1932

Abstract

Pathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell–cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023417
2025-01-24
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023417.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023417&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Virchow R. 1858.. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin:: Hirschwald. https://www.digitale-sammlungen.de/de/view/bsb10926743?page=5
    [Google Scholar]
  2. 2.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. 2001.. Initial sequencing and analysis of the human genome. . Nature 409:(6822):860921
    [Crossref] [Google Scholar]
  3. 3.
    Brown NA, Elenitoba-Johnson KSJ. 2020.. Enabling precision oncology through precision diagnostics. . Annu. Rev. Pathol. Mech. Dis. 15::97121
    [Crossref] [Google Scholar]
  4. 4.
    Aizarani N, Saviano A, Sagar, Mailly L, Durand S, et al. 2019.. A human liver cell atlas reveals heterogeneity and epithelial progenitors. . Nature 572:(7768):199204
    [Crossref] [Google Scholar]
  5. 5.
    Baysoy A, Bai Z, Satija R, Fan R. 2023.. The technological landscape and applications of single-cell multi-omics. . Nat. Rev. Mol. Cell Biol. 24:(10):695713
    [Crossref] [Google Scholar]
  6. 6.
    Plass M, Solana J, Wolf FA, Ayoub S, Misios A, et al. 2018.. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. . Science 360:(6391):eaaq1723
    [Crossref] [Google Scholar]
  7. 7.
    Rajewsky N, Almouzni G, Gorski SA, Aerts S, Amit I, et al. 2020.. LifeTime and improving European healthcare through cell-based interceptive medicine. . Nature 587:(7834):37786
    [Crossref] [Google Scholar]
  8. 8.
    Lim J, Chin V, Fairfax K, Moutinho C, Suan D, et al. 2023.. Transitioning single-cell genomics into the clinic. . Nat. Rev. Genet. 24:(8):57384
    [Crossref] [Google Scholar]
  9. 9.
    van den Brink SC, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J, et al. 2017.. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. . Nat. Methods 14:(10):93536
    [Crossref] [Google Scholar]
  10. 10.
    Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, et al. 2020.. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. . Nat. Med. 26:(5):792802
    [Crossref] [Google Scholar]
  11. 11.
    Wang Y, Fan JL, Melms JC, Amin AD, Georgis Y, et al. 2023.. Multimodal single-cell and whole-genome sequencing of small, frozen clinical specimens. . Nat. Genet. 55:(1):1925
    [Crossref] [Google Scholar]
  12. 12.
    Vallejo AF, Harvey K, Wang T, Wise K, Butler LM, et al. 2022.. snPATHO-seq: unlocking the FFPE archives for single nucleus RNA profiling. . bioRxiv 2022.08.23.505054. https://doi.org/10.1101/2022.08.23.505054
  13. 13.
    Palla G, Fischer DS, Regev A, Theis FJ. 2022.. Spatial components of molecular tissue biology. . Nat. Biotechnol. 40:(3):30818
    [Crossref] [Google Scholar]
  14. 14.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 2015.. Spatial reconstruction of single-cell gene expression data. . Nat. Biotechnol. 33:(5):495502
    [Crossref] [Google Scholar]
  15. 15.
    Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, et al. 2017.. The Drosophila embryo at single-cell transcriptome resolution. . Science 358:(6360):19499
    [Crossref] [Google Scholar]
  16. 16.
    Nitzan M, Karaiskos N, Friedman N, Rajewsky N. 2019.. Gene expression cartography. . Nature 576::13237
    [Crossref] [Google Scholar]
  17. 17.
    Marx V. 2021.. Method of the year: spatially resolved transcriptomics. . Nat. Methods 18:(1):914
    [Crossref] [Google Scholar]
  18. 18.
    Moses L, Pachter L. 2022.. Museum of spatial transcriptomics. . Nat. Methods 19:(5):53446
    [Crossref] [Google Scholar]
  19. 19.
    Rao A, Barkley D, França GS, Yanai I. 2021.. Exploring tissue architecture using spatial transcriptomics. . Nature 596:(7871):21120
    [Crossref] [Google Scholar]
  20. 20.
    Longo SK, Guo MG, Ji AL, Khavari PA. 2021.. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. . Nat. Rev. Genet. 22:(10):62744
    [Crossref] [Google Scholar]
  21. 21.
    Asp M, Bergenstråhle J, Lundeberg J. 2020.. Spatially resolved transcriptomes—next generation tools for tissue exploration. . Bioessays 42:(10):e1900221
    [Crossref] [Google Scholar]
  22. 22.
    Park J, Kim J, Lewy T, Rice CM, Elemento O, et al. 2022.. Spatial omics technologies at multimodal and single cell/subcellular level. . Genome Biol. 23:(1):256
    [Crossref] [Google Scholar]
  23. 23.
    Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N, et al. 2019.. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. . Nature 568:(7751):23539
    [Crossref] [Google Scholar]
  24. 24.
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 2015.. Spatially resolved, highly multiplexed RNA profiling in single cells. . Science 348:(6233):aaa6090
    [Crossref] [Google Scholar]
  25. 25.
    He S, Bhatt R, Brown C, Brown EA, Buhr DL, et al. 2022.. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. . Nat. Biotechnol. 40:(12):1794806
    [Crossref] [Google Scholar]
  26. 26.
    Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, et al. 2013.. In situ sequencing for RNA analysis in preserved tissue and cells. . Nat. Methods 10:(9):85760
    [Crossref] [Google Scholar]
  27. 27.
    Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, et al. 2018.. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. . Science 361:(6400):eaat5691
    [Crossref] [Google Scholar]
  28. 28.
    Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L, et al. 2019.. High-definition spatial transcriptomics for in situ tissue profiling. . Nat. Methods 16:(10):98790
    [Crossref] [Google Scholar]
  29. 29.
    Liu Y, Yang M, Deng Y, Su G, Enninful A, et al. 2020.. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. . Cell 183:(6):166581.e18
    [Crossref] [Google Scholar]
  30. 30.
    Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, et al. 2019.. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. . Science 363:(6434):146367
    [Crossref] [Google Scholar]
  31. 31.
    Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022.. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. . Cell 185:(10):177792.e21
    [Crossref] [Google Scholar]
  32. 32.
    Cho C-S, Xi J, Si Y, Park S-R, Hsu J-E, et al. 2021.. Microscopic examination of spatial transcriptome using Seq-Scope. . Cell 184:(13):355972.e22
    [Crossref] [Google Scholar]
  33. 33.
    Schott M, León-Periñán D, Splendiani E, Strenger L, Licha JR, et al. 2024.. Open-ST: high-resolution spatial transcriptomics in 3D. . Cell 187:(15):395372.e26
    [Crossref] [Google Scholar]
  34. 34.
    Perkel JM. 2019.. Starfish enterprise: finding RNA patterns in single cells. . Nature 572:(7770):54951
    [Crossref] [Google Scholar]
  35. 35.
    Sztanka-Toth TR, Jens M, Karaiskos N, Rajewsky N. 2022.. Spacemake: processing and analysis of large-scale spatial transcriptomics data. . Gigascience 11::giac064
    [Crossref] [Google Scholar]
  36. 36.
    Stringer C, Wang T, Michaelos M, Pachitariu M. 2021.. Cellpose: a generalist algorithm for cellular segmentation. . Nat. Methods 18:(1):1006
    [Crossref] [Google Scholar]
  37. 37.
    Petukhov V, Xu RJ, Soldatov RA, Cadinu P, Khodosevich K, et al. 2022.. Cell segmentation in imaging-based spatial transcriptomics. . Nat. Biotechnol. 40:(3):34554
    [Crossref] [Google Scholar]
  38. 38.
    Lee Y, Chen ELY, Chan DCH, Dinesh A, Afiuni-Zadeh S, et al. 2024.. Segmentation error aware clustering for highly multiplexed imaging. . bioRxiv 2024.02.29.582827. https://doi.org/10.1101/2024.02.29.582827
  39. 39.
    Luecken MD, Theis FJ. 2019.. Current best practices in single-cell RNA-seq analysis: a tutorial. . Mol. Syst. Biol. 15:(6):e8746
    [Crossref] [Google Scholar]
  40. 40.
    Atta L, Clifton K, Anant M, Aihara G, Fan J. 2024.. Gene count normalization in single-cell imaging-based spatially resolved transcriptomics. . Genome Biol. 25::153
    [Crossref] [Google Scholar]
  41. 41.
    Moses L, Einarsson PH, Jackson K, Luebbert L, Booeshaghi AS, et al. 2023.. Voyager: exploratory single-cell genomics data analysis with geospatial statistics. . bioRxiv 2023.07.20.549945. https://doi.org/10.1101/2023.07.20.549945
  42. 42.
    Xu Z, Wang W, Yang T, Li L, Ma X, et al. 2024.. STOmicsDB: a comprehensive database for spatial transcriptomics data sharing, analysis and visualization. . Nucleic Acids Res. 52:(D1):D105361
    [Crossref] [Google Scholar]
  43. 43.
    Armingol E, Baghdassarian HM, Lewis NE. 2024.. The diversification of methods for studying cell-cell interactions and communication. . Nat. Rev. Genet. 25:(6):381400
    [Crossref] [Google Scholar]
  44. 44.
    Preibisch S, Karaiskos N, Rajewsky N. 2021.. Image-based representation of massive spatial transcriptomics datasets. . bioRxiv 2021.12.07.471629. https://doi.org/10.1101/2021.12.07.471629
  45. 45.
    Zeira R, Land M, Strzalkowski A, Raphael BJ. 2022.. Alignment and integration of spatial transcriptomics data. . Nat. Methods 19:(5):56775
    [Crossref] [Google Scholar]
  46. 46.
    Pentimalli TM, Schallenberg S, León-Periñán D, Legnini I, Theurillat I, et al. 2023.. High-resolution molecular atlas of a lung tumor in 3D. . bioRxiv 2023.05.10.539644. https://doi.org/10.1101/2023.05.10.539644
  47. 47.
    Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, et al. 2018.. Shared and distinct transcriptomic cell types across neocortical areas. . Nature 563:(7729):7278
    [Crossref] [Google Scholar]
  48. 48.
    Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, et al. 2019.. Conserved cell types with divergent features in human versus mouse cortex. . Nature 573:(7772):6168
    [Crossref] [Google Scholar]
  49. 49.
    Piwecka M, Rajewsky N, Rybak-Wolf A. 2023.. Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. . Nat. Rev. Neurol. 19:(6):34662
    [Crossref] [Google Scholar]
  50. 50.
    Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, et al. 2018.. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. . Science 362:(6416):eaau5324
    [Crossref] [Google Scholar]
  51. 51.
    BRAIN Initiat. Cell Census Netw. (BICCN). 2021.. A multimodal cell census and atlas of the mammalian primary motor cortex. . Nature 598:(7879):86102
    [Crossref] [Google Scholar]
  52. 52.
    Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, et al. 2023.. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. . Nature 624:(7991):31732
    [Crossref] [Google Scholar]
  53. 53.
    Liu H, Zeng Q, Zhou J, Bartlett A, Wang B-A, et al. 2023.. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. . Nature 624:(7991):36677
    [Crossref] [Google Scholar]
  54. 54.
    Asp M, Giacomello S, Larsson L, Wu C, Fürth D, et al. 2019.. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. . Cell 179:(7):164760.e19
    [Crossref] [Google Scholar]
  55. 55.
    Tsubosaka A, Komura D, Kakiuchi M, Katoh H, Onoyama T, et al. 2023.. Stomach encyclopedia: Combined single-cell and spatial transcriptomics reveal cell diversity and homeostatic regulation of human stomach. . Cell Rep. 42:(10):113236
    [Crossref] [Google Scholar]
  56. 56.
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, et al. 2017.. The human cell atlas. . eLife 6::e27041
    [Crossref] [Google Scholar]
  57. 57.
    Snyder MP, Lin S, Posgai A, Atkinson M, Regev A, et al. (HuBMAP Consort.). 2019.. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. . Nature 574:(7777):18792
    [Crossref] [Google Scholar]
  58. 58.
    Kumar T, Nee K, Wei R, He S, Nguyen QH, et al. 2023.. A spatially resolved single-cell genomic atlas of the adult human breast. . Nature 620:(7972):18191
    [Crossref] [Google Scholar]
  59. 59.
    Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, et al. 2022.. Spatial multi-omic map of human myocardial infarction. . Nature 608:(7924):76677
    [Crossref] [Google Scholar]
  60. 60.
    Lake BB, Menon R, Winfree S, Hu Q, Melo Ferreira R, et al. 2023.. An atlas of healthy and injured cell states and niches in the human kidney. . Nature 619:(7970):58594
    [Crossref] [Google Scholar]
  61. 61.
    Chen W-T, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, et al. 2020.. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease. . Cell 182:(4):97691.e19
    [Crossref] [Google Scholar]
  62. 62.
    Mallach A, Zielonka M, van Lieshout V, An Y, Khoo JH, et al. 2024.. Microglia-astrocyte crosstalk in the amyloid plaque niche of an Alzheimer's disease mouse model, as revealed by spatial transcriptomics. . Cell Rep. 43:(6):114216
    [Crossref] [Google Scholar]
  63. 63.
    Zeng H, Huang J, Zhou H, Meilandt WJ, Dejanovic B, et al. 2023.. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer's disease. . Nat. Neurosci. 26:(3):43046
    [Google Scholar]
  64. 64.
    Caetano AJ, Redhead Y, Karim F, Dhami P, Kannambath S, et al. 2023.. Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10. . eLife 12::e81525
    [Crossref] [Google Scholar]
  65. 65.
    Schäbitz A, Hillig C, Mubarak M, Jargosch M, Farnoud A, et al. 2022.. Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases. . Nat. Commun. 13:(1):7729
    [Crossref] [Google Scholar]
  66. 66.
    Gurtner A, Borrelli C, Gonzalez-Perez I, Bach K, Acar IE, et al. 2023.. Active eosinophils regulate host defence and immune responses in colitis. . Nature 615:(7950):15157
    [Crossref] [Google Scholar]
  67. 67.
    Garrido-Trigo A, Corraliza AM, Veny M, Dotti I, Melón-Ardanaz E, et al. 2023.. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. . Nat. Commun. 14:(1):4506
    [Crossref] [Google Scholar]
  68. 68.
    Ma F, Plazyo O, Billi AC, Tsoi LC, Xing X, et al. 2023.. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. . Nat. Commun. 14:(1):3455
    [Crossref] [Google Scholar]
  69. 69.
    Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, et al. 2024.. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. . Cell 187:(8):201028.e30
    [Crossref] [Google Scholar]
  70. 70.
    Joyce JA. 2005.. Therapeutic targeting of the tumor microenvironment. . Cancer Cell 7:(6):51320
    [Crossref] [Google Scholar]
  71. 71.
    Berglund E, Maaskola J, Schultz N, Friedrich S, Marklund M, et al. 2018.. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. . Nat. Commun. 9:(1):2419
    [Crossref] [Google Scholar]
  72. 72.
    Thrane K, Eriksson H, Maaskola J, Hansson J, Lundeberg J. 2018.. Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma. . Cancer Res. 78:(20):597079
    [Crossref] [Google Scholar]
  73. 73.
    Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, et al. 2020.. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. . Nat. Biotechnol. 38:(3):33342
    [Crossref] [Google Scholar]
  74. 74.
    Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, et al. 2021.. A single-cell and spatially resolved atlas of human breast cancers. . Nat. Genet. 53:(9):133447
    [Crossref] [Google Scholar]
  75. 75.
    Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, et al. 2014.. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. . Nat. Methods 11:(4):41722
    [Crossref] [Google Scholar]
  76. 76.
    Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, et al. 2014.. Multiplexed ion beam imaging of human breast tumors. . Nat. Med. 20:(4):43642
    [Crossref] [Google Scholar]
  77. 77.
    Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, et al. 2018.. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. . Cell 174:(6):137387.e19
    [Crossref] [Google Scholar]
  78. 78.
    Ali HR, Jackson HW, Zanotelli VRT, Danenberg E, Fischer JR, et al. 2020.. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. . Nat. Cancer 1:(2):16375
    [Crossref] [Google Scholar]
  79. 79.
    Schürch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, et al. 2020.. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. . Cell 182:(5):134159.e19
    [Crossref] [Google Scholar]
  80. 80.
    Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, et al. 2020.. The single-cell pathology landscape of breast cancer. . Nature 578:(7796):61520
    [Crossref] [Google Scholar]
  81. 81.
    Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, et al. 2020.. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. . Cell 182:(2):497514.e22
    [Crossref] [Google Scholar]
  82. 82.
    Karras P, Bordeu I, Pozniak J, Nowosad A, Pazzi C, et al. 2022.. A cellular hierarchy in melanoma uncouples growth and metastasis. . Nature 610:(7930):19098
    [Crossref] [Google Scholar]
  83. 83.
    Wu L, Yan J, Bai Y, Chen F, Zou X, et al. 2023.. An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression. . Cell Res. 33:(8):585603
    [Crossref] [Google Scholar]
  84. 84.
    Moffet JJD, Fatunla OE, Freytag L, Kriel J, Jones JJ, et al. 2023.. Spatial architecture of high-grade glioma reveals tumor heterogeneity within distinct domains. . Neurooncol. Adv. 5:(1):vdad142
    [Google Scholar]
  85. 85.
    Yeh CY, Aguirre K, Laveroni O, Kim S, Wang A, et al. 2023.. Mapping ovarian cancer spatial organization uncovers immune evasion drivers at the genetic, cellular, and tissue level. . bioRxiv 2023.10.16.562592. https://doi.org/10.1101/2023.10.16.562592
  86. 86.
    Robert C. 2020.. A decade of immune-checkpoint inhibitors in cancer therapy. . Nat. Commun. 11:(1):3801
    [Crossref] [Google Scholar]
  87. 87.
    Magen A, Hamon P, Fiaschi N, Soong BY, Park MD, et al. 2023.. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. . Nat. Med. 29:(6):138999
    [Crossref] [Google Scholar]
  88. 88.
    Chen JH, Nieman LT, Spurrell M, Jorgji V, Elmelech L, et al. 2024.. Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy. . Nat. Immunol. 25::64458
    [Crossref] [Google Scholar]
  89. 89.
    Sharma A, Seow JJW, Dutertre C-A, Pai R, Blériot C, et al. 2020.. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. . Cell 183:(2):37794.e21
    [Crossref] [Google Scholar]
  90. 90.
    Li Z, Pai R, Gupta S, Currenti J, Guo W, et al. 2024.. Presence of onco-fetal neighborhoods in hepatocellular carcinoma is associated with relapse and response to immunotherapy. . Nat. Cancer 5:(1):16786
    [Crossref] [Google Scholar]
  91. 91.
    Dietel M, Jöhrens K, Laffert MV, Hummel M, Bläker H, et al. 2015.. A 2015 update on predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance. . Cancer Gene Ther. 22:(9):41730
    [Crossref] [Google Scholar]
  92. 92.
    Kiuru M, Kriner MA, Wong S, Zhu G, Terrell JR, et al. 2022.. High-plex spatial RNA profiling reveals cell type–specific biomarker expression during melanoma development. . J. Investig. Dermatol. 142:(5):140112.e20
    [Crossref] [Google Scholar]
  93. 93.
    Janesick A, Shelansky R, Gottscho AD, Wagner F, Williams SR, et al. 2023.. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. . Nat. Commun. 14:(1):8353
    [Crossref] [Google Scholar]
  94. 94.
    Lyubetskaya A, Rabe B, Fisher A, Lewin A, Neuhaus I, et al. 2022.. Assessment of spatial transcriptomics for oncology discovery. . Cell Rep. Methods 2:(11):100340
    [Crossref] [Google Scholar]
  95. 95.
    Hwang WL, Jagadeesh KA, Guo JA, Hoffman HI, Yadollahpour P, et al. 2022.. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. . Nat. Genet. 54:(8):117891
    [Crossref] [Google Scholar]
  96. 96.
    Cui Zhou D, Jayasinghe RG, Chen S, Herndon JM, Iglesia MD, et al. 2022.. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. . Nat. Genet. 54:(9):1390405
    [Crossref] [Google Scholar]
  97. 97.
    Oyoshi H, Du J, Sakai SA, Yamashita R, Okumura M, et al. 2023.. Comprehensive single-cell analysis demonstrates radiotherapy-induced infiltration of macrophages expressing immunosuppressive genes into tumor in esophageal squamous cell carcinoma. . Sci. Adv. 9:(50):eadh9069
    [Crossref] [Google Scholar]
  98. 98.
    Derry JMJ, Burns C, Frazier JP, Beirne E, Grenley M, et al. 2023.. Trackable intratumor microdosing and spatial profiling provide early insights into activity of investigational agents in the intact tumor microenvironment. . Clin. Cancer Res. 29:(18):381325
    [Crossref] [Google Scholar]
  99. 99.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, et al. 2014.. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. . Science 344:(6190):1396401
    [Crossref] [Google Scholar]
  100. 100.
    Fan J, Lee H-O, Lee S, Ryu D-E, Lee S, et al. 2018.. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data. . Genome Res. 28:(8):121727
    [Crossref] [Google Scholar]
  101. 101.
    Erickson A, He M, Berglund E, Marklund M, Mirzazadeh R, et al. 2022.. Spatially resolved clonal copy number alterations in benign and malignant tissue. . Nature 608:(7922):36067
    [Crossref] [Google Scholar]
  102. 102.
    Heiser CN, Simmons AJ, Revetta F, McKinley ET, Ramirez-Solano MA, et al. 2023.. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. . Cell 186:(25):562037.e16
    [Crossref] [Google Scholar]
  103. 103.
    Chen L, Chang D, Tandukar B, Deivendran D, Pozniak J, et al. 2023.. STmut: a framework for visualizing somatic alterations in spatial transcriptomics data of cancer. . Genome Biol. 24:(1):273
    [Crossref] [Google Scholar]
  104. 104.
    Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, et al. 2018.. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. . Cell 174:(5):1293308.e36
    [Crossref] [Google Scholar]
  105. 105.
    Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. 2017.. Single-cell transcriptomics to explore the immune system in health and disease. . Science 358:(6359):5863
    [Crossref] [Google Scholar]
  106. 106.
    Singh M, Al-Eryani G, Carswell S, Ferguson JM, Blackburn J, et al. 2019.. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. . Nat. Commun. 10:(1):3120
    [Crossref] [Google Scholar]
  107. 107.
    Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, et al. 2022.. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. . Immunity 55:(3):52741.e5
    [Crossref] [Google Scholar]
  108. 108.
    Hudson WH, Sudmeier LJ. 2022.. Localization of T cell clonotypes using the Visium spatial transcriptomics platform. . STAR Protoc. 3:(2):101391
    [Crossref] [Google Scholar]
  109. 109.
    Benotmane JK, Kueckelhaus J, Will P, Zhang J, Ravi VM, et al. 2023.. High-sensitive spatially resolved T cell receptor sequencing with SPTCR-seq. . Nat. Commun. 14:(1):7432
    [Crossref] [Google Scholar]
  110. 110.
    Liu S, Iorgulescu JB, Li S, Borji M, Barrera-Lopez IA, et al. 2022.. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. . Immunity 55:(10):194052.e5
    [Crossref] [Google Scholar]
  111. 111.
    Engblom C, Thrane K, Lin Q, Andersson A, Toosi H, et al. 2023.. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. . Science 382:(6675):eadf8486
    [Crossref] [Google Scholar]
  112. 112.
    Boileau E, Li X, Naarmann-de Vries IS, Becker C, Casper R, et al. 2022.. Full-length spatial transcriptomics reveals the unexplored isoform diversity of the myocardium post-MI. . Front. Genet. 13::912572
    [Crossref] [Google Scholar]
  113. 113.
    Carow B, Hauling T, Qian X, Kramnik I, Nilsson M, Rottenberg ME. 2019.. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. . Nat. Commun. 10:(1):1823
    [Crossref] [Google Scholar]
  114. 114.
    Mantri M, Hinchman MM, McKellar DW, Wang MFZ, Cross ST, et al. 2022.. Spatiotemporal transcriptomics reveals pathogenesis of viral myocarditis. . Nat. Cardiovasc. Res. 1:(10):94660
    [Crossref] [Google Scholar]
  115. 115.
    Khan M, Yoo S-J, Clijsters M, Backaert W, Vanstapel A, et al. 2021.. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. . Cell 184:(24):593249.e15
    [Crossref] [Google Scholar]
  116. 116.
    Mothes R, Pascual-Reguant A, Koehler R, Liebeskind J, Liebheit A, et al. 2023.. Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19. . Nat. Commun. 14:(1):791
    [Crossref] [Google Scholar]
  117. 117.
    Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, et al. 2019.. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. . Nat. Commun. 10:(1):4878
    [Crossref] [Google Scholar]
  118. 118.
    Rybak-Wolf A, Wyler E, Pentimalli TM, Legnini I, Martinez AO, et al. 2023.. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids. . Nat. Microbiol. 8::125266
    [Crossref] [Google Scholar]
  119. 119.
    Lötstedt B, Stražar M, Xavier R, Regev A, Vickovic S. 2024.. Spatial host–microbiome sequencing reveals niches in the mouse gut. . Nat. Biotechnol. 42::1394403
    [Crossref] [Google Scholar]
  120. 120.
    Saarenpää S, Shalev O, Ashkenazy H, Carlos V, Lundberg DS, et al. 2023.. Spatial metatranscriptomics resolves host-bacteria-fungi interactomes. . Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01979-2
    [Google Scholar]
  121. 121.
    Salmen F, De Jonghe J, Kaminski TS, Alemany A, Parada GE, et al. 2022.. High-throughput total RNA sequencing in single cells using VASA-seq. . Nat. Biotechnol. 40:(12):178093
    [Crossref] [Google Scholar]
  122. 122.
    McKellar DW, Mantri M, Hinchman MM, Parker JSL, Sethupathy P, et al. 2023.. Spatial mapping of the total transcriptome by in situ polyadenylation. . Nat. Biotechnol. 41:(4):51320
    [Crossref] [Google Scholar]
  123. 123.
    Gracia Villacampa E, Larsson L, Mirzazadeh R, Kvastad L, Andersson A, et al. 2021.. Genome-wide spatial expression profiling in formalin-fixed tissues. . Cell Genom. 1:(3):100065
    [Crossref] [Google Scholar]
  124. 124.
    Bai Z, Zhang D, Gao Y, Tao B, Bao S, et al. 2024.. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. . bioRxiv 2024.02.06.579143. https://doi.org/10.1101/2024.02.06.579143
  125. 125.
    Vandereyken K, Sifrim A, Thienpont B, Voet T. 2023.. Methods and applications for single-cell and spatial multi-omics. . Nat. Rev. Genet. 24:(8):494515
    [Crossref] [Google Scholar]
  126. 126.
    Androvic P, Schifferer M, Perez Anderson K, Cantuti-Castelvetri L, Jiang H, et al. 2023.. Spatial transcriptomics-correlated electron microscopy maps transcriptional and ultrastructural responses to brain injury. . Nat. Commun. 14:(1):4115
    [Crossref] [Google Scholar]
  127. 127.
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, et al. 2017.. Simultaneous epitope and transcriptome measurement in single cells. . Nat. Methods 14:(9):86568
    [Crossref] [Google Scholar]
  128. 128.
    Ben-Chetrit N, Niu X, Swett AD, Sotelo J, Jiao MS, et al. 2023.. Integration of whole transcriptome spatial profiling with protein markers. . Nat. Biotechnol. 41:(6):78893
    [Crossref] [Google Scholar]
  129. 129.
    Vickovic S, Lötstedt B, Klughammer J, Mages S, Segerstolpe Å, et al. 2022.. SM-Omics is an automated platform for high-throughput spatial multi-omics. . Nat. Commun. 13:(1):795
    [Crossref] [Google Scholar]
  130. 130.
    Vicari M, Mirzazadeh R, Nilsson A, Shariatgorji R, Bjärterot P, et al. 2023.. Spatial multimodal analysis of transcriptomes and metabolomes in tissues. . Nat. Biotechnol. 42::104650
    [Crossref] [Google Scholar]
  131. 131.
    Sun C, Wang A, Zhou Y, Chen P, Wang X, et al. 2023.. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. . Nat. Commun. 14:(1):2692
    [Crossref] [Google Scholar]
  132. 132.
    Bao F, Deng Y, Wan S, Shen SQ, Wang B, et al. 2022.. Integrative spatial analysis of cell morphologies and transcriptional states with MUSE. . Nat. Biotechnol. 40:(8):12009
    [Crossref] [Google Scholar]
  133. 133.
    Ghaznavi F, Evans A, Madabhushi A, Feldman M. 2013.. Digital imaging in pathology: whole-slide imaging and beyond. . Annu. Rev. Pathol. Mech. Dis. 8::33159
    [Crossref] [Google Scholar]
  134. 134.
    Klauschen F, Dippel J, Keyl P, Jurmeister P, Bockmayr M, et al. 2024.. Toward explainable artificial intelligence for precision pathology. . Annu. Rev. Pathol. Mech. Dis. 19::54170
    [Crossref] [Google Scholar]
  135. 135.
    Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, et al. 2019.. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. . Nat. Med. 25:(8):13019
    [Crossref] [Google Scholar]
  136. 136.
    Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, et al. 2020.. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. . Lancet Oncol. 21:(2):23341
    [Crossref] [Google Scholar]
  137. 137.
    Naik N, Madani A, Esteva A, Keskar NS, Press MF, et al. 2020.. Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains. . Nat. Commun. 11:(1):5727
    [Crossref] [Google Scholar]
  138. 138.
    Kather JN, Pearson AT, Halama N, Jäger D, Krause J, et al. 2019.. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. . Nat. Med. 25:(7):105456
    [Crossref] [Google Scholar]
  139. 139.
    Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, et al. 2018.. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. . Nat. Med. 24:(10):155967
    [Crossref] [Google Scholar]
  140. 140.
    Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, et al. (Cancer Genome Atlas Res. Netw.). 2013.. The Cancer Genome Atlas Pan-Cancer analysis project. . Nat. Genet. 45:(10):111320
    [Crossref] [Google Scholar]
  141. 141.
    Binder A, Bockmayr M, Hägele M, Wienert S, Heim D, et al. 2021.. Morphological and molecular breast cancer profiling through explainable machine learning. . Nat. Mach. Intell. 3::35566
    [Crossref] [Google Scholar]
  142. 142.
    Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W. 2015.. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. . PLOS ONE 10:(7):e0130140
    [Crossref] [Google Scholar]
  143. 143.
    He B, Bergenstråhle L, Stenbeck L, Abid A, Andersson A, et al. 2020.. Integrating spatial gene expression and breast tumour morphology via deep learning. . Nat. Biomed. Eng. 4:(8):82734
    [Crossref] [Google Scholar]
  144. 144.
    Hu J, Coleman K, Zhang D, Lee EB, Kadara H, et al. 2023.. Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA. . Cell Syst. 14:(5):40417.e4
    [Crossref] [Google Scholar]
  145. 145.
    Zeng Q, Klein C, Caruso S, Maille P, Allende DS, et al. 2023.. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. . Lancet Oncol. 24:(12):141122
    [Crossref] [Google Scholar]
  146. 146.
    Fortina P, Surrey S, Kricka LJ. 2002.. Molecular diagnostics: hurdles for clinical implementation. . Trends Mol. Med. 8:(6):26466
    [Crossref] [Google Scholar]
  147. 147.
    Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, et al. (Tabula Sapiens Consort.). 2022.. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. . Science 376:(6594):eabl4896
    [Crossref] [Google Scholar]
  148. 148.
    Wang Q, Ding S-L, Li Y, Royall J, Feng D, et al. 2020.. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. . Cell 181:(4):93653.e20
    [Crossref] [Google Scholar]
  149. 149.
    Legnini I, Emmenegger L, Zappulo A, Rybak-Wolf A, Wurmus R, et al. 2023.. Spatiotemporal, optogenetic control of gene expression in organoids. . Nat. Methods 20:(10):154452
    [Crossref] [Google Scholar]
  150. 150.
    Schutgens F, Clevers H. 2020.. Human organoids: tools for understanding biology and treating diseases. . Annu. Rev. Pathol. Mech. Dis. 15::21134
    [Crossref] [Google Scholar]
  151. 151.
    Bressan D, Battistoni G, Hannon GJ. 2023.. The dawn of spatial omics. . Science 381:(6657):eabq4964
    [Crossref] [Google Scholar]
  152. 152.
    Vorontsov E, Bozkurt A, Casson A, Shaikovski G, Zelechowski M, et al. 2023.. Virchow: a million-slide digital pathology foundation model. . arXiv:2309.07778 [eess.IV]
  153. 153.
    Dippel J, Feulner B, Winterhoff T, Schallenberg S, Dernbach G, et al. 2024.. RudolfV: a foundation model by pathologists for pathologists. . arXiv:2401.04079 [eess.IV]
  154. 154.
    Missarova A, Jain J, Butler A, Ghazanfar S, Stuart T, et al. 2021.. geneBasis: an iterative approach for unsupervised selection of targeted gene panels from scRNA-seq. . Genome Biol. 22:(1):333
    [Crossref] [Google Scholar]
  155. 155.
    Dumitrascu B, Villar S, Mixon DG, Engelhardt BE. 2021.. Optimal marker gene selection for cell type discrimination in single cell analyses. . Nat. Commun. 12:(1):1186
    [Crossref] [Google Scholar]
  156. 156.
    Aevermann B, Zhang Y, Novotny M, Keshk M, Bakken T, et al. 2021.. A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing. . Genome Res. 31:(10):176780
    [Crossref] [Google Scholar]
  157. 157.
    Zhang Y, Petukhov V, Biederstedt E, Que R, Zhang K, Kharchenko PV. 2024.. Gene panel selection for targeted spatial transcriptomics. . Genome Biol. 25::35
    [Crossref] [Google Scholar]
  158. 158.
    Schmid KT, Höllbacher B, Cruceanu C, Böttcher A, Lickert H, et al. 2021.. scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies. . Nat. Commun. 12:(1):6625
    [Crossref] [Google Scholar]
  159. 159.
    Baker EAG, Schapiro D, Dumitrascu B, Vickovic S, Regev A. 2023.. In silico tissue generation and power analysis for spatial omics. . Nat. Methods 20:(3):42431
    [Crossref] [Google Scholar]
  160. 160.
    Hossain MS, Shahriar GM, Syeed MMM, Uddin MF, Hasan M, et al. 2023.. Region of interest (ROI) selection using vision transformer for automatic analysis using whole slide images. . Sci. Rep. 13:(1):11314
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023417
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023417
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error