morphology in severe and attenuated forms of mucopolysaccharidosis type I. . Mol. Genet. Metab. 135:(2):12232
    [Crossref] [Google Scholar]
  165. 165.
    Oya Y, Nakayasu H, Fujita N, Suzuki K, Suzuki K. 1998.. Pathological study of mice with total deficiency of sphingolipid activator proteins (SAP knockout mice). . Acta Neuropathol. 96:(1):2940
    [Crossref] [Google Scholar]
  166. 166.
    Martin TS, Seabrook TA, Gall K, Newman J, Avila N, et al. 2023.. Single systemic administration of a gene therapy leading to disease treatment in metachromatic leukodystrophy Arsa knock-out mice. . J. Neurosci. 43:(19):356781
    [Crossref] [Google Scholar]
  167. 167.
    Lizano P, Lutz O, Ling G, Lee AM, Eum S, et al. 2019.. Association of choroid plexus enlargement with cognitive, inflammatory, and structural phenotypes across the psychosis spectrum. . Am. J. Psychiatry 176:(7):56472
    [Crossref] [Google Scholar]
  168. 168.
    Zeng J, Zhang T, Tang B, Li S, Yao L, et al. 2024.. Choroid plexus volume enlargement in first-episode antipsychotic-naïve schizophrenia. . Schizophrenia 10::1
    [Crossref] [Google Scholar]
  169. 169.
    Bravi B, Melloni EMT, Paolini M, Palladini M, Calesella F, et al. 2024.. Choroid plexus volume is increased in mood disorders and associates with circulating inflammatory cytokines. . Brain Behav. Immun. 116::5261
    [Crossref] [Google Scholar]
  170. 170.
    Sullivan GM, Mann JJ, Oquendo MA, Lo ES, Cooper TB, Gorman JM. 2006.. Low cerebrospinal fluid transthyretin levels in depression: correlations with suicidal ideation and low serotonin function. . Biol. Psychiatry 60:(5):5006
    [Crossref] [Google Scholar]
  171. 171.
    Huang JT-J, Leweke FM, Oxley D, Wang L, Harris N, et al. 2006.. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. . PLOS Med. 3:(11):e428
    [Crossref] [Google Scholar]
  172. 172.
    Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, et al. 2023.. Cancer neuroscience: state of the field, emerging directions. . Cell 186:(8):1689707
    [Crossref] [Google Scholar]
  173. 173.
    Jang A, Petrova B, Cheong T-C, Zawadzki ME, Jones JK, et al. 2022.. Choroid plexus-CSF-targeted antioxidant therapy protects the brain from toxicity of cancer chemotherapy. . Neuron 110:(20):3288301.e8
    [Crossref] [Google Scholar]
  174. 174.
    Watanabe M, Kang YJ, Davies LM, Meghpara S, Lau K, et al. 2012.. BMP4 sufficiency to induce choroid plexus epithelial fate from embryonic stem cell-derived neuroepithelial progenitors. . J. Neurosci. 32:(45):1593445
    [Crossref] [Google Scholar]
  175. 175.
    Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. 2020.. Human CNS barrier-forming organoids with cerebrospinal fluid production. . Science 369:(6500):eaaz5626
    [Crossref] [Google Scholar]
  176. 176.
    Jeong SH, Park CJ, Jeong H-J, Sunwoo MK, Ahn SS, et al. 2023.. Association of choroid plexus volume with motor symptoms and dopaminergic degeneration in Parkinson's disease. . J. Neurol. Neurosurg. Psychiatry 94:(12):104755
    [Crossref] [Google Scholar]
  177. 177.
    Bonifacio C, Savini G, Reca C, Garoli F, Levi R, et al. 2024.. The gut-brain axis: correlation of choroid plexus volume and permeability with inflammatory biomarkers in Crohn's disease. . Neurobiol. Dis. 192::106416
    [Crossref] [Google Scholar]
  178. 178.
    Butler T, Wang XH, Chiang GC, Li Y, Zhou L, et al. 2023.. Choroid plexus calcification correlates with cortical microglial activation in humans: a multimodal PET, CT, MRI study. . AJNR Am. J. Neuroradiol. 44:(7):77682
    [Crossref] [Google Scholar]
  179. 179.
    Wen GY, Wisniewski HM, Kascsak RJ. 1999.. Biondi ring tangles in the choroid plexus of Alzheimer's disease and normal aging brains: a quantitative study. . Brain Res. 832:(1–2):4046
    [Crossref] [Google Scholar]
  180. 180.
    Krzyzanowska A, Carro E. 2012.. Pathological alteration in the choroid plexus of Alzheimer's disease: implication for new therapy approaches. . Front. Pharmacol. 3::75
    [Crossref] [Google Scholar]
  181. 181.
    Levman J, Vasung L, MacDonald P, Rowley S, Stewart N, et al. 2018.. Regional volumetric abnormalities in pediatric autism revealed by structural magnetic resonance imaging. . Int. J. Dev. Neurosci. 71::3445
    [Crossref] [Google Scholar]
  182. 182.
    Zhou G, Hotta J, Lehtinen MK, Forss N, Hari R. 2015.. Enlargement of choroid plexus in complex regional pain syndrome. . Sci. Rep. 5:(1):14329
    [Crossref] [Google Scholar]
  183. 183.
    Althubaity N, Schubert J, Martins D, Yousaf T, Nettis MA, et al. 2022.. Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression. . NeuroImage Clin. 33::102926
    [Crossref] [Google Scholar]
  184. 184.
    Breithaupt L. 2023.. En vivo neuroimaging of the choroid plexus to characterize neuroinflammation in restrictive eating disorders. . J. Affect. Disord. Rep. 12::100526
    [Crossref] [Google Scholar]
  185. 185.
    Mold MJ, Exley C. 2022.. Aluminium co-localises with Biondi ring tangles in Parkinson's disease and epilepsy. . Sci. Rep. 12:(1):1465
    [Crossref] [Google Scholar]
  186. 186.
    Srisook C, Glaharn S, Punsawad C, Viriyavejakul P. 2022.. Apoptotic changes and aquaporin-1 expression in the choroid plexus of cerebral malaria patients. . Malar. J. 21:(1):43
    [Crossref] [Google Scholar]
  187. 187.
    Egorova N, Gottlieb E, Khlif MS, Spratt NJ, Brodtmann A. 2019.. Choroid plexus volume after stroke. . Int. J. Stroke 14:(9):92330
    [Crossref] [Google Scholar]
  188. 188.
    Santana EFM, Casati MFM, Geraldo MSP, Werner H, Araujo Júnior E. 2022.. Intrauterine Zika virus infection: review of the current findings with emphasis in the prenatal and postnatal brain imaging diagnostic methods. . J. Matern. Fetal Neonatal Med. 35:(25):606268
    [Crossref] [Google Scholar]
  189. 189.
    Shannon ML, Fame RM, Chau KF, Dani N, Calicchio ML, . 2018.. Mice expressing Myc in neural precursors develop choroid plexus and ciliary body tumors. . Am. J. Pathol. 188:(6):133444
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051222-114051
Loading
/content/journals/10.1146/annurev-pathmechdis-051222-114051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error