1932

Abstract

Since its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death. Moreover, it has shed light on the pathways through which most anticancer therapeutics induce tumor cell death, including targeted therapy and immunotherapy. These mechanistic studies have paved the way for the development of therapeutics directly targeting either pro- or antiapoptotic proteins. Notably, the US Food and Drug Administration (FDA) approved the BCL-2 inhibitor venetoclax in 2016, with additional agents currently undergoing clinical trials. Recent research has brought to the forefront both the anti- and proinflammatory effects of individual apoptotic pathways. This underscores the ongoing imperative to deepen our comprehension of apoptosis, particularly as we navigate the evolving landscape of immunotherapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051222-115023
2025-01-24
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-051222-115023.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051222-115023&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kerr JFR, Wyllie AH, Currie AR. 1972.. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. . Br. J. Cancer 26::23957
    [Crossref] [Google Scholar]
  2. 2.
    Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, et al. 1985.. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18. . Cell 41::899906
    [Crossref] [Google Scholar]
  3. 3.
    Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM. 1985.. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. . Science 229::139093
    [Crossref] [Google Scholar]
  4. 4.
    Cleary ML, Smith SD, Sklar J. 1986.. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. . Cell 47::1928
    [Crossref] [Google Scholar]
  5. 5.
    Korsmeyer S. 1992.. Bcl-2 initiates a new category of oncogenes: regulators of cell death. . Blood 80::87986
    [Crossref] [Google Scholar]
  6. 6.
    Hanahan D, Weinberg RA. 2011.. Hallmarks of cancer: the next generation. . Cell 144::64674
    [Crossref] [Google Scholar]
  7. 7.
    Julien O, Wells JA. 2017.. Caspases and their substrates. . Cell Death Differ. 24::138089
    [Crossref] [Google Scholar]
  8. 8.
    Lüthi AU, Martin SJ. 2007.. The CASBAH: a searchable database of caspase substrates. . Cell Death Differ. 14::64150
    [Crossref] [Google Scholar]
  9. 9.
    Crawford ED, Seaman JE, Agard N, Hsu GW, Julien O, et al. 2013.. The DegraBase: a database of proteolysis in healthy and apoptotic human cells. . Mol. Cell. Proteom. 12::81324
    [Crossref] [Google Scholar]
  10. 10.
    Czabotar PE, Lessene G, Strasser A, Adams JM. 2014.. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. . Nat. Rev. Mol. Cell Biol. 15::4963
    [Crossref] [Google Scholar]
  11. 11.
    Jeng PS, Inoue-Yamauchi A, Hsieh JJ, Cheng EH. 2018.. BH3-dependent and independent activation of BAX and BAK in mitochondrial apoptosis. . Curr. Opin. Physio. 3::7181
    [Crossref] [Google Scholar]
  12. 12.
    Singh R, Letai A, Sarosiek K. 2019.. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. . Nat. Rev. Mol. Cell Biol. 20::17593
    [Crossref] [Google Scholar]
  13. 13.
    Chen H-C, Kanai M, Inoue-Yamauchi A, Tu H-C, Huang Y, et al. 2015.. An interconnected hierarchical model of cell death regulation by the BCL-2 family. . Nat. Cell Biol. 17::127081
    [Crossref] [Google Scholar]
  14. 14.
    Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, et al. 2005.. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. . Mol. Cell 17::393403
    [Crossref] [Google Scholar]
  15. 15.
    Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, et al. 2005.. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. . Mol. Cell 17::52535
    [Crossref] [Google Scholar]
  16. 16.
    Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, et al. 2006.. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. . Cancer Cell 9::35165
    [Crossref] [Google Scholar]
  17. 17.
    Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, et al. 2006.. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. . Nat. Cell Biol. 8::134858
    [Crossref] [Google Scholar]
  18. 18.
    Zhou M, Li Y, Hu Q, Bai XC, Huang W, et al. 2015.. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. . Genes Dev. 29::234961
    [Crossref] [Google Scholar]
  19. 19.
    Nagata S, Tanaka M. 2017.. Programmed cell death and the immune system. . Nat. Rev. Immunol. 17::33340
    [Crossref] [Google Scholar]
  20. 20.
    Ashkenazi A, Salvesen G. 2014.. Regulated cell death: signaling and mechanisms. . Annu. Rev. Cell Dev. Biol. 30::33756
    [Crossref] [Google Scholar]
  21. 21.
    Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, et al. 2009.. XIAP discriminates between type I and type II FAS-induced apoptosis. . Nature 460::103539
    [Crossref] [Google Scholar]
  22. 22.
    Li H, Zhu H, Xu CJ, Yuan J. 1998.. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. . Cell 94::491501
    [Crossref] [Google Scholar]
  23. 23.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. 1998.. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. . Cell 94::48190
    [Crossref] [Google Scholar]
  24. 24.
    Lowe SW, Cepero E, Evan G. 2004.. Intrinsic tumour suppression. . Nature 432::30715
    [Crossref] [Google Scholar]
  25. 25.
    Lowe SW, Lin AW. 2000.. Apoptosis in cancer. . Carcinogenesis 21::48595
    [Crossref] [Google Scholar]
  26. 26.
    Nakano K, Vousden KH. 2001.. PUMA, a novel proapoptotic gene, is induced by p53. . Mol. Cell 7::68394
    [Crossref] [Google Scholar]
  27. 27.
    Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. 2001.. PUMA induces the rapid apoptosis of colorectal cancer cells. . Mol. Cell 7::67382
    [Crossref] [Google Scholar]
  28. 28.
    Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, et al. 2000.. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. . Science 288::105358
    [Crossref] [Google Scholar]
  29. 29.
    Miyashita T, Reed JC. 1995.. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. . Cell 80::29399
    [Crossref] [Google Scholar]
  30. 30.
    Müller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, et al. 1998.. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. . J. Exp. Med. 188::203345
    [Crossref] [Google Scholar]
  31. 31.
    Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. 2002.. BID regulation by p53 contributes to chemosensitivity. . Nat. Cell Biol. 4::84249
    [Crossref] [Google Scholar]
  32. 32.
    Hershko T, Ginsberg D. 2004.. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. . J. Biol. Chem. 279::862734
    [Crossref] [Google Scholar]
  33. 33.
    Moroni MC, Hickman ES, Lazzerini Denchi E, Caprara G, Colli E, et al. 2001.. Apaf-1 is a transcriptional target for E2F and p53. . Nat. Cell Biol. 3::55258
    [Crossref] [Google Scholar]
  34. 34.
    Strasser A, Harris AW, Bath ML, Cory S. 1990.. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. . Nature 348::33133
    [Crossref] [Google Scholar]
  35. 35.
    McDonnell TJ, Korsmeyer SJ. 1991.. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). . Nature 349::25456
    [Crossref] [Google Scholar]
  36. 36.
    Egle A, Harris AW, Bouillet P, Cory S. 2004.. Bim is a suppressor of Myc-induced mouse B cell leukemia. . PNAS 101::616469
    [Crossref] [Google Scholar]
  37. 37.
    Garrison SP, Jeffers JR, Yang C, Nilsson JA, Hall MA, et al. 2008.. Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. . Mol. Cell. Biol. 28::5391402
    [Crossref] [Google Scholar]
  38. 38.
    Eischen CM, Roussel MF, Korsmeyer SJ, Cleveland JL. 2001.. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. . Mol. Cell. Biol. 21::765362
    [Crossref] [Google Scholar]
  39. 39.
    Scott CL, Schuler M, Marsden VS, Egle A, Pellegrini M, et al. 2004.. Apaf-1 and caspase-9 do not act as tumor suppressors in myc-induced lymphomagenesis or mouse embryo fibroblast transformation. . J. Cell Biol. 164::8996
    [Crossref] [Google Scholar]
  40. 40.
    Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, et al. 2001.. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. . Mol. Cell 8::70511
    [Crossref] [Google Scholar]
  41. 41.
    Pekarsky Y, Balatti V, Croce CM. 2018.. BCL2 and miR-15/16: from gene discovery to treatment. . Cell Death Differ. 25::2126
    [Crossref] [Google Scholar]
  42. 42.
    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, et al. 2010.. The landscape of somatic copy-number alteration across human cancers. . Nature 463::899905
    [Crossref] [Google Scholar]
  43. 43.
    Brinkmann K, Ng AP, de Graaf CA, Di Rago L, Hyland CD, et al. 2020. miR17∼92 restrains pro-apoptotic BIM to ensure survival of haematopoietic stem and progenitor cells. . Cell Death Differ. 27::147588
    [Crossref] [Google Scholar]
  44. 44.
    Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, et al. 2008.. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. . Nat. Immunol. 9::40514
    [Crossref] [Google Scholar]
  45. 45.
    Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, et al. 2008.. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. . Cancer Cell 13::27286
    [Crossref] [Google Scholar]
  46. 46.
    Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. 2022.. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. . Nat. Rev. Cancer 22::4564
    [Crossref] [Google Scholar]
  47. 47.
    Kruiswijk F, Labuschagne CF, Vousden KH. 2015.. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. . Nat. Rev. Mol. Cell Biol. 16::393405
    [Crossref] [Google Scholar]
  48. 48.
    Xia Z, Kon N, Gu AP, Tavana O, Gu W. 2022.. Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. . Oncogene 41::303950
    [Crossref] [Google Scholar]
  49. 49.
    Janic A, Valente LJ, Wakefield MJ, Di Stefano L, Milla L, et al. 2018.. DNA repair processes are critical mediators of p53-dependent tumor suppression. . Nat. Med. 24::94753
    [Crossref] [Google Scholar]
  50. 50.
    Jiang L, Kon N, Li T, Wang SJ, Su T, et al. 2015.. Ferroptosis as a p53-mediated activity during tumour suppression. . Nature 520::5762
    [Crossref] [Google Scholar]
  51. 51.
    Sherr CJ. 2004.. Principles of tumor suppression. . Cell 116::23546
    [Crossref] [Google Scholar]
  52. 52.
    Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A. 2007.. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. . Cancer Cell 12::17185
    [Crossref] [Google Scholar]
  53. 53.
    Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, et al. 2016.. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. . N. Engl. J. Med. 374::31122
    [Crossref] [Google Scholar]
  54. 54.
    Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, et al. 2017.. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. . Cancer Cell 32::490505.e10
    [Crossref] [Google Scholar]
  55. 55.
    Li R, Ding C, Zhang J, Xie M, Park D, et al. 2017.. Modulation of Bax and mTOR for cancer therapeutics. . Cancer Res. 77::300112
    [Crossref] [Google Scholar]
  56. 56.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, et al. 2005.. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. . Nature 435::67781
    [Crossref] [Google Scholar]
  57. 57.
    Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, et al. 2008.. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. . Cancer Res. 68::342128
    [Crossref] [Google Scholar]
  58. 58.
    Davids MS, Letai A. 2012.. Targeting the B-cell lymphoma/leukemia 2 family in cancer. . J. Clin. Oncol. 30::312735
    [Crossref] [Google Scholar]
  59. 59.
    Walensky LD. 2012.. From mitochondrial biology to magic bullet: navitoclax disarms BCL-2 in chronic lymphocytic leukemia. . J. Clin. Oncol. 30::55457
    [Crossref] [Google Scholar]
  60. 60.
    Anderson MA, Huang D, Roberts A. 2014.. Targeting BCL2 for the treatment of lymphoid malignancies. . Semin. Hematol. 51::21927
    [Crossref] [Google Scholar]
  61. 61.
    Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, et al. 2011.. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. . J. Clin. Oncol. 29::90916
    [Crossref] [Google Scholar]
  62. 62.
    Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, et al. 2012.. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. . Clin. Cancer Res. 18::316369
    [Crossref] [Google Scholar]
  63. 63.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, et al. 2013.. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. . Nat. Med. 19::2028
    [Crossref] [Google Scholar]
  64. 64.
    Al-Sawaf O, Zhang C, Tandon M, Sinha A, Fink A-M, et al. 2020.. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial. . Lancet Oncol. 21::1188200
    [Crossref] [Google Scholar]
  65. 65.
    DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, et al. 2020.. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. . N. Engl. J. Med. 383::61729
    [Crossref] [Google Scholar]
  66. 66.
    Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, et al. 2020.. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. . Blood 135::213745
    [Crossref] [Google Scholar]
  67. 67.
    Inoue-Yamauchi A, Jeng PS, Kim K, Chen H-C, Han S, et al. 2017.. Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy. . Nat. Commun. 8::16078
    [Crossref] [Google Scholar]
  68. 68.
    Chang J, Wang Y, Shao L, Laberge R-M, Demaria M, et al. 2016.. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. . Nat. Med. 22::7883
    [Crossref] [Google Scholar]
  69. 69.
    Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, et al. 2013.. Structure-guided design of a selective BCL-XL inhibitor. . Nat. Chem. Biol. 9::39097
    [Crossref] [Google Scholar]
  70. 70.
    Tao Z-F, Hasvold L, Wang L, Wang X, Petros AM, et al. 2014.. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. . ACS Med. Chem. Lett. 5::108893
    [Crossref] [Google Scholar]
  71. 71.
    Leverson JD, Phillips DC, Mitten MJ, Boghaert ER, Diaz D, et al. 2015.. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. . Sci. Transl. Med. 7::279ra40
    [Crossref] [Google Scholar]
  72. 72.
    Wang L, Doherty GA, Judd AS, Tao Z-F, Hansen TM, et al. 2020.. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-XL inhibitor. . ACS Med. Chem. Lett. 11::182936
    [Crossref] [Google Scholar]
  73. 73.
    Hurwitz J, Haggstrom LR, Lim E. 2023.. Antibody-drug conjugates: ushering in a new era of cancer therapy. . Pharmaceutics 15::2017
    [Crossref] [Google Scholar]
  74. 74.
    Khan S, Zhang X, Lv D, Zhang Q, He Y, et al. 2019.. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. . Nat. Med. 25::193847
    [Crossref] [Google Scholar]
  75. 75.
    Bennett R, Thompson E, Tam C. 2022.. Mechanisms of resistance to BCL2 inhibitor therapy in chronic lymphocytic leukemia and potential future therapeutic directions. . Clin. Lymphoma Myeloma Leuk. 22::795804
    [Crossref] [Google Scholar]
  76. 76.
    Montero J, Haq R. 2022.. Adapted to survive: targeting cancer cells with BH3 mimetics. . Cancer Discov. 12::121732
    [Crossref] [Google Scholar]
  77. 77.
    Blombery P, Anderson MA, Gong JN, Thijssen R, Birkinshaw RW, et al. 2019.. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. . Cancer Discov. 9::34253
    [Crossref] [Google Scholar]
  78. 78.
    Khalsa JK, Cha J, Utro F, Naeem A, Murali I, et al. 2023.. Genetic events associated with venetoclax resistance in CLL identified by whole-exome sequencing of patient samples. . Blood 142::42133
    [Crossref] [Google Scholar]
  79. 79.
    Birkinshaw RW, Gong JN, Luo CS, Lio D, White CA, et al. 2019.. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. . Nat. Commun. 10::2385
    [Crossref] [Google Scholar]
  80. 80.
    Tausch E, Close W, Dolnik A, Bloehdorn J, Chyla B, et al. 2019.. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. . Haematologica 104::e43437
    [Crossref] [Google Scholar]
  81. 81.
    Blombery P, Birkinshaw RW, Nguyen T, Gong JN, Thompson ER, et al. 2019.. Characterization of a novel venetoclax resistance mutation (BCL2 Phe104Ile) observed in follicular lymphoma. . Br. J. Haematol. 186::e18891
    [Crossref] [Google Scholar]
  82. 82.
    Zhao X, Ren Y, Lawlor M, Shah BD, Park PMC, et al. 2019.. BCL2 amplicon loss and transcriptional remodeling drives ABT-199 resistance in B cell lymphoma models. . Cancer Cell 35::75266.e9
    [Crossref] [Google Scholar]
  83. 83.
    Guieze R, Liu VM, Rosebrock D, Jourdain AA, Hernandez-Sanchez M, et al. 2019.. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. . Cancer Cell 36::36984.e13
    [Crossref] [Google Scholar]
  84. 84.
    DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, et al. 2020.. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. . Blood 135::791803
    [Crossref] [Google Scholar]
  85. 85.
    Zhang H, Nakauchi Y, Köhnke T, Stafford M, Bottomly D, et al. 2020.. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. . Nat. Cancer 1::82639
    [Crossref] [Google Scholar]
  86. 86.
    Bhatt S, Pioso MS, Olesinski EA, Yilma B, Ryan JA, et al. 2020.. Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia. . Cancer Cell 38::87290.e6
    [Crossref] [Google Scholar]
  87. 87.
    Agarwal R, Chan YC, Tam CS, Hunter T, Vassiliadis D, et al. 2019.. Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. . Nat. Med. 25::11929
    [Crossref] [Google Scholar]
  88. 88.
    Davids MS, Deng J, Wiestner A, Lannutti BJ, Wang L, et al. 2012.. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. . Blood 120::35019
    [Crossref] [Google Scholar]
  89. 89.
    Thijssen R, Slinger E, Weller K, Geest CR, Beaumont T, et al. 2015.. Resistance to ABT-199 induced by microenvironmental signals in chronic lymphocytic leukemia can be counteracted by CD20 antibodies or kinase inhibitors. . Haematologica 100::e3026
    [Google Scholar]
  90. 90.
    Haselager MV, Thijssen R, Bax D, Both D, De Boer F, et al. 2023.. JAK-STAT signalling shapes the NF-κB response in CLL towards venetoclax sensitivity or resistance via Bcl-XL. . Mol. Oncol. 17::111228
    [Crossref] [Google Scholar]
  91. 91.
    Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, et al. 2016.. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. . Nature 538::47782
    [Crossref] [Google Scholar]
  92. 92.
    Roberts AW, Wei AH, Huang DCS. 2021.. BCL2 and MCL1 inhibitors for hematologic malignancies. . Blood 138::112036
    [Crossref] [Google Scholar]
  93. 93.
    Yuda J, Will C, Phillips DC, Abraham L, Alvey C, et al. 2023.. Selective MCL-1 inhibitor ABBV-467 is efficacious in tumor models but is associated with cardiac troponin increases in patients. . Commun. Med. 3::154
    [Crossref] [Google Scholar]
  94. 94.
    Wei G, Margolin AA, Haery L, Brown E, Cucolo L, et al. 2012.. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. . Cancer Cell 21::54762
    [Crossref] [Google Scholar]
  95. 95.
    Cloete I, Smith VM, Jackson RA, Pepper A, Pepper C, et al. 2023.. Computational modeling of DLBCL predicts response to BH3-mimetics. . NPJ Syst. Biol. Appl. 9::23
    [Crossref] [Google Scholar]
  96. 96.
    Strasser A, Vaux DL. 2020.. Cell death in the origin and treatment of cancer. . Mol. Cell 78::104554
    [Crossref] [Google Scholar]
  97. 97.
    Sia J, Szmyd R, Hau E, Gee HE. 2020.. Molecular mechanisms of radiation-induced cancer cell death: a primer. . Front. Cell Dev. Biol. 8::41
    [Crossref] [Google Scholar]
  98. 98.
    Weinstein IB. 2002.. Addiction to oncogenes—the Achilles heal of cancer. . Science 297::6364
    [Crossref] [Google Scholar]
  99. 99.
    Hata AN, Engelman JA, Faber AC. 2015.. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. . Cancer Discov. 5::47587
    [Crossref] [Google Scholar]
  100. 100.
    Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, et al. 2003.. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. . Oncogene 22::678593
    [Crossref] [Google Scholar]
  101. 101.
    Dehan E, Bassermann F, Guardavaccaro D, Vasiliver-Shamis G, Cohen M, et al. 2009.. βTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. . Mol. Cell 33::10916
    [Crossref] [Google Scholar]
  102. 102.
    Tanaka K, Yu HA, Yang S, Han S, Selcuklu SD, et al. 2021.. Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis. . Cancer Cell 39::124561.e6
    [Crossref] [Google Scholar]
  103. 103.
    Bean GR, Ganesan YT, Dong Y, Takeda S, Liu H, et al. 2013.. PUMA and BIM are required for oncogene inactivation-induced apoptosis. . Sci. Signal. 6::ra20
    [Crossref] [Google Scholar]
  104. 104.
    Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW. 2004.. MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. . Oncogene 23::530115
    [Crossref] [Google Scholar]
  105. 105.
    Mills JR, Hippo Y, Robert F, Chen SM, Malina A, et al. 2008.. mTORC1 promotes survival through translational control of Mcl-1. . PNAS 105::1085358
    [Crossref] [Google Scholar]
  106. 106.
    Song KA, Hosono Y, Turner C, Jacob S, Lochmann TL, et al. 2018.. Increased synthesis of MCL-1 protein underlies initial survival of EGFR-mutant lung cancer to EGFR inhibitors and provides a novel drug target. . Clin. Cancer Res. 24::565872
    [Crossref] [Google Scholar]
  107. 107.
    Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, et al. 2016.. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. . Nat. Med. 22::26269
    [Crossref] [Google Scholar]
  108. 108.
    Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, et al. 2010.. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. . Cell 141::6980
    [Crossref] [Google Scholar]
  109. 109.
    Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, et al. 2015.. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. . Mol. Cell 57::86072
    [Crossref] [Google Scholar]
  110. 110.
    Shah KN, Bhatt R, Rotow J, Rohrberg J, Olivas V, et al. 2019.. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. . Nat. Med. 25::11118
    [Crossref] [Google Scholar]
  111. 111.
    Kurppa KJ, Liu Y, To C, Zhang T, Fan M, et al. 2020.. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. . Cancer Cell 37::10422.e12
    [Crossref] [Google Scholar]
  112. 112.
    Tsuji T, Ozasa H, Aoki W, Aburaya S, Yamamoto Funazo T, et al. 2020.. YAP1 mediates survival of ALK-rearranged lung cancer cells treated with alectinib via pro-apoptotic protein regulation. . Nat. Commun. 11::74
    [Crossref] [Google Scholar]
  113. 113.
    Nanjo S, Wu W, Karachaliou N, Blakely CM, Suzuki J, et al. 2022.. Deficiency of the splicing factor RBM10 limits EGFR inhibitor response in EGFR-mutant lung cancer. . J. Clin. Investig. 132::e145099
    [Crossref] [Google Scholar]
  114. 114.
    Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, et al. 2021.. The next decade of immune checkpoint therapy. . Cancer Discov. 11::83857
    [Crossref] [Google Scholar]
  115. 115.
    Arvedson T, Bailis JM, Britten CD, Klinger M, Nagorsen D, et al. 2022.. Targeting solid tumors with bispecific T cell engager immune therapy. . Annu. Rev. Cancer Biol. 6::1734
    [Crossref] [Google Scholar]
  116. 116.
    Larson RC, Maus MV. 2021.. Recent advances and discoveries in the mechanisms and functions of CAR T cells. . Nat. Rev. Cancer 21::14561
    [Crossref] [Google Scholar]
  117. 117.
    Lowin B, Hahne M, Mattmann C, Tschopp J. 1994.. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. . Nature 370::65052
    [Crossref] [Google Scholar]
  118. 118.
    Voskoboinik I, Whisstock JC, Trapani JA. 2015.. Perforin and granzymes: function, dysfunction and human pathology. . Nat. Rev. Immunol. 15::388400
    [Crossref] [Google Scholar]
  119. 119.
    Sutton VR, Davis JE, Cancilla M, Johnstone RW, Ruefli AA, et al. 2000.. Initiation of apoptosis by granzyme B requires direct cleavage of Bid, but not direct granzyme B–mediated caspase activation. . J. Exp. Med. 192::140314
    [Crossref] [Google Scholar]
  120. 120.
    Kaiserman D, Bird CH, Sun J, Matthews A, Ung K, et al. 2006.. The major human and mouse granzymes are structurally and functionally divergent. . J. Cell Biol. 175::61930
    [Crossref] [Google Scholar]
  121. 121.
    Halle S, Keyser KA, Stahl FR, Busche A, Marquardt A, et al. 2016.. In vivo killing capacity of cytotoxic T cells is limited and involves dynamic interactions and T cell cooperativity. . Immunity 44::23345
    [Crossref] [Google Scholar]
  122. 122.
    Weigelin B, den Boer AT, Wagena E, Broen K, Dolstra H, et al. 2021.. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. . Nat. Commun. 12::5217
    [Crossref] [Google Scholar]
  123. 123.
    Schumacher TN, Schreiber RD. 2015.. Neoantigens in cancer immunotherapy. . Science 348::6974
    [Crossref] [Google Scholar]
  124. 124.
    Chen DS, Mellman I. 2017.. Elements of cancer immunity and the cancer–immune set point. . Nature 541::32130
    [Crossref] [Google Scholar]
  125. 125.
    Lee YG, Guruprasad P, Ghilardi G, Pajarillo R, Sauter CT, et al. 2022.. Modulation of BCL-2 in both T cells and tumor cells to enhance chimeric antigen receptor T-cell immunotherapy against cancer. . Cancer Discov. 12::237291
    [Crossref] [Google Scholar]
  126. 126.
    Singh N, Lee YG, Shestova O, Ravikumar P, Hayer KE, et al. 2020.. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. . Cancer Discov. 10::55267
    [Crossref] [Google Scholar]
  127. 127.
    Zhao L, Liu P, Mao M, Zhang S, Bigenwald C, et al. 2023.. BCL2 inhibition reveals a dendritic cell-specific immune checkpoint that controls tumor immunosurveillance. . Cancer Discov. 13::244869
    [Crossref] [Google Scholar]
  128. 128.
    Pan R, Ryan J, Pan D, Wucherpfennig KW, Letai A. 2022.. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. . Cell 185::152138.e18
    [Crossref] [Google Scholar]
  129. 129.
    Martin SJ, Henry CM, Cullen SP. 2012.. A perspective on mammalian caspases as positive and negative regulators of inflammation. . Mol. Cell 46::38797
    [Crossref] [Google Scholar]
  130. 130.
    Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, et al. 2010.. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. . Nature 467::86367
    [Crossref] [Google Scholar]
  131. 131.
    Poon IKH, Lucas CD, Rossi AG, Ravichandran KS. 2014.. Apoptotic cell clearance: basic biology and therapeutic potential. . Nat. Rev. Immunol. 14::16680
    [Crossref] [Google Scholar]
  132. 132.
    Medina CB, Mehrotra P, Arandjelovic S, Perry JSA, Guo Y, et al. 2020.. Metabolites released from apoptotic cells act as tissue messengers. . Nature 580::13035
    [Crossref] [Google Scholar]
  133. 133.
    Engblom C, Pfirschke C, Pittet MJ. 2016.. The role of myeloid cells in cancer therapies. . Nat. Rev. Cancer 16::44762
    [Crossref] [Google Scholar]
  134. 134.
    Ning X, Wang Y, Jing M, Sha M, Lv M, et al. 2019.. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. . Mol. Cell 74::1931.e7
    [Crossref] [Google Scholar]
  135. 135.
    Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. 2017.. Immunogenic cell death in cancer and infectious disease. . Nat. Rev. Immunol. 17::97111
    [Crossref] [Google Scholar]
  136. 136.
    Røssevold AH, Andresen NK, Bjerre CA, Gilje B, Jakobsen EH, et al. 2022.. Atezolizumab plus anthracycline-based chemotherapy in metastatic triple-negative breast cancer: the randomized, double-blind phase 2b ALICE trial. . Nat. Med. 28::257383
    [Crossref] [Google Scholar]
  137. 137.
    Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, et al. 2019.. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. . Nat. Med. 25::92028
    [Crossref] [Google Scholar]
  138. 138.
    Broz P. 2015.. Caspase target drives pyroptosis. . Nature 526::64243
    [Crossref] [Google Scholar]
  139. 139.
    Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, et al. 2015.. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. . Nature 526::66671
    [Crossref] [Google Scholar]
  140. 140.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y, et al. 2015.. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. . Nature 526::66065
    [Crossref] [Google Scholar]
  141. 141.
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, et al. 2016.. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. . Nature 535::15358
    [Crossref] [Google Scholar]
  142. 142.
    Orning P, Weng D, Starheim K, Ratner D, Best Z, et al. 2018.. Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. . Science 362::106469
    [Crossref] [Google Scholar]
  143. 143.
    Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, et al. 2018.. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. . PNAS 115::E1088897
    [Crossref] [Google Scholar]
  144. 144.
    Zou J, Zheng Y, Huang Y, Tang D, Kang R, Chen R. 2021.. The versatile gasdermin family: their function and roles in diseases. . Front. Immunol. 12::751533
    [Crossref] [Google Scholar]
  145. 145.
    Wang Y, Gao W, Shi X, Ding J, Liu W, et al. 2017.. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. . Nature 547::99103
    [Crossref] [Google Scholar]
  146. 146.
    Zhang Z, Zhang Y, Xia S, Kong Q, Li S, et al. 2020.. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. . Nature 579::41520
    [Crossref] [Google Scholar]
  147. 147.
    Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES. 2019.. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. . Nat. Commun. 10::1689
    [Crossref] [Google Scholar]
  148. 148.
    Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P. 1999.. Interdigital cell death can occur through a necrotic and caspase-independent pathway. . Curr. Biol. 9::96770
    [Crossref] [Google Scholar]
  149. 149.
    Rongvaux A, Jackson R, Harman CCD, Li T, West AP, et al. 2014.. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. . Cell 159::156377
    [Crossref] [Google Scholar]
  150. 150.
    White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, et al. 2014.. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. . Cell 159::154962
    [Crossref] [Google Scholar]
  151. 151.
    West AP, Shadel GS. 2017.. Mitochondrial DNA in innate immune responses and inflammatory pathology. . Nat. Rev. Immunol. 17::36375
    [Crossref] [Google Scholar]
  152. 152.
    Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH. 2018.. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. . Immunity 49::75463.e4
    [Crossref] [Google Scholar]
  153. 153.
    Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, et al. 2015.. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. . Cell Rep. 11::101830
    [Crossref] [Google Scholar]
  154. 154.
    McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, et al. 2018.. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. . Science 359::eaao6047
    [Crossref] [Google Scholar]
  155. 155.
    Schafer ZT, Kornbluth S. 2006.. The apoptosome: physiological, developmental, and pathological modes of regulation. . Dev. Cell 10::54961
    [Crossref] [Google Scholar]
  156. 156.
    Han C, Liu Z, Zhang Y, Shen A, Dong C, et al. 2020.. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. . Nat. Immunol. 21::54654
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051222-115023
Loading
/content/journals/10.1146/annurev-pathmechdis-051222-115023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error