1932

Abstract

The most common form of heart failure is heart failure with preserved ejection fraction (HFpEF). While heterogeneous in origin, the most common form of HFpEF is the cardiometabolic manifestation. Obesity and aging promote systemic inflammation that appears integral to cardiometabolic HFpEF pathophysiology. Accumulation of immune cells within the heart, fueled by an altered metabolome, contribute to cardiac inflammation and fibrosis. In spite of this, broad anti-inflammatory therapy has not shown significant benefit in patient outcomes. Thus, understanding of the nuances to metabolic and age-related inflammation during HFpEF is paramount for more targeted interventions. Here, we review clinical evidence of inflammation in the context of HFpEF and summarize our mechanistic understanding of immunometabolic inflammation, highlighting pathways of therapeutic potential along the way.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023405
2025-01-24
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023405.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023405&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, et al. 2014.. Heart failure: preventing disease and death worldwide. . ESC Heart Fail. 1::425
    [Crossref] [Google Scholar]
  2. 2.
    Timmis A, Townsend N, Gale C, Grobbee R, Maniadakis N, et al. 2018.. European Society of Cardiology: cardiovascular disease statistics 2017. . Eur. Heart J. 39::50879
    [Crossref] [Google Scholar]
  3. 3.
    Bragazzi NL, Zhong W, Shu J, Abu Much A, Lotan D, et al. 2021.. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. . Eur. J. Prev. Cardiol 28::168290
    [Crossref] [Google Scholar]
  4. 4.
    Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, et al. 2019.. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. . Circulation 139::e56528. Erratum . 2020.. Circulation 141::e33
    [Google Scholar]
  5. 5.
    Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, et al. 2013.. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. . Circ. Heart Fail. 6::60619
    [Crossref] [Google Scholar]
  6. 6.
    Paulus WJ. 2020.. Unfolding discoveries in heart failure. . N. Engl. J. Med. 382::67982
    [Crossref] [Google Scholar]
  7. 7.
    Redfield MM, Borlaug BA. 2023.. Heart failure with preserved ejection fraction: a review. . JAMA 329::82738
    [Crossref] [Google Scholar]
  8. 8.
    Shah AM, Pfeffer MA. 2012.. The many faces of heart failure with preserved ejection fraction. . Nat. Rev. Cardiol. 9::55556
    [Crossref] [Google Scholar]
  9. 9.
    Shah AM. 2013.. Ventricular remodeling in heart failure with preserved ejection fraction. . Curr. Heart. Fail. Rep. 10::34149
    [Crossref] [Google Scholar]
  10. 10.
    Rossi A, Gheorghiade M, Triposkiadis F, Solomon SD, Pieske B, Butler J. 2014.. Left atrium in heart failure with preserved ejection fraction: structure, function, and significance. . Circ. Heart Fail. 7::104249
    [Crossref] [Google Scholar]
  11. 11.
    Pfeffer MA, Shah AM, Borlaug BA. 2019.. Heart failure with preserved ejection fraction in perspective. . Circ. Res. 124::1598617
    [Crossref] [Google Scholar]
  12. 12.
    Burke MA, Katz DH, Beussink L, Selvaraj S, Gupta DK, et al. 2014.. Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. . Circ. Heart Fail. 7::28899
    [Crossref] [Google Scholar]
  13. 13.
    Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, et al. 2014.. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial. . Circ. Heart Fail. 7::74051
    [Crossref] [Google Scholar]
  14. 14.
    Luscher TF. 2019.. Lumpers and splitters: the bumpy road to precision medicine. . Eur. Heart J. 40::329296
    [Crossref] [Google Scholar]
  15. 15.
    Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, et al. 2016.. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. . Circulation 134::7390
    [Crossref] [Google Scholar]
  16. 16.
    Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, et al. 2020.. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone. . JACC Heart Fail. 8::17284
    [Crossref] [Google Scholar]
  17. 17.
    Schiattarella GG, Alcaide P, Condorelli G, Gillette TG, Heymans S, et al. 2022.. Immunometabolic mechanisms of heart failure with preserved ejection fraction. . Nat. Cardiovasc. Res. 1::21122
    [Crossref] [Google Scholar]
  18. 18.
    Eisenberg E, Di Palo KE, Pina IL. 2018.. Sex differences in heart failure. . Clin. Cardiol. 41::21116
    [Crossref] [Google Scholar]
  19. 19.
    Kitzman DW, Lam CSP. 2017.. Obese heart failure with preserved ejection fraction phenotype: from pariah to central player. . Circulation 136::2023
    [Crossref] [Google Scholar]
  20. 20.
    Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. 2017.. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. . Circulation 136::619
    [Crossref] [Google Scholar]
  21. 21.
    Pandey A, Vaduganathan M, Arora S, Qamar A, Mentz RJ, et al. 2020.. Temporal trends in prevalence and prognostic implications of comorbidities among patients with acute decompensated heart failure: the ARIC study community surveillance. . Circulation 142::23043
    [Crossref] [Google Scholar]
  22. 22.
    Silverman DN, Plante TB, Infeld M, Callas PW, Juraschek SP, et al. 2019.. Association of beta-blocker use with heart failure hospitalizations and cardiovascular disease mortality among patients with heart failure with a preserved ejection fraction: a secondary analysis of the TOPCAT Trial. . JAMA Netw. Open 2::e1916598
    [Crossref] [Google Scholar]
  23. 23.
    Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, et al. 2006.. The Perindopril in Elderly People with Chronic Heart Failure (PEP-CHF) study. . Eur. Heart J. 27::233845
    [Crossref] [Google Scholar]
  24. 24.
    Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, et al. 2015.. Isosorbide mononitrate in heart failure with preserved ejection fraction. . N. Engl. J. Med. 373::231424
    [Crossref] [Google Scholar]
  25. 25.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, et al. 2017.. Antiinflammatory therapy with canakinumab for atherosclerotic disease. . N. Engl. J. Med. 377::111931
    [Crossref] [Google Scholar]
  26. 26.
    Ridker PM, Everett BM, Pradhan A, MacFadyen JG, Solomon DH, et al. 2019.. Low-dose methotrexate for the prevention of atherosclerotic events. . N. Engl. J. Med. 380::75262
    [Crossref] [Google Scholar]
  27. 27.
    Van Tassell BW, Arena R, Biondi-Zoccai G, Canada JM, Oddi C, Abouzaki NA, et al. 2014.. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). . Am. J. Cardiol. 113::32127
    [Crossref] [Google Scholar]
  28. 28.
    Van Tassell BW, Trankle CR, Canada JM, Carbone S, Buckley L, et al. 2018.. IL-1 blockade in patients with heart failure with preserved ejection fraction. . Circ. Heart Fail. 11::e005036
    [Crossref] [Google Scholar]
  29. 29.
    Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, et al. 2012.. Obesity and severe obesity forecasts through 2030. . Am. J. Prev. Med. 42::56370
    [Crossref] [Google Scholar]
  30. 30.
    Dunlay SM, Roger VL, Redfield MM. 2017.. Epidemiology of heart failure with preserved ejection fraction. . Nat. Rev. Cardiol. 14::591602
    [Crossref] [Google Scholar]
  31. 31.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. 2006.. Trends in prevalence and outcome of heart failure with preserved ejection fraction. . N. Engl. J. Med. 355::25159
    [Crossref] [Google Scholar]
  32. 32.
    Zile MR, Gaasch WH, Anand IS, Haass M, Little WC, et al. 2010.. Mode of death in patients with heart failure and a preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-Preserve) trial. . Circulation 121::1393405
    [Crossref] [Google Scholar]
  33. 33.
    Schiattarella GG, Rodolico D, Hill JA. 2021.. Metabolic inflammation in heart failure with preserved ejection fraction. . Cardiovasc. Res. 117::42334
    [Crossref] [Google Scholar]
  34. 34.
    Sabbah MS, Fayyaz AU, de Denus S, Felker GM, Borlaug BA, et al. 2020.. Obese-inflammatory phenotypes in heart failure with preserved ejection fraction. . Circ. Heart Fail. 13::e006414
    [Crossref] [Google Scholar]
  35. 35.
    Sciarretta S, Ferrucci A, Ciavarella GM, De Paolis P, Venturelli V, et al. 2007.. Markers of inflammation and fibrosis are related to cardiovascular damage in hypertensive patients with metabolic syndrome. . Am. J. Hypertens. 20::78491
    [Crossref] [Google Scholar]
  36. 36.
    Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, et al. 2003.. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. . Circulation 107::148691
    [Crossref] [Google Scholar]
  37. 37.
    Edelmann F, Holzendorf V, Wachter R, Nolte K, Schmidt AG, et al. 2015.. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. . Eur. J. Heart Fail. 17::21423
    [Crossref] [Google Scholar]
  38. 38.
    Mann DL. 2015.. Innate immunity and the failing heart: the cytokine hypothesis revisited. . Circ. Res. 116::125468
    [Crossref] [Google Scholar]
  39. 39.
    Sanders-van Wijk S, Tromp J, Beussink-Nelson L, Hage C, Svedlund S, et al. 2020.. Proteomic evaluation of the comorbidity-inflammation paradigm in heart failure with preserved ejection fraction: results from the PROMIS-HFpEF study. . Circulation 142::202944
    [Crossref] [Google Scholar]
  40. 40.
    DuBrock HM, AbouEzzeddine OF, Redfield MM. 2018.. High-sensitivity C-reactive protein in heart failure with preserved ejection fraction. . PLOS ONE 13::e0201836
    [Crossref] [Google Scholar]
  41. 41.
    Santhanakrishnan R, Chong JP, Ng TP, Ling LH, Sim D, et al. 2012.. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. . Eur. J. Heart Fail. 14::133847
    [Crossref] [Google Scholar]
  42. 42.
    Sanders-van Wijk S, van Empel V, Davarzani N, Maeder MT, Handschin R, et al. 2015.. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved versus reduced left ventricular ejection fraction. . Eur. J. Heart Fail. 17::100614
    [Crossref] [Google Scholar]
  43. 43.
    Matsubara J, Sugiyama S, Nozaki T, Sugamura K, Konishi M, et al. 2011.. Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. . J. Am. Coll. Cardiol. 57::86169
    [Crossref] [Google Scholar]
  44. 44.
    Cunningham JW, Claggett BL, O'Meara E, Prescott MF, Pfeffer MA, et al. 2020.. Effect of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients with HFpEF. . J. Am. Coll. Cardiol. 76::50314
    [Crossref] [Google Scholar]
  45. 45.
    Tromp J, Khan MA, Klip IT, Meyer S, de Boer RA, et al. 2017.. Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. . J. Am. Heart Assoc. 6::e003989
    [Crossref] [Google Scholar]
  46. 46.
    Hahn VS, Knutsdottir H, Luo X, Bedi K, Margulies KB, et al. 2021.. Myocardial gene expression signatures in human heart failure with preserved ejection fraction. . Circulation 143::12034
    [Crossref] [Google Scholar]
  47. 47.
    Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, et al. 2011.. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. . Circ. Heart Fail. 4::4452
    [Crossref] [Google Scholar]
  48. 48.
    Stiekema LCA, Willemsen L, Kaiser Y, Prange KHM, Wareham NJ, et al. 2021.. Impact of cholesterol on proinflammatory monocyte production by the bone marrow. . Eur. Heart J. 42::430920
    [Crossref] [Google Scholar]
  49. 49.
    Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, et al. 2016.. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. . JACC Heart Fail. 4::31224
    [Crossref] [Google Scholar]
  50. 50.
    Hahn VS, Yanek LR, Vaishnav J, Ying W, Vaidya D, et al. 2020.. Endomyocardial biopsy characterization of heart failure with preserved ejection fraction and prevalence of cardiac amyloidosis. . JACC Heart Fail. 8::71224
    [Crossref] [Google Scholar]
  51. 51.
    van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, et al. 2008.. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. . Circulation 117::4351
    [Crossref] [Google Scholar]
  52. 52.
    Giro P, Cunningham JW, Rasmussen-Torvik L, Bielinski SJ, Larson NB, et al. 2023.. Missense genetic variation of ICAM1 and incident heart failure. . J. Card. Fail. 29::116372
    [Crossref] [Google Scholar]
  53. 53.
    Ferrell M, Wang Z, Anderson JT, Li XS, Witkowski M, et al. 2024.. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. . Nat. Med. 30::42434
    [Crossref] [Google Scholar]
  54. 54.
    Patel RB, Colangelo LA, Bielinski SJ, Larson NB, Ding J, et al. 2020.. Circulating vascular cell adhesion molecule-1 and incident heart failure: the Multi-Ethnic Study of Atherosclerosis (MESA). . J. Am. Heart Assoc. 9::e019390
    [Crossref] [Google Scholar]
  55. 55.
    Kuwahara F, Kai H, Tokuda K, Niiyama H, Tahara N, et al. 2003.. Roles of intercellular adhesion molecule-1 in hypertensive cardiac remodeling. . Hypertension 41::81923
    [Crossref] [Google Scholar]
  56. 56.
    Kuwahara F, Kai H, Tokuda K, Takeya M, Takeshita A, et al. 2004.. Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation?. Hypertension 43::73945
    [Crossref] [Google Scholar]
  57. 57.
    Sieweke MH, Allen JE. 2013.. Beyond stem cells: self-renewal of differentiated macrophages. . Science 342::1242974
    [Crossref] [Google Scholar]
  58. 58.
    Nicolas-Avila JA, Lechuga-Vieco AV, Esteban-Martinez L, Sanchez-Diaz M, Diaz-Garcia E, et al. 2020.. A network of macrophages supports mitochondrial homeostasis in the heart. . Cell 183::94109.e23
    [Crossref] [Google Scholar]
  59. 59.
    Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, et al. 2018.. The human heart contains distinct macrophage subsets with divergent origins and functions. . Nat. Med. 24::123445
    [Crossref] [Google Scholar]
  60. 60.
    Mouton AJ, Li X, Hall ME, Hall JE. 2020.. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. . Circ. Res. 126::789806
    [Crossref] [Google Scholar]
  61. 61.
    Oishi Y, Manabe I. 2016.. Macrophages in age-related chronic inflammatory diseases. . NPJ Aging Mech. Dis. 2::16018
    [Crossref] [Google Scholar]
  62. 62.
    Hulsmans M, Sager HB, Roh JD, Valero-Munoz M, Houstis NE, et al. 2018.. Cardiac macrophages promote diastolic dysfunction. . J. Exp. Med. 215::42340
    [Crossref] [Google Scholar]
  63. 63.
    Glezeva N, Voon V, Watson C, Horgan S, McDonald K, et al. 2015.. Exaggerated inflammation and monocytosis associate with diastolic dysfunction in heart failure with preserved ejection fraction: evidence of M2 macrophage activation in disease pathogenesis. . J. Card. Fail. 21::16777
    [Crossref] [Google Scholar]
  64. 64.
    Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X, et al. 2019.. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. . Nat. Immunol. 20::2939
    [Crossref] [Google Scholar]
  65. 65.
    Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, et al. 2014.. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. . Immunity 40::91104
    [Crossref] [Google Scholar]
  66. 66.
    Hotamisligil GS. 2017.. Foundations of immunometabolism and implications for metabolic health and disease. . Immunity 47::40620
    [Crossref] [Google Scholar]
  67. 67.
    Oikonomou EK, Antoniades C. 2019.. The role of adipose tissue in cardiovascular health and disease. . Nat. Rev. Cardiol. 16::8399
    [Crossref] [Google Scholar]
  68. 68.
    Murphy MP, O'Neill LAJ. 2018.. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. . Cell 174::78084
    [Crossref] [Google Scholar]
  69. 69.
    Ryan DG, O'Neill LAJ. 2020.. Krebs cycle reborn in macrophage immunometabolism. . Annu. Rev. Immunol. 38::289313
    [Crossref] [Google Scholar]
  70. 70.
    Arts RJ, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, et al. 2016.. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. . Cell Metab. 24::80719
    [Crossref] [Google Scholar]
  71. 71.
    Liu PS, Wang H, Li X, Chao T, Teav T, et al. 2017.. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. . Nat. Immunol. 18::98594
    [Crossref] [Google Scholar]
  72. 72.
    Mills EL, Kelly B, Logan A, Costa ASH, Varma M, et al. 2016.. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. . Cell 167::45770.e13
    [Crossref] [Google Scholar]
  73. 73.
    Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S, et al. 2018.. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. . Cell Metab. 27::1096110.e5
    [Crossref] [Google Scholar]
  74. 74.
    Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, et al. 2019.. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. . Cell Metab. 29::44356.e5
    [Crossref] [Google Scholar]
  75. 75.
    Pinto AR, Godwin JW, Chandran A, Hersey L, Ilinykh A, et al. 2014.. Age-related changes in tissue macrophages precede cardiac functional impairment. . Aging 6::399413
    [Crossref] [Google Scholar]
  76. 76.
    Alvandi Z, Bischoff J. 2021.. Endothelial-mesenchymal transition in cardiovascular disease. . Arterioscler. Thromb. Vasc. Biol. 41::235769
    [Crossref] [Google Scholar]
  77. 77.
    Paulus WJ, Zile MR. 2021.. From systemic inflammation to myocardial fibrosis: the heart failure with preserved ejection fraction paradigm revisited. . Circ. Res. 128::145167
    [Crossref] [Google Scholar]
  78. 78.
    Abe H, Tanada Y, Omiya S, Podaru MN, Murakawa T, et al. 2021.. NF-κB activation in cardiac fibroblasts results in the recruitment of inflammatory Ly6Chi monocytes in pressure-overloaded hearts. . Sci. Signal 14::eabe4932
    [Crossref] [Google Scholar]
  79. 79.
    Ngwenyama N, Kaur K, Bugg D, Theall B, Aronovitz M, et al. 2022.. Antigen presentation by cardiac fibroblasts promotes cardiac dysfunction. . Nat. Cardiovasc. Res. 1::76174
    [Crossref] [Google Scholar]
  80. 80.
    Hadad N, Burgazliev O, Elgazar-Carmon V, Solomonov Y, Wueest S, et al. 2013.. Induction of cytosolic phospholipase a2α is required for adipose neutrophil infiltration and hepatic insulin resistance early in the course of high-fat feeding. . Diabetes 62::305363
    [Crossref] [Google Scholar]
  81. 81.
    Zhang XL, Wang TY, Chen Z, Wang HW, Yin Y, et al. 2022.. HMGB1-promoted neutrophil extracellular traps contribute to cardiac diastolic dysfunction in mice. . J. Am. Heart Assoc. 11::e023800
    [Crossref] [Google Scholar]
  82. 82.
    Hage C, Michaelsson E, Kull B, Miliotis T, Svedlund S, et al. 2020.. Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients. . ESC Heart Fail. 7::153446
    [Crossref] [Google Scholar]
  83. 83.
    Blanton RM, Carrillo-Salinas FJ, Alcaide P. 2019.. T-cell recruitment to the heart: friendly guests or unwelcome visitors?. Am. J. Physiol. Heart Circ. Physiol. 317::H12440
    [Crossref] [Google Scholar]
  84. 84.
    Kallikourdis M, Martini E, Carullo P, Sardi C, Roselli G, et al. 2017.. T cell costimulation blockade blunts pressure overload-induced heart failure. . Nat. Commun. 8::14680
    [Crossref] [Google Scholar]
  85. 85.
    Li N, Bian H, Zhang J, Li X, Ji X, Zhang Y. 2010.. The Th17/Treg imbalance exists in patients with heart failure with normal ejection fraction and heart failure with reduced ejection fraction. . Clin. Chim. Acta 411::196368
    [Crossref] [Google Scholar]
  86. 86.
    Smolgovsky S, Bayer AL, Kaur K, Sanders E, Aronovitz M, et al. 2023.. Impaired T cell IRE1α/XBP1 signaling directs inflammation in experimental heart failure with preserved ejection fraction. . J. Clin. Investig. 133::e171874
    [Crossref] [Google Scholar]
  87. 87.
    Kumar P, Lim A, Poh SL, Hazirah SN, Chua CJH, et al. 2022.. Pro-inflammatory derangement of the immuno-interactome in heart failure. . Front. Immunol. 13::817514
    [Crossref] [Google Scholar]
  88. 88.
    Yue X, Lio CJ, Samaniego-Castruita D, Li X, Rao A. 2019.. Loss of TET2 and TET3 in regulatory T cells unleashes effector function. . Nat. Commun. 10::2011
    [Crossref] [Google Scholar]
  89. 89.
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, et al. 2009.. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. . Nat. Med. 15::93039
    [Crossref] [Google Scholar]
  90. 90.
    Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, et al. 2010.. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. . PNAS 107::976570
    [Crossref] [Google Scholar]
  91. 91.
    Packer M. 2020.. Link between synovial and myocardial inflammation: conceptual framework to explain the pathogenesis of heart failure with preserved ejection fraction in patients with systemic rheumatic diseases. . Card. Fail. Rev. 6::e10
    [Crossref] [Google Scholar]
  92. 92.
    Cosgrove J, Hustin LSP, de Boer RJ, Perie L. 2021.. Hematopoiesis in numbers. . Trends Immunol. 42::110012
    [Crossref] [Google Scholar]
  93. 93.
    Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, et al. 2015.. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. . Nature 518::54246
    [Crossref] [Google Scholar]
  94. 94.
    Sawai CM, Babovic S, Upadhaya S, Knapp D, Lavin Y, et al. 2016.. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. . Immunity 45::597609
    [Crossref] [Google Scholar]
  95. 95.
    Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, et al. 2018.. Clonal analysis of lineage fate in native haematopoiesis. . Nature 553::21216
    [Crossref] [Google Scholar]
  96. 96.
    Cordeiro Gomes A, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, et al. 2016.. Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. . Immunity 45::121931
    [Crossref] [Google Scholar]
  97. 97.
    Huang E, Nocka K, Beier DR, Chu TY, Buck J, et al. 1990.. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. . Cell 63::22533
    [Crossref] [Google Scholar]
  98. 98.
    Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, et al. 2002.. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. . Cell 109::62537
    [Crossref] [Google Scholar]
  99. 99.
    Sugiyama T, Kohara H, Noda M, Nagasawa T. 2006.. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. . Immunity 25::97788
    [Crossref] [Google Scholar]
  100. 100.
    Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. 2011.. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. . J. Exp. Med. 208::25160
    [Crossref] [Google Scholar]
  101. 101.
    Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. 2003.. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. . J. Clin. Investig. 111::18796
    [Crossref] [Google Scholar]
  102. 102.
    Cheng H, Zheng Z, Cheng T. 2020.. New paradigms on hematopoietic stem cell differentiation. . Protein Cell 11::3444
    [Crossref] [Google Scholar]
  103. 103.
    Ho YH, Del Toro R, Rivera-Torres J, Rak J, Korn C, et al. 2019.. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. . Cell Stem Cell 25::40718.e6
    [Crossref] [Google Scholar]
  104. 104.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, et al. 2009.. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. . Science 325::61216
    [Crossref] [Google Scholar]
  105. 105.
    Inra CN, Zhou BO, Acar M, Murphy MM, Richardson J, et al. 2015.. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. . Nature 527::46671
    [Crossref] [Google Scholar]
  106. 106.
    Coppin E, Florentin J, Vasamsetti SB, Arunkumar A, Sembrat J, et al. 2018.. Splenic hematopoietic stem cells display a pre-activated phenotype. . Immunol. Cell Biol. 96::77284
    [Crossref] [Google Scholar]
  107. 107.
    Morita Y, Iseki A, Okamura S, Suzuki S, Nakauchi H, Ema H. 2011.. Functional characterization of hematopoietic stem cells in the spleen. . Exp. Hematol. 39::35159.e3
    [Crossref] [Google Scholar]
  108. 108.
    Sager HB, Heidt T, Hulsmans M, Dutta P, Courties G, et al. 2015.. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. . Circulation 132::188090
    [Crossref] [Google Scholar]
  109. 109.
    Gomes AL, Carvalho T, Serpa J, Torre C, Dias S. 2010.. Hypercholesterolemia promotes bone marrow cell mobilization by perturbing the SDF-1:CXCR4 axis. . Blood 115::388694
    [Crossref] [Google Scholar]
  110. 110.
    Westerterp M, Gourion-Arsiquaud S, Murphy AJ, Shih A, Cremers S, et al. 2012.. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. . Cell Stem Cell 11::195206
    [Crossref] [Google Scholar]
  111. 111.
    Dutta P, Hoyer FF, Grigoryeva LS, Sager HB, Leuschner F, Courties G, et al. 2015.. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. . J. Exp. Med. 212::497512
    [Crossref] [Google Scholar]
  112. 112.
    Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Worth CL, et al. 2020.. Cells of the adult human heart. . Nature 588::46672
    [Crossref] [Google Scholar]
  113. 113.
    Swanson KV, Deng M, Ting JP. 2019.. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. . Nat. Rev. Immunol. 19::47789
    [Crossref] [Google Scholar]
  114. 114.
    Valero-Munoz M, Li S, Wilson RM, Boldbaatar B, Iglarz M, Sam F. 2016.. Dual endothelin-A/endothelin-B receptor blockade and cardiac remodeling in heart failure with preserved ejection fraction. . Circ. Heart Fail. 9::e003381
    [Crossref] [Google Scholar]
  115. 115.
    Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, et al. 2011.. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. . PNAS 108::1972530
    [Crossref] [Google Scholar]
  116. 116.
    Fan J, Ren M, Adhikari BK, Wang H, He Y. 2022.. The NLRP3 inflammasome as a novel therapeutic target for cardiac fibrosis. . J. Inflamm. Res. 15::384758
    [Crossref] [Google Scholar]
  117. 117.
    Deng Y, Xie M, Li Q, Xu X, Ou W, et al. 2021.. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. . Circ. Res. 128::23245
    [Crossref] [Google Scholar]
  118. 118.
    Paulus WJ, Tschope C. 2013.. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. . J. Am. Coll. Cardiol. 62::26371
    [Crossref] [Google Scholar]
  119. 119.
    van Heerebeek L, Hamdani N, Falcao-Pires I, Leite-Moreira AF, Begieneman MP, et al. 2012.. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. . Circulation 126::83039
    [Crossref] [Google Scholar]
  120. 120.
    Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, et al. 2019.. Nitrosative stress drives heart failure with preserved ejection fraction. . Nature 568::35156
    [Crossref] [Google Scholar]
  121. 121.
    Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, et al. 2015.. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. . Eur. Heart J. 36::258594
    [Crossref] [Google Scholar]
  122. 122.
    Ropelle ER, Pauli JR, Cintra DE, da Silva AS, De Souza CT, et al. 2013.. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. . Diabetes 62::46670
    [Crossref] [Google Scholar]
  123. 123.
    White PJ, Charbonneau A, Cooney GJ, Marette A. 2010.. Nitrosative modifications of protein and lipid signaling molecules by reactive nitrogen species. . Am. J. Physiol. Endocrinol. Metab. 299::E86878
    [Crossref] [Google Scholar]
  124. 124.
    Recchia FA, Osorio JC, Chandler MP, Xu X, Panchal AR, et al. 2002.. Reduced synthesis of NO causes marked alterations in myocardial substrate metabolism in conscious dogs. . Am. J. Physiol. Endocrinol. Metab. 282::E197206
    [Crossref] [Google Scholar]
  125. 125.
    Komajda M, Lam CS. 2014.. Heart failure with preserved ejection fraction: a clinical dilemma. . Eur. Heart J. 35::102232
    [Crossref] [Google Scholar]
  126. 126.
    Reddy YNV, Obokata M, Verbrugge FH, Lin G, Borlaug BA. 2020.. Atrial dysfunction in patients with heart failure with preserved ejection fraction and atrial fibrillation. . J. Am. Coll. Cardiol. 76::105164
    [Crossref] [Google Scholar]
  127. 127.
    Mesquita TRR, Zhang R, de Couto G, Valle J, Sanchez L, et al. 2020.. Mechanisms of atrial fibrillation in aged rats with heart failure with preserved ejection fraction. . Heart Rhythm 17::102533
    [Crossref] [Google Scholar]
  128. 128.
    Cho JH, Zhang R, Kilfoil PJ, Gallet R, de Couto G, et al. 2017.. Delayed repolarization underlies ventricular arrhythmias in rats with heart failure and preserved ejection fraction. . Circulation 136::203750
    [Crossref] [Google Scholar]
  129. 129.
    Cho JH, Kilfoil PJ, Zhang R, Solymani RE, Bresee C, et al. 2018.. Reverse electrical remodeling in rats with heart failure and preserved ejection fraction. . JCI Insight 3::e121123
    [Crossref] [Google Scholar]
  130. 130.
    Miranda-Silva D, Wust RCI, Conceicao G, Goncalves-Rodrigues P, Goncalves N, et al. 2020.. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. . Acta Physiol. 228::e13378
    [Crossref] [Google Scholar]
  131. 131.
    Bode D, Wen Y, Hegemann N, Primessnig U, Parwani A, et al. 2020.. Oxidative stress and inflammatory modulation of Ca2+ handling in metabolic HFpEF-related left atrial cardiomyopathy. . Antioxidants 9::860
    [Crossref] [Google Scholar]
  132. 132.
    Kumar AA, Kelly DP, Chirinos JA. 2019.. Mitochondrial dysfunction in heart failure with preserved ejection fraction. . Circulation 139::143550
    [Crossref] [Google Scholar]
  133. 133.
    Stanley WC, Recchia FA, Lopaschuk GD. 2005.. Myocardial substrate metabolism in the normal and failing heart. . Physiol. Rev. 85::1093129
    [Crossref] [Google Scholar]
  134. 134.
    Lopaschuk GD, Folmes CD, Stanley WC. 2007.. Cardiac energy metabolism in obesity. . Circ. Res. 101::33547
    [Crossref] [Google Scholar]
  135. 135.
    Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. 2004.. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. . Ann. N. Y. Acad. Sci. 1015::20213
    [Crossref] [Google Scholar]
  136. 136.
    Aimo A, Cerbai E, Bartolucci G, Adamo L, Barison A, et al. 2020.. Pirfenidone is a cardioprotective drug: mechanisms of action and preclinical evidence. . Pharmacol. Res. 155::104694
    [Crossref] [Google Scholar]
  137. 137.
    Liu RM, Desai LP. 2015.. Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. . Redox. Biol. 6::56577
    [Crossref] [Google Scholar]
  138. 138.
    World Health Organ. 2024.. Obesity and overweight. Key facts. . World Health Organization. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
    [Google Scholar]
  139. 139.
    Packer M. 2020.. Do most patients with obesity or type 2 diabetes, and atrial fibrillation, also have undiagnosed heart failure? A critical conceptual framework for understanding mechanisms and improving diagnosis and treatment. . Eur. J. Heart Fail. 22::21427
    [Crossref] [Google Scholar]
  140. 140.
    Dalos D, Mascherbauer J, Zotter-Tufaro C, Duca F, Kammerlander AA, et al. 2016.. Functional status, pulmonary artery pressure, and clinical outcomes in heart failure with preserved ejection fraction. . J. Am. Coll. Cardiol. 68::18999
    [Crossref] [Google Scholar]
  141. 141.
    Hotamisligil GS. 2006.. Inflammation and metabolic disorders. . Nature 444::86067
    [Crossref] [Google Scholar]
  142. 142.
    van Oostrom AJ, Rabelink TJ, Verseyden C, Sijmonsma TP, Plokker HW, et al. 2004.. Activation of leukocytes by postprandial lipemia in healthy volunteers. . Atherosclerosis 177::17582
    [Crossref] [Google Scholar]
  143. 143.
    Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M, et al. 2011.. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. . Circulation 124::44453
    [Crossref] [Google Scholar]
  144. 144.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, et al. 2007.. Metabolic endotoxemia initiates obesity and insulin resistance. . Diabetes 56::176172
    [Crossref] [Google Scholar]
  145. 145.
    Wu H, Ballantyne CM. 2020.. Metabolic inflammation and insulin resistance in obesity. . Circ. Res. 126::154964
    [Crossref] [Google Scholar]
  146. 146.
    Karlsson T, Rask-Andersen M, Pan G, Höglund J, Wadelius C, et al. 2019.. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. . Nat. Med. 25::139095
    [Crossref] [Google Scholar]
  147. 147.
    Sorimachi H, Obokata M, Takahashi N, Reddy YNV, Jain CC, et al. 2021.. Pathophysiologic importance of visceral adipose tissue in women with heart failure and preserved ejection fraction. . Eur. Heart J. 42::1595605
    [Crossref] [Google Scholar]
  148. 148.
    van Woerden G, van Veldhuisen DJ, Manintveld OC, van Empel VPM, Willems TP, et al. 2022.. Epicardial adipose tissue and outcome in heart failure with mid-range and preserved ejection fraction. . Circ. Heart Fail. 15::e009238
    [Crossref] [Google Scholar]
  149. 149.
    Iacobellis G, Barbaro G. 2008.. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. . Horm. Metab. Res. 40::44245
    [Crossref] [Google Scholar]
  150. 150.
    Koepp KE, Obokata M, Reddy YNV, Olson TP, Borlaug BA. 2020.. Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction. . JACC Heart Fail. 8::65766
    [Crossref] [Google Scholar]
  151. 151.
    Obokata M, Reddy YNV, Melenovsky V, Sorimachi H, Jarolim P, Borlaug BA. 2022.. Uncoupling between intravascular and distending pressures leads to underestimation of circulatory congestion in obesity. . Eur. J. Heart Fail. 24::35361
    [Crossref] [Google Scholar]
  152. 152.
    Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. 2008.. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. . Diabetes 57::323946
    [Crossref] [Google Scholar]
  153. 153.
    Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, et al. 2010.. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. . Diabetes 59::164856
    [Crossref] [Google Scholar]
  154. 154.
    Hill DA, Lim HW, Kim YH, Ho WY, Foong YH, et al. 2018.. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. . PNAS 115::E5096105
    [Crossref] [Google Scholar]
  155. 155.
    Smart CD, Fehrenbach DJ, Wassenaar JW, Agrawal V, Fortune NL, et al. 2023.. Immune profiling of murine cardiac leukocytes identifies triggering receptor expressed on myeloid cells 2 as a novel mediator of hypertensive heart failure. . Cardiovasc. Res. 119::231228
    [Crossref] [Google Scholar]
  156. 156.
    Nomura SO, Karger AB, Weir NL, Lima JAC, Thanassoulis G, Tsai MY. 2021.. Free fatty acids and heart failure in the Multi-Ethnic Study of Atherosclerosis (MESA). . J. Clin. Lipidol. 15::60817
    [Crossref] [Google Scholar]
  157. 157.
    Zhu N, Jiang W, Wang Y, Wu Y, Chen H, Zhao X. 2018.. Plasma levels of free fatty acid differ in patients with left ventricular preserved, mid-range, and reduced ejection fraction. . BMC Cardiovasc. Disord. 18::104
    [Crossref] [Google Scholar]
  158. 158.
    Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, et al. 2019.. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. . N. Engl. J. Med. 381::160920
    [Crossref] [Google Scholar]
  159. 159.
    Selvaraj S, Claggett BL, Packer M, Zannad F, Anand IS, et al. 2021.. Effects of sacubitril/valsartan on serum lipids in heart failure with preserved ejection fraction. . J. Am. Heart Assoc. 10::e022069
    [Crossref] [Google Scholar]
  160. 160.
    Zordoky BN, Sung MM, Ezekowitz J, Mandal R, Han B, et al. 2015.. Metabolomic fingerprint of heart failure with preserved ejection fraction. . PLOS ONE 10::e0124844
    [Crossref] [Google Scholar]
  161. 161.
    Hahn VS, Petucci C, Kim MS, Bedi KC, Wang H, et al. 2023.. Myocardial metabolomics of human heart failure with preserved ejection fraction. . Circulation 147::114761
    [Crossref] [Google Scholar]
  162. 162.
    Abdellatif M, Trummer-Herbst V, Koser F, Durand S, Adao R, et al. 2021.. Nicotinamide for the treatment of heart failure with preserved ejection fraction. . Sci. Transl. Med. 13::eabd7064
    [Crossref] [Google Scholar]
  163. 163.
    Tong D, Schiattarella GG, Jiang N, Altamirano F, Szweda PA, et al. 2021.. NAD+ repletion reverses heart failure with preserved ejection fraction. . Circ. Res. 128::162941
    [Crossref] [Google Scholar]
  164. 164.
    Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, et al. 2018.. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. . Nat. Commun. 9::1286
    [Crossref] [Google Scholar]
  165. 165.
    McNeil JJ, Wolfe R, Woods RL, Tonkin AM, Donnan GA, et al. 2018.. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. . N. Engl. J. Med. 379::150918
    [Crossref] [Google Scholar]
  166. 166.
    Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, et al. 2018.. Effects of aspirin for primary prevention in persons with diabetes mellitus. . N. Engl. J. Med. 379::152939
    [Crossref] [Google Scholar]
  167. 167.
    Gaziano JM, Brotons C, Coppolecchia R, Cricelli C, Darius H, et al. 2018.. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. . Lancet 392::103646
    [Crossref] [Google Scholar]
  168. 168.
    Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, et al. 2019.. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. . J. Am. Coll. Cardiol. 74::1376414
    [Crossref] [Google Scholar]
  169. 169.
    Thorp EB. 2016.. Proresolving lipid mediators restore balance to the vulnerable plaque. . Circ. Res. 119::97274
    [Crossref] [Google Scholar]
  170. 170.
    Tardif JC, McMurray JJ, Klug E, Small R, Schumi J, et al. 2008.. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. . Lancet 371::176168
    [Crossref] [Google Scholar]
  171. 171.
    Fu T, Mohan M, Brennan EP, Woodman OL, Godson C, et al. 2020.. Therapeutic potential of lipoxin A. . ACS Pharmacol. Transl. Sci. 3::4355
    [Crossref] [Google Scholar]
  172. 172.
    Halade GV, Kain V, Black LM, Prabhu SD, Ingle KA. 2016.. Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction. . Aging 8::261134
    [Crossref] [Google Scholar]
  173. 173.
    Palmu J, Watrous JD, Mercader K, Havulinna AS, Lagerborg KA, et al. 2020.. Eicosanoid inflammatory mediators are robustly associated with blood pressure in the general population. . J. Am. Heart Assoc. 9::e017598
    [Crossref] [Google Scholar]
  174. 174.
    Lau ES, Roshandelpoor A, Zarbafian S, Wang D, Guseh JS, et al. 2023.. Eicosanoid and eicosanoid-related inflammatory mediators and exercise intolerance in heart failure with preserved ejection fraction. . Nat. Commun. 14::7557
    [Crossref] [Google Scholar]
  175. 175.
    U. N. Dep. Econ. Soc. Aff. 2017.. World population ageing 2017—highlights. Rep. ST/ESA/SER.A/397 , United Nations, New York:. https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf
    [Google Scholar]
  176. 176.
    Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, et al. 2008.. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. . PLOS Biol. 6::285368
    [Crossref] [Google Scholar]
  177. 177.
    Puzianowska-Kuznicka M, Owczarz M, Wieczorowska-Tobis K, Nadrowski P, Chudek J, et al. 2016.. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. . Immun. Ageing 13::21
    [Crossref] [Google Scholar]
  178. 178.
    Englund DA, Jolliffe A, Aversa Z, Zhang X, Sturmlechner I, et al. 2023.. p21 induces a senescence program and skeletal muscle dysfunction. . Mol. Metab. 67::101652
    [Crossref] [Google Scholar]
  179. 179.
    Tomiyama H, Shiina K, Matsumoto-Nakano C, Ninomiya T, Komatsu S, et al. 2017.. The contribution of inflammation to the development of hypertension mediated by increased arterial stiffness. . J. Am. Heart Assoc. 6::e005729
    [Crossref] [Google Scholar]
  180. 180.
    Stojanović SD, Fiedler J, Bauersachs J, Thum T, Sedding DG. 2020.. Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. . Eur. Heart J. 41::298396
    [Crossref] [Google Scholar]
  181. 181.
    Aviv A, Levy D. 2019.. Hemothelium, clonal hematopoiesis of indeterminate potential, and atherosclerosis. . Circulation 139::79
    [Crossref] [Google Scholar]
  182. 182.
    Libby P, Sidlow R, Lin AE, Gupta D, Jones LW, et al. 2019.. Clonal hematopoiesis: crossroads of aging, cardiovascular disease, and cancer. . J. Am. Coll. Cardiol. 74::56777
    [Crossref] [Google Scholar]
  183. 183.
    Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, et al. 2017.. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. . Science 355::84247
    [Crossref] [Google Scholar]
  184. 184.
    Sano S, Oshima K, Wang Y, Katanasaka Y, Sano M, Walsh K. 2018.. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. . Circ. Res. 123::33541
    [Crossref] [Google Scholar]
  185. 185.
    Pascual-Figal DA, Bayes-Genis A, Diez-Diez M, Hernandez-Vicente A, Vazquez-Andres D, et al. 2021.. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. . J. Am. Coll. Cardiol. 77::174759
    [Crossref] [Google Scholar]
  186. 186.
    Crittenden DB, Lehmann RA, Schneck L, Keenan RT, Shah B, et al. 2012.. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. . J. Rheumatol. 39::145864
    [Crossref] [Google Scholar]
  187. 187.
    Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. 2013.. Low-dose colchicine for secondary prevention of cardiovascular disease. . J. Am. Coll. Cardiol. 61::40410
    [Crossref] [Google Scholar]
  188. 188.
    Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, et al. 2019.. Efficacy and safety of low-dose colchicine after myocardial infarction. . N. Engl. J. Med. 381::2497505
    [Crossref] [Google Scholar]
  189. 189.
    Liu H, Huang Y, Zhao Y, Kang GJ, Feng F, et al. 2023.. Inflammatory macrophage interleukin-1β mediates high-fat diet-induced heart failure with preserved ejection fraction. . JACC Basic Transl. Sci. 8::17485
    [Crossref] [Google Scholar]
  190. 190.
    Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL, et al. 2010.. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. . J. Am. Coll. Cardiol. 55::212937
    [Crossref] [Google Scholar]
  191. 191.
    Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, et al. 2004.. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). . Circulation 109::1594602
    [Crossref] [Google Scholar]
  192. 192.
    Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, et al. 2003.. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. . Circulation 107::313340
    [Crossref] [Google Scholar]
  193. 193.
    Lewis GA, Dodd S, Clayton D, Bedson E, Eccleson H, et al. 2021.. Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. . Nat. Med. 27::147782
    [Crossref] [Google Scholar]
  194. 194.
    Sachs S, Zarini S, Kahn DE, Harrison KA, Perreault L, et al. 2019.. Intermuscular adipose tissue directly modulates skeletal muscle insulin sensitivity in humans. . Am. J. Physiol. Endocrinol. Metab. 316::E86679
    [Crossref] [Google Scholar]
  195. 195.
    Pandey A, LaMonte M, Klein L, Ayers C, Psaty BM, et al. 2017.. Relationship between physical activity, body mass index, and risk of heart failure. . J. Am. Coll. Cardiol. 69::112942
    [Crossref] [Google Scholar]
  196. 196.
    Kolwicz SC Jr. 2018.. An “exercise” in cardiac metabolism. . Front. Cardiovasc. Med. 5::66
    [Crossref] [Google Scholar]
  197. 197.
    Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, et al. 2023.. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. . N. Engl. J. Med. 389::106984
    [Crossref] [Google Scholar]
  198. 198.
    Drucker DJ. 2022.. GLP-1 physiology informs the pharmacotherapy of obesity. . Mol. Metab. 57::101351
    [Crossref] [Google Scholar]
  199. 199.
    Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr., et al. 2009.. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. . Lancet 373::117582
    [Crossref] [Google Scholar]
  200. 200.
    Ridker PM, Morrow DA, Rose LM, Rifai N, Cannon CP, Braunwald E. 2005.. Relative efficacy of atorvastatin 80 mg and pravastatin 40 mg in achieving the dual goals of low-density lipoprotein cholesterol <70 mg/dl and C-reactive protein <2 mg/l: an analysis of the PROVE-IT TIMI-22 trial. . J. Am. Coll. Cardiol. 45::164448
    [Crossref] [Google Scholar]
  201. 201.
    Marume K, Takashio S, Nagai T, Tsujita K, Saito Y, et al. 2019.. Effect of statins on mortality in heart failure with preserved ejection fraction without coronary artery disease—report from the JASPER study. . Circ. J. 83::35767
    [Crossref] [Google Scholar]
  202. 202.
    Zakeri R, Chamberlain AM, Roger VL, Redfield MM. 2013.. Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study. . Circulation 128::108593
    [Crossref] [Google Scholar]
  203. 203.
    Anker SD, Butler J, Packer M. 2022.. Empagliflozin in heart failure with a preserved ejection fraction. Reply. . N. Engl. J. Med. 386::e57
    [Crossref] [Google Scholar]
  204. 204.
    Kim SR, Lee SG, Kim SH, Kim JH, Choi E, et al. 2020.. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. . Nat. Commun. 11::2127
    [Crossref] [Google Scholar]
  205. 205.
    Benetti E, Mastrocola R, Vitarelli G, Cutrin JC, Nigro D, et al. 2016.. Empagliflozin protects against diet-induced NLRP-3 inflammasome activation and lipid accumulation. . J. Pharmacol. Exp. Ther. 359::4553
    [Crossref] [Google Scholar]
  206. 206.
    Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, et al. 2017.. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. . EBioMedicine 20::13749
    [Crossref] [Google Scholar]
  207. 207.
    Mustroph J, Wagemann O, Lucht CM, Trum M, Hammer KP, et al. 2018.. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. . ESC Heart Fail. 5::64248
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023405
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023405
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error